Diagnostic feature added

This commit is contained in:
Javier Arigita 2020-05-02 20:31:20 +02:00
parent 20f3d8ddef
commit b6954f5f0b
2 changed files with 227 additions and 209 deletions

View File

@ -662,30 +662,31 @@
#define USE_THERMOSTAT
#define THERMOSTAT_RELAY_NUMBER 1 // Default output relay number
#define THERMOSTAT_SWITCH_NUMBER 1 // Default input switch number
#define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time in seconds after last target update to allow ramp-up controller phase in minutes
#define THERMOSTAT_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes
#define THERMOSTAT_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle in seconds
#define THERMOSTAT_TIME_SENS_LOST 30 // Maximum time w/o sensor update to set it as lost in minutes
#define THERMOSTAT_TEMP_SENS_NUMBER 1 // Default temperature sensor number
#define THERMOSTAT_POWER_MAX 60 // Default maximum output power in Watt
#define THERMOSTAT_TIME_MANUAL_TO_AUTO 60 // Default time without input switch active to change from manual to automatic in minutes
#define THERMOSTAT_TIME_ON_LIMIT 120 // Default maximum time with output active in minutes
#define THERMOSTAT_TIME_RESET 12000 // Default reset time of the PI controller in seconds
#define THERMOSTAT_TIME_PI_CYCLE 30 // Default cycle time for the thermostat controller in minutes
#define THERMOSTAT_TIME_MAX_ACTION 20 // Default maximum thermostat time per cycle in minutes
#define THERMOSTAT_TIME_MIN_ACTION 4 // Default minimum thermostat time per cycle in minutes
#define THERMOSTAT_TIME_MIN_TURNOFF_ACTION 3 // Default minimum turnoff time in minutes, below it the thermostat will be held on
#define THERMOSTAT_PROP_BAND 4 // Default proportional band of the PI controller in degrees celsius
#define THERMOSTAT_TEMP_RESET_ANTI_WINDUP 8 // Default range where reset antiwindup is disabled, in tenths of degrees celsius
#define THERMOSTAT_TEMP_HYSTERESIS 1 // Default range hysteresis for temperature PI controller, in tenths of degrees celsius
#define THERMOSTAT_TEMP_FROST_PROTECT 40 // Default minimum temperature for frost protection, in tenths of degrees celsius
#define THERMOSTAT_TEMP_RAMPUP_DELTA_IN 4 // Default minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
#define THERMOSTAT_TEMP_RAMPUP_DELTA_OUT 2 // Default minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
#define THERMOSTAT_TEMP_PI_RAMPUP_ACC_E 200 // Default accumulated error when switching from ramp-up controller to PI in hundreths of degrees celsius
#define THERMOSTAT_TIME_OUTPUT_DELAY 180 // Default output delay between state change and real actuation event (f.i. valve open/closed)
#define THERMOSTAT_TEMP_INIT 180 // Default init target temperature for the thermostat controller
#define THERMOSTAT_SENSOR_NAME "DS18B20" // Name of the local sensor to be used
#define THERMOSTAT_RELAY_NUMBER 1 // Default output relay number
#define THERMOSTAT_SWITCH_NUMBER 1 // Default input switch number
#define THERMOSTAT_TIME_ALLOW_RAMPUP 300 // Default time in seconds after last target update to allow ramp-up controller phase in minutes
#define THERMOSTAT_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes
#define THERMOSTAT_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle in seconds
#define THERMOSTAT_TIME_SENS_LOST 30 // Maximum time w/o sensor update to set it as lost in minutes
#define THERMOSTAT_TEMP_SENS_NUMBER 1 // Default temperature sensor number
#define THERMOSTAT_TIME_MANUAL_TO_AUTO 60 // Default time without input switch active to change from manual to automatic in minutes
#define THERMOSTAT_TIME_ON_LIMIT 120 // Default maximum time with output active in minutes
#define THERMOSTAT_TIME_RESET 12000 // Default reset time of the PI controller in seconds
#define THERMOSTAT_TIME_PI_CYCLE 30 // Default cycle time for the thermostat controller in minutes
#define THERMOSTAT_TIME_MAX_ACTION 20 // Default maximum thermostat time per cycle in minutes
#define THERMOSTAT_TIME_MIN_ACTION 4 // Default minimum thermostat time per cycle in minutes
#define THERMOSTAT_TIME_MIN_TURNOFF_ACTION 3 // Default minimum turnoff time in minutes, below it the thermostat will be held on
