Use global struct

This commit is contained in:
Theo Arends 2020-10-28 17:32:07 +01:00
parent 7ce5365cf6
commit b93b719108
53 changed files with 282 additions and 261 deletions

View File

@ -657,7 +657,7 @@ float ConvertTemp(float c)
{
float result = c;
global_update = uptime;
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
global_temperature_celsius = c;
if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
@ -688,7 +688,7 @@ float ConvertHumidity(float h)
{
float result = h;
global_update = uptime;
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
global_humidity = h;
result = result + (0.1 * Settings.hum_comp);
@ -717,7 +717,7 @@ float ConvertPressure(float p)
{
float result = p;
global_update = uptime;
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
global_pressure_hpa = p;
if (!isnan(p) && Settings.flag.pressure_conversion) { // SetOption24 - Switch between hPa or mmHg pressure unit
@ -745,8 +745,8 @@ String SpeedUnit(void)
void ResetGlobalValues(void)
{
if ((uptime - global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes
global_update = 0;
if ((TasmotaGlobal.uptime - TasmotaGlobal.global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes
TasmotaGlobal.global_update = 0;
global_temperature_celsius = NAN;
global_humidity = 0.0f;
global_pressure_hpa = 0.0f;
@ -902,10 +902,10 @@ String GetSerialConfig(void) {
}
void SetSerialBegin(void) {
baudrate = Settings.baudrate * 300;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_SERIAL "Set to %s %d bit/s"), GetSerialConfig().c_str(), baudrate);
TasmotaGlobal.baudrate = Settings.baudrate * 300;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_SERIAL "Set to %s %d bit/s"), GetSerialConfig().c_str(), TasmotaGlobal.baudrate);
Serial.flush();
Serial.begin(baudrate, (SerialConfig)pgm_read_byte(kTasmotaSerialConfig + Settings.serial_config));
Serial.begin(TasmotaGlobal.baudrate, (SerialConfig)pgm_read_byte(kTasmotaSerialConfig + Settings.serial_config));
}
void SetSerialConfig(uint32_t serial_config) {
@ -918,19 +918,19 @@ void SetSerialConfig(uint32_t serial_config) {
}
}
void SetSerialBaudrate(uint32_t ubaudrate) {
baudrate = ubaudrate;
Settings.baudrate = baudrate / 300;
if (Serial.baudRate() != baudrate) {
void SetSerialBaudrate(uint32_t baudrate) {
TasmotaGlobal.baudrate = baudrate;
Settings.baudrate = TasmotaGlobal.baudrate / 300;
if (Serial.baudRate() != TasmotaGlobal.baudrate) {
SetSerialBegin();
}
}
void SetSerial(uint32_t ubaudrate, uint32_t serial_config) {
void SetSerial(uint32_t baudrate, uint32_t serial_config) {
Settings.flag.mqtt_serial = 0; // CMND_SERIALSEND and CMND_SERIALLOG
Settings.serial_config = serial_config;
baudrate = ubaudrate;
Settings.baudrate = baudrate / 300;
TasmotaGlobal.baudrate = baudrate;
Settings.baudrate = TasmotaGlobal.baudrate / 300;
SetSeriallog(LOG_LEVEL_NONE);
SetSerialBegin();
}
@ -939,8 +939,8 @@ void ClaimSerial(void) {
serial_local = true;
AddLog_P(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial"));
SetSeriallog(LOG_LEVEL_NONE);
baudrate = Serial.baudRate();
Settings.baudrate = baudrate / 300;
TasmotaGlobal.baudrate = Serial.baudRate();
Settings.baudrate = TasmotaGlobal.baudrate / 300;
}
void SerialSendRaw(char *codes)
@ -1996,9 +1996,11 @@ void AddLog(uint32_t loglevel)
(masterlog_level <= Settings.weblog_level)) {
// Delimited, zero-terminated buffer of log lines.
// Each entry has this format: [index][log data]['\1']
web_log_index &= 0xFF;
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
while (web_log_index == web_log[0] || // If log already holds the next index, remove it
TasmotaGlobal.web_log_index &= 0xFF;
if (!TasmotaGlobal.web_log_index) {
TasmotaGlobal.web_log_index++; // Index 0 is not allowed as it is the end of char string
}
while (TasmotaGlobal.web_log_index == web_log[0] || // If log already holds the next index, remove it
strlen(web_log) + strlen(log_data) + 13 > WEB_LOG_SIZE) // 13 = web_log_index + mxtime + '\1' + '\0'
{
char* it = web_log;
@ -2007,9 +2009,11 @@ void AddLog(uint32_t loglevel)
it++; // Skip delimiting "\1"
memmove(web_log, it, WEB_LOG_SIZE -(it-web_log)); // Move buffer forward to remove oldest log line
}
snprintf_P(web_log, sizeof(web_log), PSTR("%s%c%s%s\1"), web_log, web_log_index++, mxtime, log_data);
web_log_index &= 0xFF;
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
snprintf_P(web_log, sizeof(web_log), PSTR("%s%c%s%s\1"), web_log, TasmotaGlobal.web_log_index++, mxtime, log_data);
TasmotaGlobal.web_log_index &= 0xFF;
if (!TasmotaGlobal.web_log_index) {
TasmotaGlobal.web_log_index++; // Index 0 is not allowed as it is the end of char string
}
}
#endif // USE_WEBSERVER
if (Settings.flag.mqtt_enabled && // SetOption3 - Enable MQTT

View File

@ -135,7 +135,7 @@ uint8_t ButtonSerial(uint8_t serial_in_byte)
void ButtonHandler(void)
{
if (uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint8_t hold_time_extent = IMMINENT_RESET_FACTOR; // Extent hold time factor in case of iminnent Reset command
uint16_t loops_per_second = 1000 / Settings.button_debounce; // ButtonDebounce (50)