#define THERMOSTAT_PROP_BAND 4 // Default proportional band of the PI controller in degrees celsius
#define THERMOSTAT_TEMP_RESET_ANTI_WINDUP 8 // Default range where reset antiwindup is disabled, in tenths of degrees celsius
#define THERMOSTAT_TEMP_HYSTERESIS 1 // Default range hysteresis for temperature PI controller, in tenths of degrees celsius
#define THERMOSTAT_TEMP_FROST_PROTECT 40 // Default minimum temperature for frost protection, in tenths of degrees celsius
#define THERMOSTAT_TEMP_RAMPUP_DELTA_IN 4 // Default minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
#define THERMOSTAT_TEMP_RAMPUP_DELTA_OUT 2 // Default minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
#define THERMOSTAT_TEMP_PI_RAMPUP_ACC_E 200 // Default accumulated error when switching from ramp-up controller to PI in hundreths of degrees celsius
#define THERMOSTAT_TIME_OUTPUT_DELAY 180 // Default output delay between state change and real actuation event (f.i. valve open/closed)
#define THERMOSTAT_TEMP_INIT 180 // Default init target temperature for the thermostat controller
#define THERMOSTAT_TIME_MAX_OUTPUT_INCONSIST 3 // Default maximum time where the input and the outpus shall differ (for diagnostic) in minutes
// -- End of general directives -------------------

View File

@ -22,11 +22,7 @@
#define XDRV_39 39
// Enable/disable debugging
#define DEBUG_THERMOSTAT
// Use attached temperature sensor
#define THERMOSTAT_USE_LOCAL_SENSOR
#define THERMOSTAT_SENSOR_NAME "DS18B20"
//#define DEBUG_THERMOSTAT
#ifdef DEBUG_THERMOSTAT
#define DOMOTICZ_IDX1 791
@ -44,13 +40,10 @@
#define D_CMND_TEMPFORMATSET "TempFormatSet"
#define D_CMND_TEMPMEASUREDSET "TempMeasuredSet"
#define D_CMND_TEMPTARGETSET "TempTargetSet"
#define D_CMND_TEMPTARGETREAD "TempTargetRead"
#define D_CMND_TEMPMEASUREDREAD "TempMeasuredRead"
#define D_CMND_TEMPMEASUREDGRDREAD "TempMeasuredGrdRead"
#define D_CMND_TEMPSENSNUMBERSET "TempSensNumberSet"
#define D_CMND_SENSORINPUTSET "SensorInputSet"
#define D_CMND_STATEEMERGENCYSET "StateEmergencySet"
#define D_CMND_POWERMAXSET "PowerMaxSet"
#define D_CMND_TIMEMANUALTOAUTOSET "TimeManualToAutoSet"
#define D_CMND_TIMEONLIMITSET "TimeOnLimitSet"
#define D_CMND_PROPBANDSET "PropBandSet"
@ -69,6 +62,7 @@
#define D_CMND_TIMEPIPROPORTREAD "TimePiProportRead"
#define D_CMND_TIMEPIINTEGRREAD "TimePiIntegrRead"
#define D_CMND_TIMESENSLOSTSET "TimeSensLostSet"
#define D_CMND_DIAGNOSTICMODESET "DiagnosticModeSet"
enum ThermostatModes { THERMOSTAT_OFF, THERMOSTAT_AUTOMATIC_OP, THERMOSTAT_MANUAL_OP, THERMOSTAT_MODES_MAX };
enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP, CTR_MODES_MAX };
@ -79,6 +73,7 @@ enum EmergencyStates { EMERGENCY_OFF, EMERGENCY_ON };
enum SensorType { SENSOR_MQTT, SENSOR_LOCAL, SENSOR_MAX };
enum TempFormat { TEMP_CELSIUS, TEMP_FAHRENHEIT };
enum TempConvType { TEMP_CONV_ABSOLUTE, TEMP_CONV_RELATIVE };
enum DiagnosticModes { DIAGNOSTIC_OFF, DIAGNOSTIC_ON };
enum ThermostatSupportedInputSwitches {
THERMOSTAT_INPUT_NONE,
THERMOSTAT_INPUT_SWT1 = 1, // Buttons
@ -106,15 +101,18 @@ typedef union {
uint32_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active)
uint32_t sensor_type : 1; // Sensor type: MQTT/local
uint32_t temp_format : 1; // Temperature format: Celsius/Fahrenheit
uint32_t command_output : 1; // Flag stating state to save the command to the output (0 = inactive, 1 = active)
uint32_t command_output : 1; // Flag stating the desired command to the output (0 = inactive, 1 = active)
uint32_t status_output : 1; // Flag stating state of the output (0 = inactive, 1 = active)
uint32_t status_input : 1; // Flag stating state of the input (0 = inactive, 1 = active)
uint32_t phase_hybrid_ctr : 1; // Phase of the hybrid controller (Ramp-up or PI)
uint32_t status_output : 1; // Status of the output switch
uint32_t status_cycle_active : 1; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint32_t state_emergency : 1; // State for thermostat emergency
uint32_t counter_seconds : 6; // Second counter used to track minutes
uint32_t output_relay_number : 4; // Output relay number
uint32_t input_switch_number : 3; // Input switch number
uint32_t free : 7; // Free bits in Bitfield
uint32_t output_inconsist_ctr : 2; // Counter of the minutes where there are inconsistent in the output state
uint32_t diagnostic_mode : 1; // Diagnostic mode selected
uint32_t free : 3; // Free bits in Bitfield
};
} ThermostatBitfield;
@ -124,23 +122,22 @@ const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"
const char kThermostatCommands[] PROGMEM = "|" D_CMND_THERMOSTATMODESET "|" D_CMND_TEMPFROSTPROTECTSET "|"
D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|"
D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPTARGETREAD "|"
D_CMND_TEMPMEASUREDREAD "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|"
D_CMND_STATEEMERGENCYSET "|" D_CMND_POWERMAXSET "|" D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_TIMEONLIMITSET "|"
D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|" D_CMND_TEMPANTIWINDUPRESETSET "|"
D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|"
D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|"
D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET;
D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPMEASUREDGRDREAD "|"
D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|" D_CMND_TIMEMANUALTOAUTOSET "|"
D_CMND_TIMEONLIMITSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|"
D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|"
D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|"
D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|"
D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET;
void (* const ThermostatCommand[])(void) PROGMEM = {
&CmndThermostatModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndOutputRelaySet,
&CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet, &CmndTempTargetSet, &CmndTempTargetRead,
&CmndTempMeasuredRead, &CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet,
&CmndPowerMaxSet, &CmndTimeManualToAutoSet, &CmndTimeOnLimitSet, &CmndPropBandSet, &CmndTimeResetSet,
&CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet, &CmndTimeMaxActionSet,
&CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, &CmndTempRupDeltOutSet,
&CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTimePiProportRead,
&CmndTimePiIntegrRead, &CmndTimeSensLostSet };
&CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet, &CmndTempTargetSet, &CmndTempMeasuredGrdRead,
&CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet, &CmndTimeOnLimitSet,
&CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet,
&CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet,
&CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet,
&CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet };
struct THERMOSTAT {
ThermostatBitfield status; // Bittfield including states as well as several flags
@ -188,7 +185,6 @@ struct THERMOSTAT {
uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the thermostat will be held on
uint8_t temp_reset_anti_windup = THERMOSTAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = THERMOSTAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint16_t power_max = THERMOSTAT_POWER_MAX; // Maximum output power in Watt
uint8_t temp_frost_protect = THERMOSTAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius
} Thermostat;
@ -203,13 +199,15 @@ void ThermostatInit(void)
Thermostat.status.sensor_type = SENSOR_MQTT;
Thermostat.status.temp_format = TEMP_CELSIUS;
Thermostat.status.command_output = IFACE_OFF;
Thermostat.status.phase_hybrid_ctr = CTR_HYBRID_PI;
Thermostat.status.status_output = IFACE_OFF;
Thermostat.status.phase_hybrid_ctr = CTR_HYBRID_PI;
Thermostat.status.status_cycle_active = CYCLE_OFF;
Thermostat.status.state_emergency = EMERGENCY_OFF;
Thermostat.status.counter_seconds = 0;
Thermostat.status.output_relay_number = THERMOSTAT_RELAY_NUMBER;
Thermostat.status.input_switch_number = THERMOSTAT_SWITCH_NUMBER;
Thermostat.status.output_inconsist_ctr = 0;
Thermostat.status.diagnostic_mode = DIAGNOSTIC_ON;
// Make sure the Output is OFF