View File

@ -244,8 +244,8 @@ void CommandHandler(char* topicBuf, char* dataBuf, uint32_t data_len)
DEBUG_CORE_LOG(PSTR("CMD: Payload %d"), payload);
// backlog_delay = millis() + (100 * MIN_BACKLOG_DELAY);
backlog_delay = millis() + Settings.param[P_BACKLOG_DELAY];
// TasmotaGlobal.backlog_delay = millis() + (100 * MIN_BACKLOG_DELAY);
TasmotaGlobal.backlog_delay = millis() + Settings.param[P_BACKLOG_DELAY];
char command[CMDSZ] = { 0 };
XdrvMailbox.command = command;
@ -344,7 +344,7 @@ void CmndBacklog(void)
}
// ResponseCmndChar(D_JSON_APPENDED);
mqtt_data[0] = '\0';
backlog_delay = 0;
TasmotaGlobal.backlog_delay = 0;
} else {
bool blflag = BACKLOG_EMPTY;
#ifdef SUPPORT_IF_STATEMENT
@ -359,10 +359,10 @@ void CmndBacklog(void)
void CmndDelay(void)
{
if ((XdrvMailbox.payload >= (MIN_BACKLOG_DELAY / 100)) && (XdrvMailbox.payload <= 3600)) {
backlog_delay = millis() + (100 * XdrvMailbox.payload);
TasmotaGlobal.backlog_delay = millis() + (100 * XdrvMailbox.payload);
}
uint32_t bl_delay = 0;
long bl_delta = TimePassedSince(backlog_delay);
long bl_delta = TimePassedSince(TasmotaGlobal.backlog_delay);
if (bl_delta < 0) { bl_delay = (bl_delta *-1) / 100; }
ResponseCmndNumber(bl_delay);
}
@ -440,7 +440,7 @@ void CmndStatus(void)
",\"" D_JSON_SAVEADDRESS "\":\"%X\""
#endif
"}}"),
baudrate, GetSerialConfig().c_str(), SettingsText(SET_MQTT_GRP_TOPIC), SettingsText(SET_OTAURL),
TasmotaGlobal.baudrate, GetSerialConfig().c_str(), SettingsText(SET_MQTT_GRP_TOPIC), SettingsText(SET_OTAURL),
GetResetReason().c_str(), GetUptime().c_str(), GetDateAndTime(DT_RESTART).c_str(), Settings.sleep,
Settings.cfg_holder, Settings.bootcount, GetDateAndTime(DT_BOOTCOUNT).c_str(), Settings.save_flag
#ifdef ESP8266
@ -661,7 +661,7 @@ void CmndGlobalTemp(void)
}
if ((temperature >= -50.0f) && (temperature <= 100.0f)) {
ConvertTemp(temperature);
global_update = 1; // Keep global values just entered valid
TasmotaGlobal.global_update = 1; // Keep global values just entered valid
}
}
ResponseCmndFloat(global_temperature_celsius, 1);
@ -673,7 +673,7 @@ void CmndGlobalHum(void)
float humidity = CharToFloat(XdrvMailbox.data);
if ((humidity >= 0.0) && (humidity <= 100.0)) {
ConvertHumidity(humidity);
global_update = 1; // Keep global values just entered valid
TasmotaGlobal.global_update = 1; // Keep global values just entered valid
}
}
ResponseCmndFloat(global_humidity, 1);
@ -805,7 +805,9 @@ void CmndBlinktime(void)
{
if ((XdrvMailbox.payload > 1) && (XdrvMailbox.payload <= 3600)) {
Settings.blinktime = XdrvMailbox.payload;
if (blink_timer > 0) { blink_timer = millis() + (100 * XdrvMailbox.payload); }
if (TasmotaGlobal.blink_timer > 0) {
TasmotaGlobal.blink_timer = millis() + (100 * XdrvMailbox.payload);
}
}
ResponseCmndNumber(Settings.blinktime);
}
@ -1340,10 +1342,10 @@ void CmndBaudrate(void)
{
if (XdrvMailbox.payload >= 300) {
XdrvMailbox.payload /= 300; // Make it a valid baudrate
baudrate = (XdrvMailbox.payload & 0xFFFF) * 300;
SetSerialBaudrate(baudrate);
TasmotaGlobal.baudrate = (XdrvMailbox.payload & 0xFFFF) * 300;
SetSerialBaudrate(TasmotaGlobal.baudrate);
}
ResponseCmndNumber(baudrate);
ResponseCmndNumber(TasmotaGlobal.baudrate);
}
void CmndSerialConfig(void)

View File

@ -225,7 +225,7 @@ uint32_t UpTime(void)
if (Rtc.restart_time) {
return Rtc.utc_time - Rtc.restart_time;
} else {
return uptime;
return TasmotaGlobal.uptime;
}
}
@ -380,11 +380,11 @@ void RtcSecond(void)
if (!Rtc.user_time_entry) {
if (!global_state.network_down) {
uint8_t uptime_minute = (uptime / 60) % 60; // 0 .. 59
uint8_t uptime_minute = (TasmotaGlobal.uptime / 60) % 60; // 0 .. 59
if ((Rtc.ntp_sync_minute > 59) && (uptime_minute > 2)) {
Rtc.ntp_sync_minute = 1; // If sync prepare for a new cycle
}
uint8_t offset = (uptime < 30) ? RtcTime.second : (((ESP_getChipId() & 0xF) * 3) + 3) ; // First try ASAP to sync. If fails try once every 60 seconds based on chip id
uint8_t offset = (TasmotaGlobal.uptime < 30) ? RtcTime.second : (((ESP_getChipId() & 0xF) * 3) + 3) ; // First try ASAP to sync. If fails try once every 60 seconds based on chip id
if ( (((offset == RtcTime.second) && ( (RtcTime.year < 2016) || // Never synced
(Rtc.ntp_sync_minute == uptime_minute))) || // Re-sync every hour
ntp_force_sync ) ) { // Forced sync
@ -395,7 +395,7 @@ void RtcSecond(void)
Rtc.last_sync = Rtc.ntp_time;
Rtc.ntp_sync_minute = 60; // Sync so block further requests
if (Rtc.restart_time == 0) {
Rtc.restart_time = Rtc.utc_time - uptime; // save first ntp time as restart time
Rtc.restart_time = Rtc.utc_time - TasmotaGlobal.uptime; // save first ntp time as restart time
}
BreakTime(Rtc.utc_time, tmpTime);
RtcTime.year = tmpTime.year + 1970;

View File

@ -88,7 +88,7 @@ bool SwitchState(uint32_t index)
void SwitchProbe(void)
{
if (uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint8_t state_filter;
uint8_t debounce_flags = Settings.switch_debounce % 10;
@ -232,7 +232,7 @@ void SwitchInit(void)
void SwitchHandler(uint8_t mode)
{
if (uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint16_t loops_per_second = 1000 / Settings.switch_debounce;

View File

@ -421,12 +421,12 @@ void SetLedLink(uint32_t state)
void SetPulseTimer(uint32_t index, uint32_t time)
{
pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L;
TasmotaGlobal.pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L;
}
uint32_t GetPulseTimer(uint32_t index)
{
long time = TimePassedSince(pulse_timer[index]);
long time = TimePassedSince(TasmotaGlobal.pulse_timer[index]);
if (time < 0) {
time *= -1;
return (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0;
@ -606,7 +606,7 @@ void ExecuteCommandPower(uint32_t device, uint32_t state, uint32_t source)
blink_powersave = (blink_powersave & (POWER_MASK ^ mask)) | (power & mask); // Save state
blink_power = (power >> (device -1))&1; // Prep to Toggle
}
blink_timer = millis() + 100;
TasmotaGlobal.blink_timer = millis() + 100;
blink_counter = ((!Settings.blinkcount) ? 64000 : (Settings.blinkcount *2)) +1;
blink_mask |= mask; // Set device mask
MqttPublishPowerBlinkState(device);
@ -669,7 +669,7 @@ void MqttShowState(void)
ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u,\"MqttCount\":%u"),
ESP_getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), // SetOption60 - Enable normal sleep instead of dynamic sleep
ssleep, loop_load_avg, MqttConnectCount());
ssleep, TasmotaGlobal.loop_load_avg, MqttConnectCount());
for (uint32_t i = 1; i <= devices_present; i++) {
#ifdef USE_LIGHT
@ -789,13 +789,13 @@ void MqttPublishSensor(void)
void PerformEverySecond(void)
{
uptime++;
TasmotaGlobal.uptime++;
if (POWER_CYCLE_TIME == uptime) {
if (POWER_CYCLE_TIME == TasmotaGlobal.uptime) {
UpdateQuickPowerCycle(false);
}
if (BOOT_LOOP_TIME == uptime) {
if (BOOT_LOOP_TIME == TasmotaGlobal.uptime) {
RtcRebootReset();
#ifdef USE_DEEPSLEEP
@ -867,7 +867,7 @@ void PerformEverySecond(void)
wifiKeepAlive();
#ifdef ESP32
if (11 == uptime) { // Perform one-time ESP32 houskeeping
if (11 == TasmotaGlobal.uptime) { // Perform one-time ESP32 houskeeping
ESP_getSketchSize(); // Init sketchsize as it can take up to 2 seconds
}
#endif
@ -892,9 +892,9 @@ void Every100mSeconds(void)
}
for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) {
if (pulse_timer[i] != 0L) { // Timer active?
if (TimeReached(pulse_timer[i])) { // Timer finished?
pulse_timer[i] = 0L; // Turn off this timer
if (TasmotaGlobal.pulse_timer[i] != 0L) { // Timer active?
if (TimeReached(TasmotaGlobal.pulse_timer[i])) { // Timer finished?
TasmotaGlobal.pulse_timer[i] = 0L; // Turn off this timer
for (uint32_t j = 0; j < devices_present; j = j +MAX_PULSETIMERS) {
ExecuteCommandPower(i + j +1, (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER);
}
@ -903,8 +903,8 @@ void Every100mSeconds(void)
}
if (blink_mask) {
if (TimeReached(blink_timer)) {
SetNextTimeInterval(blink_timer, 100 * Settings.blinktime);
if (TimeReached(TasmotaGlobal.blink_timer)) {
SetNextTimeInterval(TasmotaGlobal.blink_timer, 100 * Settings.blinktime);
blink_counter--;
if (!blink_counter) {
StopAllPowerBlink();