ExecuteCommandPower(Thermostat.status.output_relay_number, POWER_OFF, SRC_THERMOSTAT);
}
@ -221,7 +219,7 @@ bool ThermostatMinuteCounter(void)
if ((Thermostat.status.counter_seconds % 60) == 0) {
result = true;
Thermostat.status.counter_seconds = 0;
Thermostat.status.counter_seconds = 0;
}
return result;
}
@ -236,13 +234,19 @@ inline bool ThermostatRelayIdValid(uint8_t relayId)
return (relayId >= THERMOSTAT_OUTPUT_REL1 && relayId <= THERMOSTAT_OUTPUT_REL8);
}
uint8_t ThermostatSwitchStatus(uint8_t input_switch)
uint8_t ThermostatInputStatus(uint8_t input_switch)
{
bool ifId = ThermostatSwitchIdValid(input_switch);
uint8_t value = 0;
if(ifId) {
return(SwitchGetVirtual(ifId - THERMOSTAT_INPUT_SWT1));
value = SwitchGetVirtual(ifId - THERMOSTAT_INPUT_SWT1);
}
else return 255;
return value;
}
uint8_t ThermostatOutputStatus(uint8_t output_switch)
{
return (uint8_t)bitRead(power, (output_switch - 1));
}
int16_t ThermostatCelsiusToFahrenheit(const int32_t deg, uint8_t conv_type) {
@ -283,31 +287,51 @@ int16_t ThermostatFahrenheitToCelsius(const int32_t deg, uint8_t conv_type) {
return (int16_t)value;
}
void ThermostatSignalProcessingSlow(void)
void ThermostatSignalPreProcessingSlow(void)
{
if ((uptime - Thermostat.timestamp_temp_measured_update) > ((uint32_t)Thermostat.time_sens_lost * 60)) { // Check if sensor alive
// Update input sensor status
if ((uptime - Thermostat.timestamp_temp_measured_update) > ((uint32_t)Thermostat.time_sens_lost * 60)) {
Thermostat.status.sensor_alive = IFACE_OFF;
Thermostat.temp_measured_gradient = 0;
Thermostat.temp_measured = 0;
}
}
void ThermostatSignalPostProcessingSlow(void)
{
// Increate counter when inconsistent output state exists
if (Thermostat.status.status_output != Thermostat.status.command_output) {
Thermostat.status.output_inconsist_ctr++;
}
else {
Thermostat.status.output_inconsist_ctr = 0;
}
}
void ThermostatSignalProcessingFast(void)
{
if (ThermostatSwitchStatus(Thermostat.status.input_switch_number)) { // Check if input switch active and register last update
// Update real status of the input
Thermostat.status.status_input = (uint32_t)ThermostatInputStatus(Thermostat.status.input_switch_number);
// Update timestamp of last input
if (Thermostat.status.status_input == IFACE_ON) {
Thermostat.timestamp_input_on = uptime;
}
// Update real status of the output
Thermostat.status.status_output = (uint32_t)ThermostatOutputStatus(Thermostat.status.output_relay_number);
}
void ThermostatCtrState(void)
{
switch (Thermostat.status.controller_mode) {
case CTR_HYBRID: // Hybrid controller (Ramp-up + PI)
// Hybrid controller (Ramp-up + PI)
case CTR_HYBRID:
ThermostatHybridCtrPhase();
break;
case CTR_PI: // PI controller
// PI controller
case CTR_PI:
break;
case CTR_RAMP_UP: // Ramp-up controller (predictive)
// Ramp-up controller (predictive)
case CTR_RAMP_UP:
break;
}
}
@ -316,7 +340,8 @@ void ThermostatHybridCtrPhase(void)
{
if (Thermostat.status.controller_mode == CTR_HYBRID) {
switch (Thermostat.status.phase_hybrid_ctr) {
case CTR_HYBRID_RAMP_UP: // Ramp-up phase with gradient control
// Ramp-up phase with gradient control
case CTR_HYBRID_RAMP_UP:
// If ramp-up offtime counter has been initalized
// AND ramp-up offtime counter value reached
if((Thermostat.time_ctr_checkpoint != 0)
@ -329,7 +354,8 @@ void ThermostatHybridCtrPhase(void)
Thermostat.status.phase_hybrid_ctr = CTR_HYBRID_PI;
}
break;
case CTR_HYBRID_PI: // PI controller phase
// PI controller phase
case CTR_HYBRID_PI:
// If no output action for a pre-defined time
// AND temp target has changed
// AND temp target - target actual bigger than threshold
@ -361,7 +387,7 @@ bool ThermostatStateAutoToManual(void)
// If switch input is active
// OR temperature sensor is not alive
// then go to manual
if ((ThermostatSwitchStatus(Thermostat.status.input_switch_number) == 1)
if ((Thermostat.status.status_input == IFACE_ON)
|| (Thermostat.status.sensor_alive == IFACE_OFF)) {
change_state = true;
}
@ -376,7 +402,7 @@ bool ThermostatStateManualToAuto(void)
// AND sensor alive
// AND no switch input action (time in current state) bigger than a pre-defined time
// then go to automatic
if ((ThermostatSwitchStatus(Thermostat.status.input_switch_number) == 0)
if ((Thermostat.status.status_input == IFACE_OFF)
&&(Thermostat.status.sensor_alive == IFACE_ON)
&& ((uptime - Thermostat.timestamp_input_on) > ((uint32_t)Thermostat.time_manual_to_auto * 60))) {
change_state = true;
@ -384,55 +410,50 @@ bool ThermostatStateManualToAuto(void)
return change_state;
}
bool ThermostatStateAllToOff(void)
void ThermostatEmergencyShutdown(void)
{
bool change_state = false;
// If emergency mode then switch OFF the output inmediately
if (Thermostat.status.state_emergency == EMERGENCY_ON) {
Thermostat.status.thermostat_mode = THERMOSTAT_OFF; // Emergency switch to THERMOSTAT_OFF
change_state = true;
}
return change_state;
// Emergency switch to THERMOSTAT_OFF
Thermostat.status.thermostat_mode = THERMOSTAT_OFF;
Thermostat.status.command_output = IFACE_OFF;
ThermostatOutputRelay(Thermostat.status.command_output);
}
void ThermostatState(void)
{
switch (Thermostat.status.thermostat_mode) {
case THERMOSTAT_OFF: // State if Off or Emergency
// State if Off or Emergency
case THERMOSTAT_OFF:
// No change of state possible without external command
break;
case THERMOSTAT_AUTOMATIC_OP: // State automatic thermostat active following to command target temp.
if (ThermostatStateAllToOff()) {
Thermostat.status.thermostat_mode = THERMOSTAT_OFF; // Emergency switch to THERMOSTAT_OFF
}
// State automatic thermostat active following to command target temp.
case THERMOSTAT_AUTOMATIC_OP:
if (ThermostatStateAutoToManual()) {
Thermostat.status.thermostat_mode = THERMOSTAT_MANUAL_OP; // If sensor not alive change to THERMOSTAT_MANUAL_OP
// If sensor not alive change to THERMOSTAT_MANUAL_OP
Thermostat.status.thermostat_mode = THERMOSTAT_MANUAL_OP;
}
ThermostatCtrState();
break;
case THERMOSTAT_MANUAL_OP: // State manual operation following input switch
if (ThermostatStateAllToOff()) {
Thermostat.status.thermostat_mode = THERMOSTAT_OFF; // Emergency switch to THERMOSTAT_OFF
}
// State manual operation following input switch
case THERMOSTAT_MANUAL_OP:
if (ThermostatStateManualToAuto()) {
Thermostat.status.thermostat_mode = THERMOSTAT_AUTOMATIC_OP; // Input switch inactive and timeout reached change to THERMOSTAT_AUTOMATIC_OP
// Input switch inactive and timeout reached change to THERMOSTAT_AUTOMATIC_OP
Thermostat.status.thermostat_mode = THERMOSTAT_AUTOMATIC_OP;
}
break;
}
}
void ThermostatOutputRelay(bool active)
void ThermostatOutputRelay(uint32_t command)
{
// TODO: See if the real output state can be read by f.i. bitRead(power, Thermostat.status.output_relay_number))
// If command received to enable output
// AND current output status is OFF
// then switch output to ON
if ((active == true)
if ((command == IFACE_ON)
&& (Thermostat.status.status_output == IFACE_OFF)) {
#ifndef DEBUG_THERMOSTAT
//#ifndef DEBUG_THERMOSTAT
ExecuteCommandPower(Thermostat.status.output_relay_number, POWER_ON, SRC_THERMOSTAT);
#endif // DEBUG_THERMOSTAT
//#endif // DEBUG_THERMOSTAT
Thermostat.status.status_output = IFACE_ON;
#ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitch();
@ -441,10 +462,10 @@ void ThermostatOutputRelay(bool active)
// If command received to disable output
// AND current output status is ON
// then switch output to OFF
else if ((active == false) && (Thermostat.status.status_output == IFACE_ON)) {
#ifndef DEBUG_THERMOSTAT
else if ((command == IFACE_OFF) && (Thermostat.status.status_output == IFACE_ON)) {
//#ifndef DEBUG_THERMOSTAT
ExecuteCommandPower(Thermostat.status.output_relay_number, POWER_OFF, SRC_THERMOSTAT);
#endif // DEBUG_THERMOSTAT
//#endif // DEBUG_THERMOSTAT
Thermostat.timestamp_output_off = uptime;
Thermostat.status.status_output = IFACE_OFF;
#ifdef DEBUG_THERMOSTAT
@ -764,7 +785,8 @@ void ThermostatWorkAutomaticRampUp(void)
void ThermostatCtrWork(void)
{
switch (Thermostat.status.controller_mode) {
case CTR_HYBRID: // Hybrid controller (Ramp-up + PI)
// Hybrid controller (Ramp-up + PI)
case CTR_HYBRID:
switch (Thermostat.status.phase_hybrid_ctr) {
case CTR_HYBRID_RAMP_UP:
ThermostatWorkAutomaticRampUp();