View File

@ -520,7 +520,7 @@ void WifiCheck(uint8_t param)
#endif // LWIP_IPV6=1
WifiSetState(1);
if (Settings.flag3.use_wifi_rescan) { // SetOption57 - Scan wifi network every 44 minutes for configured AP's
if (!(uptime % (60 * WIFI_RESCAN_MINUTES))) {
if (!(TasmotaGlobal.uptime % (60 * WIFI_RESCAN_MINUTES))) {
Wifi.scan_state = 2;
}
}

View File

@ -77,14 +77,18 @@
WiFiUDP PortUdp; // UDP Syslog and Alexa
uint32_t pulse_timer[MAX_PULSETIMERS] = { 0 }; // Power off timer
uint32_t blink_timer = 0; // Power cycle timer
uint32_t backlog_delay = 0; // Command backlog delay
uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year
uint32_t loop_load_avg = 0; // Indicative loop load average
uint32_t global_update = 0; // Timestamp of last global temperature and humidity update
uint32_t web_log_index = 1; // Index in Web log buffer (should never be 0)
uint32_t baudrate = APP_BAUDRATE; // Current Serial baudrate
struct {
uint32_t baudrate; // Current Serial baudrate
uint32_t pulse_timer[MAX_PULSETIMERS]; // Power off timer
uint32_t blink_timer; // Power cycle timer
uint32_t backlog_delay; // Command backlog delay
uint32_t loop_load_avg; // Indicative loop load average
uint32_t global_update; // Timestamp of last global temperature and humidity update
uint32_t web_log_index; // Index in Web log buffer
uint32_t uptime; // Counting every second until 4294967295 = 130 year
} TasmotaGlobal;
power_t power = 0; // Current copy of Settings.power
power_t last_power = 0; // Last power set state
power_t blink_power; // Blink power state
@ -177,6 +181,9 @@ void setup(void) {
#endif
#endif
memset(&TasmotaGlobal, 0, sizeof(TasmotaGlobal));
TasmotaGlobal.baudrate = APP_BAUDRATE;
global_state.data = 0xF; // Init global state (wifi_down, mqtt_down) to solve possible network issues
RtcRebootLoad();
@ -190,7 +197,7 @@ void setup(void) {
#endif
RtcRebootSave();
Serial.begin(baudrate);
Serial.begin(TasmotaGlobal.baudrate);
// Serial.setRxBufferSize(INPUT_BUFFER_SIZE); // Default is 256 chars
seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded
@ -229,6 +236,8 @@ void setup(void) {
#endif
#endif // USE_EMULATION
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)&TasmotaGlobal, sizeof(TasmotaGlobal));
if (Settings.param[P_BOOT_LOOP_OFFSET]) { // SetOption36
// Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts)
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET]) { // Restart twice
@ -297,7 +306,7 @@ void setup(void) {
}
void BacklogLoop(void) {
if (TimeReached(backlog_delay)) {
if (TimeReached(TasmotaGlobal.backlog_delay)) {
if (!BACKLOG_EMPTY && !backlog_mutex) {
backlog_mutex = true;
bool nodelay = false;
@ -315,8 +324,12 @@ void BacklogLoop(void) {
nodelay_detected = !strncasecmp_P(cmd.c_str(), PSTR(D_CMND_NODELAY), strlen(D_CMND_NODELAY));
if (nodelay_detected) { nodelay = true; }
} while (!BACKLOG_EMPTY && nodelay_detected);
if (!nodelay_detected) { ExecuteCommand((char*)cmd.c_str(), SRC_BACKLOG); }
if (nodelay) { backlog_delay = 0; } // Reset backlog_delay which has been set by ExecuteCommand (CommandHandler)
if (!nodelay_detected) {
ExecuteCommand((char*)cmd.c_str(), SRC_BACKLOG);
}
if (nodelay) {
TasmotaGlobal.backlog_delay = 0; // Reset backlog_delay which has been set by ExecuteCommand (CommandHandler)
}
backlog_mutex = false;
}
}
@ -408,5 +421,5 @@ void loop(void) {
if (!loop_delay) { loop_delay++; } // We cannot divide by 0
uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second
uint32_t this_cycle_ratio = 100 * my_activity / loop_delay;
loop_load_avg = loop_load_avg - (loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one
TasmotaGlobal.loop_load_avg = TasmotaGlobal.loop_load_avg - (TasmotaGlobal.loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one
}

View File

@ -3029,11 +3029,11 @@ void HandleHttpCommand(void)
}
WSContentBegin(200, CT_JSON);
uint32_t curridx = web_log_index;
uint32_t curridx = TasmotaGlobal.web_log_index;
String svalue = Webserver->arg("cmnd");
if (svalue.length() && (svalue.length() < MQTT_MAX_PACKET_SIZE)) {
ExecuteWebCommand((char*)svalue.c_str(), SRC_WEBCOMMAND);
if (web_log_index != curridx) {
if (TasmotaGlobal.web_log_index != curridx) {
uint32_t counter = curridx;
WSContentSend_P(PSTR("{"));
bool cflg = false;
@ -3056,7 +3056,7 @@ void HandleHttpCommand(void)
counter++;
counter &= 0xFF;
if (!counter) counter++; // Skip 0 as it is not allowed
} while (counter != web_log_index);
} while (counter != TasmotaGlobal.web_log_index);
WSContentSend_P(PSTR("}"));
} else {
WSContentSend_P(PSTR("{\"" D_RSLT_WARNING "\":\"" D_ENABLE_WEBLOG_FOR_RESPONSE "\"}"));
@ -3104,14 +3104,14 @@ void HandleConsoleRefresh(void)
if (strlen(stmp)) { counter = atoi(stmp); }
WSContentBegin(200, CT_PLAIN);
WSContentSend_P(PSTR("%d}1%d}1"), web_log_index, Web.reset_web_log_flag);
WSContentSend_P(PSTR("%d}1%d}1"), TasmotaGlobal.web_log_index, Web.reset_web_log_flag);
if (!Web.reset_web_log_flag) {
counter = 0;
Web.reset_web_log_flag = true;
}
if (counter != web_log_index) {
if (counter != TasmotaGlobal.web_log_index) {
if (!counter) {
counter = web_log_index;
counter = TasmotaGlobal.web_log_index;
cflg = false;
}
do {
@ -3128,7 +3128,7 @@ void HandleConsoleRefresh(void)
counter++;
counter &= 0xFF;
if (!counter) { counter++; } // Skip log index 0 as it is not allowed
} while (counter != web_log_index);
} while (counter != TasmotaGlobal.web_log_index);
}
WSContentSend_P(PSTR("}1"));
WSContentEnd();