@ -774,10 +796,12 @@ void ThermostatCtrWork(void)
break;
}
break;
case CTR_PI: // PI controller
// PI controller
case CTR_PI:
ThermostatWorkAutomaticPI();
break;
case CTR_RAMP_UP: // Ramp-up controller (predictive)
// Ramp-up controller (predictive)
case CTR_RAMP_UP:
ThermostatWorkAutomaticRampUp();
break;
}
@ -786,38 +810,40 @@ void ThermostatCtrWork(void)
void ThermostatWork(void)
{
switch (Thermostat.status.thermostat_mode) {
case THERMOSTAT_OFF: // State if Off or Emergency
// State if thermostat Off or Emergency
case THERMOSTAT_OFF:
Thermostat.status.command_output = IFACE_OFF;
break;
case THERMOSTAT_AUTOMATIC_OP: // State automatic thermostat active following to command target temp.
// State automatic thermostat active following to command target temp.
case THERMOSTAT_AUTOMATIC_OP:
ThermostatCtrWork();
break;
case THERMOSTAT_MANUAL_OP: // State manual operation following input switch
// State manual operation following input switch
case THERMOSTAT_MANUAL_OP:
Thermostat.time_ctr_checkpoint = 0;
if (ThermostatSwitchStatus(Thermostat.status.input_switch_number) == 1) {
Thermostat.status.command_output = IFACE_ON;
}
else {
Thermostat.status.command_output = IFACE_OFF;
}
Thermostat.status.command_output = Thermostat.status.status_input;
break;
}
bool output_command;
if (Thermostat.status.command_output == IFACE_OFF) {
output_command = false;
}
else {
output_command = true;
}
ThermostatOutputRelay(output_command);
ThermostatOutputRelay(Thermostat.status.command_output);
}
void ThermostatDiagnostics(void)
{
// TODOs:
// 1. Check time max for output switch on not exceeded
// 2. Check state of output corresponds to command
// 3. Check maximum power at output switch not exceeded
{
// Diagnostic related to the plausibility of the output state
if ((Thermostat.status.diagnostic_mode == DIAGNOSTIC_ON)
&&(Thermostat.status.output_inconsist_ctr >= THERMOSTAT_TIME_MAX_OUTPUT_INCONSIST)) {
Thermostat.status.thermostat_mode = THERMOSTAT_OFF;
Thermostat.status.state_emergency = EMERGENCY_ON;
}
// Diagnostic related to the plausibility of the output power implemented
// already into the energy driver
// If diagnostics activated fail, emergency active and thermostat shutdown triggered
if (Thermostat.status.state_emergency == EMERGENCY_ON) {
ThermostatEmergencyShutdown();
}
}
void ThermostatController(void)
@ -851,7 +877,7 @@ void ThermostatTimerDisarm(void)
void ThermostatVirtualSwitch(void)
{
char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC;
Response_P(DOMOTICZ_MES, DOMOTICZ_IDX1, (0 == Thermostat.status.status_output) ? 0 : 1, "");
Response_P(DOMOTICZ_MES, DOMOTICZ_IDX1, (0 == Thermostat.status.command_output) ? 0 : 1, "");
MqttPublish(domoticz_in_topic);
}
@ -864,9 +890,65 @@ void ThermostatVirtualSwitchCtrState(void)
//Response_P(DOMOTICZ_MES, DOMOTICZ_IDX3, (0 == Thermostat.time_ctr_changepoint) ? 0 : 1, "");
//MqttPublish(domoticz_in_topic);
}
void ThermostatDebug(void)
{
char result_chr[FLOATSZ];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat Start ------"));
dtostrfd(Thermostat.status.counter_seconds, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.counter_seconds: %s"), result_chr);
dtostrfd(Thermostat.status.thermostat_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.thermostat_mode: %s"), result_chr);
dtostrfd(Thermostat.status.state_emergency, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.state_emergency: %s"), result_chr);
dtostrfd(Thermostat.status.output_inconsist_ctr, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.output_inconsist_ctr: %s"), result_chr);
dtostrfd(Thermostat.status.controller_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.controller_mode: %s"), result_chr);
dtostrfd(Thermostat.status.command_output, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.command_output: %s"), result_chr);
dtostrfd(Thermostat.status.status_output, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.status_output: %s"), result_chr);
dtostrfd(Thermostat.status.status_input, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.status_input: %s"), result_chr);
dtostrfd(Thermostat.status.phase_hybrid_ctr, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.phase_hybrid_ctr: %s"), result_chr);
dtostrfd(Thermostat.status.sensor_alive, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.sensor_alive: %s"), result_chr);
dtostrfd(Thermostat.status.status_cycle_active, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.status_cycle_active: %s"), result_chr);
dtostrfd(Thermostat.temp_pi_error, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_pi_error: %s"), result_chr);
dtostrfd(Thermostat.temp_pi_accum_error, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_pi_accum_error: %s"), result_chr);
dtostrfd(Thermostat.time_proportional_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_proportional_pi: %s"), result_chr);
dtostrfd(Thermostat.time_integral_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_integral_pi: %s"), result_chr);
dtostrfd(Thermostat.time_total_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_total_pi: %s"), result_chr);
dtostrfd(Thermostat.temp_measured_gradient, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_measured_gradient: %s"), result_chr);
dtostrfd(Thermostat.time_rampup_deadtime, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_rampup_deadtime: %s"), result_chr);
dtostrfd(Thermostat.temp_rampup_meas_gradient, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_rampup_meas_gradient: %s"), result_chr);
dtostrfd(Thermostat.time_ctr_changepoint, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_ctr_changepoint: %s"), result_chr);
dtostrfd(Thermostat.temp_rampup_output_off, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_rampup_output_off: %s"), result_chr);
dtostrfd(Thermostat.time_ctr_checkpoint, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_ctr_checkpoint: %s"), result_chr);
dtostrfd(uptime, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("uptime: %s"), result_chr);
dtostrfd(power, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("power: %s"), result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat End ------"));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
}
#endif // DEBUG_THERMOSTAT
#ifdef THERMOSTAT_USE_LOCAL_SENSOR
void ThermostatGetLocalSensor(void) {
DynamicJsonBuffer jsonBuffer;
JsonObject& root = jsonBuffer.parseObject((const char*)mqtt_data);
@ -892,7 +974,6 @@ void ThermostatGetLocalSensor(void) {
}
}
}
#endif // THERMOSTAT_USE_LOCAL_SENSOR
/*********************************************************************************************\
* Commands
@ -938,7 +1019,7 @@ void CmndControllerModeSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value < CTR_MODES_MAX)) {
if ((value >= CTR_HYBRID) && (value < CTR_MODES_MAX)) {
Thermostat.status.controller_mode = value;
}
}
@ -961,7 +1042,7 @@ void CmndSensorInputSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value < SENSOR_MAX)) {
if ((value >= SENSOR_MQTT) && (value < SENSOR_MAX)) {
Thermostat.status.sensor_type = value;
}
}
@ -1061,30 +1142,6 @@ void CmndTempTargetSet(void)
ResponseCmndFloat((float)value / 10, 1);
}
void CmndTempTargetRead(void)
{
int16_t value;
if (Thermostat.status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat.temp_target_level, TEMP_CONV_ABSOLUTE);
}
else {
value = Thermostat.temp_target_level;
}
ResponseCmndFloat((float)value / 10, 1);
}
void CmndTempMeasuredRead(void)
{
int16_t value;
if (Thermostat.status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat.temp_measured, TEMP_CONV_ABSOLUTE);
}
else {
value = Thermostat.temp_measured;
}
ResponseCmndFloat((float)value / 10, 1);
}
void CmndTempMeasuredGrdRead(void)
{
int16_t value;
@ -1108,17 +1165,6 @@ void CmndStateEmergencySet(void)
ResponseCmndNumber((int)Thermostat.status.state_emergency);
}
void CmndPowerMaxSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint16_t value = (uint16_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1300)) {
Thermostat.power_max = value;
}
}
ResponseCmndNumber((int)Thermostat.power_max);
}
void CmndTimeManualToAutoSet(void)
{
if (XdrvMailbox.data_len > 0) {
@ -1370,15 +1416,23 @@ void CmndTimePiIntegrRead(void)