View File

@ -338,6 +338,8 @@ void EnergyMarginCheck(void)
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
uint16_t active_power = (uint16_t)(Energy.active_power[phase]);
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy.power_history[phase][0], Energy.power_history[phase][1], Energy.power_history[phase][2]);
if (Settings.energy_power_delta[phase]) {
power_diff[phase] = active_power - Energy.power_history[phase][0];
uint16_t delta = abs(power_diff[phase]);
@ -502,7 +504,7 @@ void EnergyMqttShow(void)
void EnergyEverySecond(void)
{
// Overtemp check
if (global_update) {
if (TasmotaGlobal.global_update) {
if (power && !isnan(global_temperature_celsius) && (global_temperature_celsius > (float)Settings.param[P_OVER_TEMP])) { // Device overtemp, turn off relays
char temperature[33];

View File

@ -256,7 +256,7 @@ void TimerEverySecond(void)
if (RtcTime.valid) {
if (!RtcTime.hour && !RtcTime.minute && !RtcTime.second) { TimerSetRandomWindows(); } // Midnight
if (Settings.flag3.timers_enable && // CMND_TIMERS
(uptime > 60) && (RtcTime.minute != timer_last_minute)) { // Execute from one minute after restart every minute only once
(TasmotaGlobal.uptime > 60) && (RtcTime.minute != timer_last_minute)) { // Execute from one minute after restart every minute only once
timer_last_minute = RtcTime.minute;
int32_t time = (RtcTime.hour *60) + RtcTime.minute;
uint8_t days = 1 << (RtcTime.day_of_week -1);

View File

@ -947,7 +947,7 @@ uint8_t rules_xsns_index = 0;
void RulesEvery100ms(void)
{
if (Settings.rule_enabled && !Rules.busy && (uptime > 4)) { // Any rule enabled and allow 4 seconds start-up time for sensors (#3811)
if (Settings.rule_enabled && !Rules.busy && (TasmotaGlobal.uptime > 4)) { // Any rule enabled and allow 4 seconds start-up time for sensors (#3811)
mqtt_data[0] = '\0';
int tele_period_save = tele_period;
tele_period = 2; // Do not allow HA updates during next function call
@ -967,7 +967,7 @@ void RulesEverySecond(void)
char json_event[120];
if (RtcTime.valid) {
if ((uptime > 60) && (RtcTime.minute != Rules.last_minute)) { // Execute from one minute after restart every minute only once
if ((TasmotaGlobal.uptime > 60) && (RtcTime.minute != Rules.last_minute)) { // Execute from one minute after restart every minute only once
Rules.last_minute = RtcTime.minute;
snprintf_P(json_event, sizeof(json_event), PSTR("{\"Time\":{\"Minute\":%d}}"), MinutesPastMidnight());
RulesProcessEvent(json_event);

View File

@ -3012,7 +3012,7 @@ chknext:
goto exit;
}
if (!strncmp(vname, "upsecs", 6)) {
fvar = uptime;
fvar = TasmotaGlobal.uptime;
goto exit;
}
if (!strncmp(vname, "upd[", 4)) {
@ -4495,7 +4495,7 @@ uint8_t script_xsns_index = 0;
void ScripterEvery100ms(void) {
if (Settings.rule_enabled && (uptime > 4)) {
if (Settings.rule_enabled && (TasmotaGlobal.uptime > 4)) {
mqtt_data[0] = '\0';
uint16_t script_tele_period_save = tele_period;
tele_period = 2;

View File

@ -1019,7 +1019,7 @@ void HAssPublishStatus(void)
"\"WiFi " D_JSON_LINK_COUNT "\":%d,\"WiFi " D_JSON_DOWNTIME "\":\"%s\",\"" D_JSON_MQTT_COUNT "\":%d,\"LoadAvg\":%lu}"),
my_version, my_image, GetBuildDateAndTime().c_str(), ModuleName().c_str(), GetResetReason().c_str(),
GetUptime().c_str(), my_hostname, WiFi.localIP().toString().c_str(), WifiGetRssiAsQuality(WiFi.RSSI()),
WiFi.RSSI(), WifiLinkCount(), WifiDowntime().c_str(), MqttConnectCount(), loop_load_avg);
WiFi.RSSI(), WifiLinkCount(), WifiDowntime().c_str(), MqttConnectCount(), TasmotaGlobal.loop_load_avg);
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_HASS_STATE));
}

View File

@ -1123,7 +1123,7 @@ bool Xdrv16(uint8_t function)
TuyaSendCmd(TUYA_CMD_HEARTBEAT);
}
#ifdef USE_TUYA_TIME
if (!(uptime % 60)) {
if (!(TasmotaGlobal.uptime % 60)) {
TuyaSetTime();
}
#endif //USE_TUYA_TIME

View File

@ -182,7 +182,7 @@ bool Xdrv18(uint8_t function)
case FUNC_EVERY_SECOND:
if (ArmtronixSerial) {
if (Armtronix.wifi_state!=WifiState()) { ArmtronixSetWifiLed(); }
if (uptime &1) {
if (TasmotaGlobal.uptime &1) {
ArmtronixSerial->println("Status");
}
}

View File

@ -233,7 +233,7 @@ void SonoffIfanUpdate(void)
}
}
if (ifan_restart_flag && (4 == uptime) && (SONOFF_IFAN02 == my_module_type)) { // Microcontroller needs 3 seconds before accepting commands
if (ifan_restart_flag && (4 == TasmotaGlobal.uptime) && (SONOFF_IFAN02 == my_module_type)) { // Microcontroller needs 3 seconds before accepting commands
ifan_restart_flag = false;
SetDevicePower(1, SRC_RETRY); // Sync with default power on state microcontroller being Light ON and Fan OFF
SetDevicePower(power, SRC_RETRY); // Set required power on state

View File

@ -179,7 +179,7 @@ bool Xdrv26(uint8_t function)
if (PinUsed(GPIO_ARIRFRCV)) { AriluxRfHandler(); }
break;
case FUNC_EVERY_SECOND:
if (10 == uptime) { AriluxRfInit(); } // Needs rest before enabling RF interrupts
if (10 == TasmotaGlobal.uptime) { AriluxRfInit(); } // Needs rest before enabling RF interrupts
break;
}
return result;

View File

@ -522,8 +522,8 @@ void ShutterAllowPreStartProcedure(uint8_t i)
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start. var%d <99>=<%s>, max10s?"),i+i, rules_vars[i]);
rules_flag.shutter_moving = 1;
XdrvRulesProcess();
uptime_Local = uptime;
while (uptime_Local+10 > uptime && (String)rules_vars[i] == "99") {
uptime_Local = TasmotaGlobal.uptime;
while (uptime_Local+10 > TasmotaGlobal.uptime && (String)rules_vars[i] == "99") {
loop();
}
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start. Done"));