ResponseCmndNumber((int)Thermostat.time_integral_pi);
}
void CmndDiagnosticModeSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= DIAGNOSTIC_OFF) && (value <= DIAGNOSTIC_ON)) {
Thermostat.status.diagnostic_mode = value;
}
}
ResponseCmndNumber((int)Thermostat.status.diagnostic_mode);
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv39(uint8_t function)
{
#ifdef DEBUG_THERMOSTAT
char result_chr[FLOATSZ];
#endif // DEBUG_THERMOSTAT
bool result = false;
switch (function) {
@ -1386,65 +1440,28 @@ bool Xdrv39(uint8_t function)
ThermostatInit();
break;
case FUNC_LOOP:
ThermostatSignalProcessingFast();
ThermostatDiagnostics();
if (Thermostat.status.thermostat_mode != THERMOSTAT_OFF) {
ThermostatSignalProcessingFast();
ThermostatDiagnostics();
}
break;
case FUNC_SERIAL:
break;
case FUNC_EVERY_SECOND:
if (ThermostatMinuteCounter()) {
ThermostatSignalProcessingSlow();
if (ThermostatMinuteCounter()
&&(Thermostat.status.thermostat_mode != THERMOSTAT_OFF)) {
ThermostatSignalPreProcessingSlow();
ThermostatController();
ThermostatSignalPostProcessingSlow();
#ifdef DEBUG_THERMOSTAT
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat Start ------"));
dtostrfd(Thermostat.status.counter_seconds, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.counter_seconds: %s"), result_chr);
dtostrfd(Thermostat.status.thermostat_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.thermostat_mode: %s"), result_chr);
dtostrfd(Thermostat.status.controller_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.controller_mode: %s"), result_chr);
dtostrfd(Thermostat.status.phase_hybrid_ctr, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.phase_hybrid_ctr: %s"), result_chr);
dtostrfd(Thermostat.status.sensor_alive, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.sensor_alive: %s"), result_chr);
dtostrfd(Thermostat.status.status_output, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.status_output: %s"), result_chr);
dtostrfd(Thermostat.status.status_cycle_active, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.status.status_cycle_active: %s"), result_chr);
dtostrfd(Thermostat.temp_pi_error, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_pi_error: %s"), result_chr);
dtostrfd(Thermostat.temp_pi_accum_error, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_pi_accum_error: %s"), result_chr);
dtostrfd(Thermostat.time_proportional_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_proportional_pi: %s"), result_chr);
dtostrfd(Thermostat.time_integral_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_integral_pi: %s"), result_chr);
dtostrfd(Thermostat.time_total_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_total_pi: %s"), result_chr);
dtostrfd(Thermostat.temp_measured_gradient, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_measured_gradient: %s"), result_chr);
dtostrfd(Thermostat.time_rampup_deadtime, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_rampup_deadtime: %s"), result_chr);
dtostrfd(Thermostat.temp_rampup_meas_gradient, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_rampup_meas_gradient: %s"), result_chr);
dtostrfd(Thermostat.time_ctr_changepoint, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_ctr_changepoint: %s"), result_chr);
dtostrfd(Thermostat.temp_rampup_output_off, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.temp_rampup_output_off: %s"), result_chr);
dtostrfd(Thermostat.time_ctr_checkpoint, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat.time_ctr_checkpoint: %s"), result_chr);
dtostrfd(uptime, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("uptime: %s"), result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat End ------"));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
ThermostatDebug();
#endif // DEBUG_THERMOSTAT
}
break;
case FUNC_SHOW_SENSOR:
#ifdef THERMOSTAT_USE_LOCAL_SENSOR
ThermostatGetLocalSensor();
#endif // THERMOSTAT_USE_LOCAL_SENSOR
if (Thermostat.status.thermostat_mode != THERMOSTAT_OFF) {
ThermostatGetLocalSensor();
}
break;
case FUNC_COMMAND:
result = DecodeCommand(kThermostatCommands, ThermostatCommand);