View File

@ -367,7 +367,7 @@ int16_t ThermostatFahrenheitToCelsius(const int32_t deg, uint8_t conv_type) {
void ThermostatSignalPreProcessingSlow(uint8_t ctr_output)
{
// Update input sensor status
if ((uptime - Thermostat[ctr_output].timestamp_temp_measured_update) > ((uint32_t)Thermostat[ctr_output].time_sens_lost * 60)) {
if ((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_temp_measured_update) > ((uint32_t)Thermostat[ctr_output].time_sens_lost * 60)) {
Thermostat[ctr_output].status.sensor_alive = IFACE_OFF;
Thermostat[ctr_output].temp_measured_gradient = 0;
Thermostat[ctr_output].temp_measured = 0;
@ -392,7 +392,7 @@ void ThermostatSignalProcessingFast(uint8_t ctr_output)
Thermostat[ctr_output].status.status_input = (uint32_t)ThermostatInputStatus(Thermostat[ctr_output].status.input_switch_number);
// Update timestamp of last input
if (Thermostat[ctr_output].status.status_input == IFACE_ON) {
Thermostat[ctr_output].timestamp_input_on = uptime;
Thermostat[ctr_output].timestamp_input_on = TasmotaGlobal.uptime;
}
// Update real status of the output
Thermostat[ctr_output].status.status_output = (uint32_t)ThermostatOutputStatus(Thermostat[ctr_output].status.output_relay_number);
@ -453,7 +453,7 @@ void ThermostatHybridCtrPhase(uint8_t ctr_output)
// If ramp-up offtime counter has been initalized
// AND ramp-up offtime counter value reached
if((Thermostat[ctr_output].time_ctr_checkpoint != 0)
&& (uptime >= Thermostat[ctr_output].time_ctr_checkpoint)) {
&& (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint)) {
// Reset pause period
Thermostat[ctr_output].time_ctr_checkpoint = 0;
// Reset timers
@ -468,13 +468,13 @@ void ThermostatHybridCtrPhase(uint8_t ctr_output)
// AND temp target has changed
// AND value of temp target - actual temperature bigger than threshold for heating and lower for cooling
// then go to ramp-up
if (((uptime - Thermostat[ctr_output].timestamp_output_off) > (60 * (uint32_t)Thermostat[ctr_output].time_allow_rampup))
if (((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_output_off) > (60 * (uint32_t)Thermostat[ctr_output].time_allow_rampup))
&& (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr)
&& ( ( (Thermostat[ctr_output].temp_target_level - Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_delta_in)
&& (flag_heating))
|| ( (Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_target_level > Thermostat[ctr_output].temp_rampup_delta_in)
&& (!flag_heating)))) {
Thermostat[ctr_output].timestamp_rampup_start = uptime;
Thermostat[ctr_output].timestamp_rampup_start = TasmotaGlobal.uptime;
Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].temp_rampup_meas_gradient = 0;
Thermostat[ctr_output].time_rampup_deadtime = 0;
@ -541,7 +541,7 @@ bool ThermostatStateManualToAuto(uint8_t ctr_output)
// then go to automatic
if ((Thermostat[ctr_output].status.status_input == IFACE_OFF)
&&(Thermostat[ctr_output].status.sensor_alive == IFACE_ON)
&& ((uptime - Thermostat[ctr_output].timestamp_input_on) > ((uint32_t)Thermostat[ctr_output].time_manual_to_auto * 60))) {
&& ((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_input_on) > ((uint32_t)Thermostat[ctr_output].time_manual_to_auto * 60))) {
change_state = true;
}
return change_state;
@ -608,7 +608,7 @@ void ThermostatOutputRelay(uint8_t ctr_output, uint32_t command)
ExecuteCommandPower(Thermostat[ctr_output].status.output_relay_number, POWER_OFF, SRC_THERMOSTAT);
}
//#endif // DEBUG_THERMOSTAT
Thermostat[ctr_output].timestamp_output_off = uptime;
Thermostat[ctr_output].timestamp_output_off = TasmotaGlobal.uptime;
Thermostat[ctr_output].status.status_output = IFACE_OFF;
#ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitch(ctr_output);
@ -793,15 +793,15 @@ void ThermostatCalculatePI(uint8_t ctr_output)
}
// Adjust output switch point
Thermostat[ctr_output].time_ctr_changepoint = uptime + (uint32_t)Thermostat[ctr_output].time_total_pi;
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (uint32_t)Thermostat[ctr_output].time_total_pi;
// Adjust next cycle point
Thermostat[ctr_output].time_ctr_checkpoint = uptime + ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60);
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60);
}
void ThermostatWorkAutomaticPI(uint8_t ctr_output)
{
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
if ( (uptime >= Thermostat[ctr_output].time_ctr_checkpoint)
if ( (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint)
|| (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr)
|| ( (( (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level)
&& (Thermostat[ctr_output].temp_measured_gradient < 0)
@ -815,7 +815,7 @@ void ThermostatWorkAutomaticPI(uint8_t ctr_output)
// Reset cycle active
Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF;
}
if (uptime < Thermostat[ctr_output].time_ctr_changepoint) {
if (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint) {
Thermostat[ctr_output].status.status_cycle_active = CYCLE_ON;
Thermostat[ctr_output].status.command_output = IFACE_ON;
}
@ -842,7 +842,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
}
// Update time in ramp-up as well as delta temp
time_in_rampup = uptime - Thermostat[ctr_output].timestamp_rampup_start;
time_in_rampup = TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_rampup_start;
temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_start;
// Init command output status to true
Thermostat[ctr_output].status.command_output = IFACE_ON;
@ -873,14 +873,14 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
}
// Calculate absolute gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup);
Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
// Set auxiliary variables
Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max);
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max);
Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr;
}
// Gradient calculation every time_rampup_cycle
else if ((Thermostat[ctr_output].time_rampup_deadtime > 0) && (uptime >= Thermostat[ctr_output].time_rampup_nextcycle)) {
else if ((Thermostat[ctr_output].time_rampup_deadtime > 0) && (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_rampup_nextcycle)) {
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_cycle;
@ -902,7 +902,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
// y = (((y2-y1)/(x2-x1))*(x-x1)) + y1
Thermostat[ctr_output].temp_rampup_output_off = (int16_t)(((int32_t)temp_delta_rampup * (int32_t)(Thermostat[ctr_output].time_ctr_changepoint - (uptime - (time_total_rampup)))) / (int32_t)(time_total_rampup * Thermostat[ctr_output].counter_rampup_cycles)) + Thermostat[ctr_output].temp_rampup_cycle;
// Set auxiliary variables
Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured;
// Reset period counter
Thermostat[ctr_output].counter_rampup_cycles = 1;
@ -911,9 +911,9 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
// Increase the period counter
Thermostat[ctr_output].counter_rampup_cycles++;
// Set another period
Thermostat[ctr_output].time_rampup_nextcycle = uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
// Reset time_ctr_changepoint and temp_rampup_output_off
Thermostat[ctr_output].time_ctr_changepoint = uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max) - time_in_rampup;
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max) - time_in_rampup;
Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr;
}
// Set time to get out of ramp-up
@ -927,7 +927,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
// or gradient is <= 0 for heating of >= 0 for cooling
if ((Thermostat[ctr_output].time_rampup_deadtime == 0)
|| (Thermostat[ctr_output].time_ctr_checkpoint == 0)
|| (uptime < Thermostat[ctr_output].time_ctr_changepoint)
|| (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint)
|| ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_output_off)
&& (flag_heating))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_output_off)
@ -951,7 +951,7 @@ void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
Thermostat[ctr_output].temp_pi_accum_error = Thermostat[ctr_output].temp_rampup_pi_acc_error;
}
// Set to now time to get out of ramp-up
Thermostat[ctr_output].time_ctr_checkpoint = uptime;
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime;
// Switch Off output
Thermostat[ctr_output].status.command_output = IFACE_OFF;
}
@ -971,7 +971,7 @@ void ThermostatPeakDetectorInit(uint8_t ctr_output)
Thermostat[ctr_output].peak_ctr = 0;
Thermostat[ctr_output].temp_abs_max_atune = 0;
Thermostat[ctr_output].temp_abs_min_atune = 100;
Thermostat[ctr_output].time_ctr_checkpoint = uptime + THERMOSTAT_TIME_MAX_AUTOTUNE;
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime + THERMOSTAT_TIME_MAX_AUTOTUNE;
}
void ThermostatPeakDetector(uint8_t ctr_output)
@ -1020,7 +1020,7 @@ void ThermostatPeakDetector(uint8_t ctr_output)
if ( (cond_peak_2)
&& (abs(Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_peaks_atune[peak_num]) > Thermostat[ctr_output].temp_band_no_peak_det)) {
// Register peak timestamp;
Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (uptime / 60);
Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (TasmotaGlobal.uptime / 60);
Thermostat[ctr_output].peak_ctr++;
peak_transition = true;
}
@ -1040,7 +1040,7 @@ void ThermostatPeakDetector(uint8_t ctr_output)
&& (abs(Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_peaks_atune[peak_num]) > Thermostat[ctr_output].temp_band_no_peak_det)) {
// Calculate period
// Register peak timestamp;
Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (uptime / 60);
Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (TasmotaGlobal.uptime / 60);
Thermostat[ctr_output].peak_ctr++;
peak_transition = true;
}
@ -1117,17 +1117,17 @@ void ThermostatWorkAutomaticPIAutotune(uint8_t ctr_output)
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
// If no timeout of the PI Autotune function
// AND no change in setpoint
if ((uptime < Thermostat[ctr_output].time_ctr_checkpoint)
if ((TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_checkpoint)
&&(Thermostat[ctr_output].temp_target_level_ctr == Thermostat[ctr_output].temp_target_level)) {
if (uptime >= Thermostat[ctr_output].time_ctr_checkpoint) {
if (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint) {
Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level;
// Calculate time_ctr_changepoint
Thermostat[ctr_output].time_ctr_changepoint = uptime + (((uint32_t)Thermostat[ctr_output].time_pi_cycle * (uint32_t)Thermostat[ctr_output].dutycycle_step_autotune) / (uint32_t)100);
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (((uint32_t)Thermostat[ctr_output].time_pi_cycle * (uint32_t)Thermostat[ctr_output].dutycycle_step_autotune) / (uint32_t)100);
// Reset cycle active
Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF;
}
// Set Output On/Off depending on the changepoint
if (uptime < Thermostat[ctr_output].time_ctr_changepoint) {
if (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint) {
Thermostat[ctr_output].status.status_cycle_active = CYCLE_ON;
Thermostat[ctr_output].status.command_output = IFACE_ON;
}
@ -1318,7 +1318,7 @@ void ThermostatDebug(uint8_t ctr_output)
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_rampup_output_off: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].time_ctr_checkpoint, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_ctr_checkpoint: %s"), result_chr);
dtostrfd(uptime, 0, result_chr);
dtostrfd(TasmotaGlobal.uptime, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("uptime: %s"), result_chr);
dtostrfd(power, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("power: %s"), result_chr);
@ -1341,7 +1341,7 @@ void ThermostatGetLocalSensor(uint8_t ctr_output) {
if ( (value >= -1000)
&& (value <= 1000)
&& (Thermostat[ctr_output].status.sensor_type == SENSOR_LOCAL)) {
uint32_t timestamp = uptime;
uint32_t timestamp = TasmotaGlobal.uptime;
// Calculate temperature gradient if temperature value has changed
if (value != Thermostat[ctr_output].temp_measured) {
int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees
@ -1385,7 +1385,7 @@ void CmndClimateModeSet(void)
if ((value >= CLIMATE_HEATING) && (value < CLIMATE_MODES_MAX)) {
Thermostat[ctr_output].status.climate_mode = value;
// Trigger a restart of the controller
Thermostat[ctr_output].time_ctr_checkpoint = uptime;
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.climate_mode);
@ -1428,7 +1428,7 @@ void CmndControllerModeSet(void)
if ((value >= CTR_HYBRID) && (value < CTR_MODES_MAX)) {
Thermostat[ctr_output].status.controller_mode = value;
// Reset controller variables
Thermostat[ctr_output].timestamp_rampup_start = uptime;
Thermostat[ctr_output].timestamp_rampup_start = TasmotaGlobal.uptime;
Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].temp_rampup_meas_gradient = 0;
Thermostat[ctr_output].time_rampup_deadtime = 0;
@ -1449,7 +1449,7 @@ void CmndInputSwitchSet(void)
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if (ThermostatSwitchIdValid(value)) {
Thermostat[ctr_output].status.input_switch_number = value;
Thermostat[ctr_output].timestamp_input_on = uptime;
Thermostat[ctr_output].timestamp_input_on = TasmotaGlobal.uptime;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.input_switch_number);
@ -1538,7 +1538,7 @@ void CmndTempMeasuredSet(void)
if ( (value >= -1000)
&& (value <= 1000)
&& (Thermostat[ctr_output].status.sensor_type == SENSOR_MQTT)) {
uint32_t timestamp = uptime;
uint32_t timestamp = TasmotaGlobal.uptime;
// Calculate temperature gradient if temperature value has changed
if (value != Thermostat[ctr_output].temp_measured) {
int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees

View File

@ -289,9 +289,9 @@ void TelegramSendGetMe(void) {
String TelegramExecuteCommand(const char *svalue) {
String response = "";
uint32_t curridx = web_log_index;
uint32_t curridx = TasmotaGlobal.web_log_index;
ExecuteCommand(svalue, SRC_CHAT);
if (web_log_index != curridx) {
if (TasmotaGlobal.web_log_index != curridx) {
uint32_t counter = curridx;
response = F("{");
bool cflg = false;
@ -315,7 +315,7 @@ String TelegramExecuteCommand(const char *svalue) {
counter++;
counter &= 0xFF;
if (!counter) counter++; // Skip 0 as it is not allowed
} while (counter != web_log_index);
} while (counter != TasmotaGlobal.web_log_index);
response += F("}");
} else {
response = F("{\"" D_RSLT_WARNING "\":\"" D_ENABLE_WEBLOG_FOR_RESPONSE "\"}");

View File

@ -194,7 +194,7 @@ void PzemEvery250ms(void)
Pzem.energy += value;
if (Pzem.phase == Energy.phase_count -1) {
if (Pzem.energy > Pzem.last_energy) { // Handle missed phase
if (uptime > PZEM_STABILIZE) {
if (TasmotaGlobal.uptime > PZEM_STABILIZE) {
EnergyUpdateTotal(Pzem.energy, false);
}
Pzem.last_energy = Pzem.energy;
@ -232,7 +232,7 @@ void PzemEvery250ms(void)
}
else {
Pzem.send_retry--;
if ((Energy.phase_count > 1) && (0 == Pzem.send_retry) && (uptime < PZEM_STABILIZE)) {
if ((Energy.phase_count > 1) && (0 == Pzem.send_retry) && (TasmotaGlobal.uptime < PZEM_STABILIZE)) {
Energy.phase_count--; // Decrement phases if no response after retry within 30 seconds after restart
}
}
@ -285,7 +285,7 @@ bool Xnrg03(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (PzemSerial && (uptime > 4)) { PzemEvery250ms(); }
if (PzemSerial && (TasmotaGlobal.uptime > 4)) { PzemEvery250ms(); }
break;
case FUNC_COMMAND:
result = PzemCommand();

View File

@ -81,7 +81,7 @@ void PzemAcEverySecond(void)
PzemAc.energy += (float)((buffer[15] << 24) + (buffer[16] << 16) + (buffer[13] << 8) + buffer[14]); // 4294967295 Wh
if (PzemAc.phase == Energy.phase_count -1) {
if (PzemAc.energy > PzemAc.last_energy) { // Handle missed phase
if (uptime > PZEM_AC_STABILIZE) {
if (TasmotaGlobal.uptime > PZEM_AC_STABILIZE) {
EnergyUpdateTotal(PzemAc.energy, false);
}
PzemAc.last_energy = PzemAc.energy;
@ -109,7 +109,7 @@ void PzemAcEverySecond(void)
}
else {
PzemAc.send_retry--;
if ((Energy.phase_count > 1) && (0 == PzemAc.send_retry) && (uptime < PZEM_AC_STABILIZE)) {
if ((Energy.phase_count > 1) && (0 == PzemAc.send_retry) && (TasmotaGlobal.uptime < PZEM_AC_STABILIZE)) {
Energy.phase_count--; // Decrement phases if no response after retry within 30 seconds after restart
}
}
@ -158,7 +158,7 @@ bool Xnrg05(uint8_t function)
switch (function) {
case FUNC_ENERGY_EVERY_SECOND:
if (uptime > 4) { PzemAcEverySecond(); } // Fix start up issue #5875
if (TasmotaGlobal.uptime > 4) { PzemAcEverySecond(); } // Fix start up issue #5875
break;
case FUNC_COMMAND:
result = PzemAcCommand();

View File

@ -78,7 +78,7 @@ void PzemDcEverySecond(void)
PzemDc.energy += (float)((buffer[13] << 24) + (buffer[14] << 16) + (buffer[11] << 8) + buffer[12]); // 4294967295 Wh
if (PzemDc.channel == Energy.phase_count -1) {
if (PzemDc.energy > PzemDc.last_energy) { // Handle missed channel
if (uptime > PZEM_DC_STABILIZE) {
if (TasmotaGlobal.uptime > PZEM_DC_STABILIZE) {
EnergyUpdateTotal(PzemDc.energy, false);
}
PzemDc.last_energy = PzemDc.energy;
@ -105,7 +105,7 @@ void PzemDcEverySecond(void)
}
else {
PzemDc.send_retry--;
if ((Energy.phase_count > 1) && (0 == PzemDc.send_retry) && (uptime < PZEM_DC_STABILIZE)) {
if ((Energy.phase_count > 1) && (0 == PzemDc.send_retry) && (TasmotaGlobal.uptime < PZEM_DC_STABILIZE)) {
Energy.phase_count--; // Decrement channels if no response after retry within 30 seconds after restart
}
}
@ -155,7 +155,7 @@ bool Xnrg06(uint8_t function)
switch (function) {
case FUNC_ENERGY_EVERY_SECOND:
if (uptime > 4) { PzemDcEverySecond(); } // Fix start up issue #5875
if (TasmotaGlobal.uptime > 4) { PzemDcEverySecond(); } // Fix start up issue #5875
break;
case FUNC_COMMAND:
result = PzemDcCommand();

View File

@ -242,7 +242,7 @@ bool Xnrg08(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) { SDM120Every250ms(); }
if (TasmotaGlobal.uptime > 4) { SDM120Every250ms(); }
break;
case FUNC_JSON_APPEND:
Sdm220Show(1);

View File

@ -117,7 +117,7 @@ bool Xnrg09(uint8_t function)
switch (function) {
case FUNC_ENERGY_EVERY_SECOND:
if (uptime > 4) { Dds2382EverySecond(); }
if (TasmotaGlobal.uptime > 4) { Dds2382EverySecond(); }
break;
case FUNC_INIT:
Dds2382SnsInit();

View File

@ -242,7 +242,7 @@ bool Xnrg10(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) { SDM630Every250ms(); }
if (TasmotaGlobal.uptime > 4) { SDM630Every250ms(); }
break;
case FUNC_INIT:
Sdm630SnsInit();

View File

@ -159,7 +159,7 @@ bool Xnrg11(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) { DDSU666Every250ms(); }
if (TasmotaGlobal.uptime > 4) { DDSU666Every250ms(); }
break;
case FUNC_INIT:
Ddsu666SnsInit();

View File

@ -505,7 +505,7 @@ bool Xnrg12(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) { solaxX1250MSecond(); }
if (TasmotaGlobal.uptime > 4) { solaxX1250MSecond(); }
break;
case FUNC_JSON_APPEND:
solaxX1Show(1);

View File

@ -269,7 +269,7 @@ bool Xnrg13(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) {
if (TasmotaGlobal.uptime > 4) {
FifLEEvery250ms();
}
break;

View File

@ -640,7 +640,7 @@ bool Xnrg15(uint8_t function)
switch (function)
{
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) { TInfoEvery250ms(); }
if (TasmotaGlobal.uptime > 4) { TInfoEvery250ms(); }
break;
case FUNC_JSON_APPEND:
TInfoShow(1);

View File

@ -192,7 +192,7 @@ bool Xnrg16(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) { IEM3000Every250ms(); }
if (TasmotaGlobal.uptime > 4) { IEM3000Every250ms(); }
break;
case FUNC_INIT:
Iem3000SnsInit();

View File

@ -216,7 +216,7 @@ bool Xnrg17(uint8_t function)
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (uptime > 4) { WE517Every250ms(); }
if (TasmotaGlobal.uptime > 4) { WE517Every250ms(); }
break;
case FUNC_INIT:
We517SnsInit();

View File

@ -457,7 +457,7 @@ void Ds18x20EverySecond(void)
if (now < w1_power_until)
return;
#endif
if (uptime & 1
if (TasmotaGlobal.uptime & 1
#ifdef W1_PARASITE_POWER
// if more than 1 sensor and only parasite power: convert every cycle
|| ds18x20_sensors >= 2

View File

@ -167,7 +167,7 @@ void Ds18x20EverySecond(void)
{
if (!ds18x20_sensors) { return; }
if (uptime & 1) {
if (TasmotaGlobal.uptime & 1) {
// 2mS
// Ds18x20Search(); // Check for changes in sensors number
Ds18x20Convert(); // Start Conversion, takes up to one second

View File

@ -228,7 +228,7 @@ void DhtInit(void)
void DhtEverySecond(void)
{
if (uptime &1) { // Every 2 seconds
if (TasmotaGlobal.uptime &1) { // Every 2 seconds
for (uint32_t sensor = 0; sensor < dht_sensors; sensor++) {
// DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor
if (!DhtRead(sensor)) {

View File

@ -172,7 +172,7 @@ void ShtDetect(void)
void ShtEverySecond(void)
{
if (!(uptime %4)) { // Every 4 seconds
if (!(TasmotaGlobal.uptime %4)) { // Every 4 seconds
// 344mS
if (!ShtRead()) {
AddLogMissed(sht_types, sht_valid);

View File

@ -236,7 +236,7 @@ void HtuDetect(void)
void HtuEverySecond(void)
{
if (uptime &1) { // Every 2 seconds
if (TasmotaGlobal.uptime &1) { // Every 2 seconds
// HTU21: 68mS, SI70xx: 37mS
if (!HtuRead()) {
AddLogMissed(Htu.types, Htu.valid);

View File

@ -82,7 +82,7 @@ void Tsl2561Detect(void)
void Tsl2561EverySecond(void)
{
if (!(uptime %2)) { // Every 2 seconds
if (!(TasmotaGlobal.uptime %2)) { // Every 2 seconds
// ?mS - 4Sec
if (!Tsl2561Read()) {
AddLogMissed(tsl2561_types, tsl2561_valid);

View File

@ -83,7 +83,7 @@ void Sgp30Update(void) // Perform every second to ensure proper operation of th
if (!sgp.IAQmeasure()) {
return; // Measurement failed
}
if (global_update && (global_humidity > 0) && !isnan(global_temperature_celsius)) {
if (TasmotaGlobal.global_update && (global_humidity > 0) && !isnan(global_temperature_celsius)) {
// abs hum in mg/m3
sgp30_abshum = sgp30_AbsoluteHumidity(global_temperature_celsius, global_humidity);
sgp.setHumidity(sgp30_abshum*1000);
@ -91,7 +91,7 @@ void Sgp30Update(void) // Perform every second to ensure proper operation of th
sgp30_ready = true;
// these should normally be stored permanently and used for fast restart
if (!(uptime%SAVE_PERIOD)) {
if (!(TasmotaGlobal.uptime%SAVE_PERIOD)) {
// store settings every N seconds
uint16_t TVOC_base;
uint16_t eCO2_base;
@ -115,13 +115,13 @@ void Sgp30Show(bool json)
if (sgp30_ready) {
char abs_hum[33];
if (global_update && (global_humidity > 0) && !isnan(global_temperature_celsius)) {
if (TasmotaGlobal.global_update && (global_humidity > 0) && !isnan(global_temperature_celsius)) {
// has humidity + temperature
dtostrfd(sgp30_abshum,4,abs_hum);
}
if (json) {
ResponseAppend_P(PSTR(",\"SGP30\":{\"" D_JSON_ECO2 "\":%d,\"" D_JSON_TVOC "\":%d"), sgp.eCO2, sgp.TVOC);
if (global_update && global_humidity>0 && !isnan(global_temperature_celsius)) {
if (TasmotaGlobal.global_update && global_humidity>0 && !isnan(global_temperature_celsius)) {
ResponseAppend_P(PSTR(",\"" D_JSON_AHUM "\":%s"),abs_hum);
}
ResponseJsonEnd();
@ -131,7 +131,7 @@ void Sgp30Show(bool json)
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_SGP30, sgp.eCO2, sgp.TVOC);
if (global_update) {
if (TasmotaGlobal.global_update) {
WSContentSend_PD(HTTP_SNS_AHUM, abs_hum);
}
#endif

View File

@ -65,7 +65,7 @@ void CCS811Update(void) // Perform every n second
TVOC = ccs.getTVOC();
eCO2 = ccs.geteCO2();
CCS811_ready = 1;
if (global_update && (global_humidity > 0) && !isnan(global_temperature_celsius)) {
if (TasmotaGlobal.global_update && (global_humidity > 0) && !isnan(global_temperature_celsius)) {
ccs.setEnvironmentalData((uint8_t)global_humidity, global_temperature_celsius);
}
ecnt = 0;

View File

@ -238,7 +238,7 @@ void ICACHE_RAM_ATTR TX2xStartRead(void)
#else
if ((chk == tx2x_sd) && (tx2x_sb==tx2x_se) && (tx2x_sc==tx2x_sf) && (tx2x_sc < 511)) {
#endif
tx2x_last_available = uptime;
tx2x_last_available = TasmotaGlobal.uptime;
// Wind speed spec: 0 to 180 km/h (0 to 50 m/s)
tx2x_wind_speed = tx2x_sc;
tx2x_wind_direction = tx2x_sb;
@ -264,7 +264,7 @@ void ICACHE_RAM_ATTR TX2xStartRead(void)
bool Tx2xAvailable(void)
{
return ((uptime - tx2x_last_available) < TX2X_TIMEOUT);
return ((TasmotaGlobal.uptime - tx2x_last_available) < TX2X_TIMEOUT);
}
#ifndef USE_TX2X_WIND_SENSOR_NOSTATISTICS
@ -306,7 +306,7 @@ void Tx2xCheckSampleCount(void)
void Tx2xResetStat(void)
{
DEBUG_SENSOR_LOG(PSTR(D_TX2x_NAME ": reset statistics"));
tx2x_last_uptime = uptime;
tx2x_last_uptime = TasmotaGlobal.uptime;
Tx2xResetStatData();
}
@ -330,13 +330,13 @@ void Tx2xRead(void)
//
// note: TX23 speed calculation is unstable when conversion starts
// less than 2 seconds after last request
if ((uptime % TX23_READ_INTERVAL)==0) {
if ((TasmotaGlobal.uptime % TX23_READ_INTERVAL)==0) {
// TX23 start transmission by pulling down TxD line for at minimum 500ms
// so we pull TxD signal to low every 3 seconds
tx23_stage = 0;
pinMode(Pin(GPIO_TX2X_TXD_BLACK), OUTPUT);
digitalWrite(Pin(GPIO_TX2X_TXD_BLACK), LOW);
} else if ((uptime % TX23_READ_INTERVAL)==1) {
} else if ((TasmotaGlobal.uptime % TX23_READ_INTERVAL)==1) {
// after pulling down TxD: pull-up TxD every x+1 seconds
// to trigger TX23 start transmission
tx23_stage = 1; // first rising signal is invalid
@ -419,7 +419,7 @@ void Tx2xRead(void)
char siny[FLOATSZ];
dtostrfd(tx2x_wind_direction_avg_y, 1, siny);
DEBUG_SENSOR_LOG(PSTR(D_TX2x_NAME ": dir stat - counter=%ld, actint=%ld, avgint=%ld, avg=%s (cosx=%s, siny=%s), min %d, max %d"),
(uptime-tx2x_last_uptime),
(TasmotaGlobal.uptime-tx2x_last_uptime),
tx2x_wind_direction,
tx2x_wind_direction_avg_int,
diravg,
@ -443,7 +443,7 @@ void Tx2xRead(void)
#ifndef USE_TX2X_WIND_SENSOR_NOSTATISTICS
Tx2xCheckSampleCount();
if (0==Settings.tele_period && (uptime-tx2x_last_uptime)>=tx2x_avg_samples) {
if (0==Settings.tele_period && (TasmotaGlobal.uptime-tx2x_last_uptime)>=tx2x_avg_samples) {
Tx2xResetStat();
}
#endif // USE_TX2X_WIND_SENSOR_NOSTATISTICS

View File

@ -137,7 +137,7 @@ void hreEvery50ms(void)
switch (hre_state)
{
case hre_sync:
if (uptime < 10)
if (TasmotaGlobal.uptime < 10)
break;
sync_run = 0;
sync_counter = 0;
@ -174,7 +174,7 @@ void hreEvery50ms(void)
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE "sync_run:%d, sync_counter:%d"), sync_run, sync_counter);
read_counter = 0;
parity_errors = 0;
curr_start = uptime;
curr_start = TasmotaGlobal.uptime;
memset(buff, 0, sizeof(buff));
hre_state = hre_reading;
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE "hre_state:hre_reading"));
@ -223,7 +223,7 @@ void hreEvery50ms(void)
case hre_sleeping:
// If there isn't some delay between readings, rate calculations
// aren't as accurate. 27 seconds will give about a 30 second refresh rate
if (uptime - hre_usage_time >= 27)
if (TasmotaGlobal.uptime - hre_usage_time >= 27)
hre_state = hre_sync;
}
}

View File

@ -158,7 +158,7 @@ const char HTTP_SNS_SPS30_c[] PROGMEM ="{s}SPS30 " "TYPSIZ" "{m}%s " "um" "{e}";
void SPS30_Every_Second() {
if (!sps30_running) return;
if (uptime%10==0) {
if (TasmotaGlobal.uptime%10==0) {
uint8_t vars[sizeof(float)*10];
sps30_get_data(SPS_CMD_READ_MEASUREMENT,vars,sizeof(vars));
float *fp=&sps30_result.PM1_0;
@ -178,7 +178,7 @@ void SPS30_Every_Second() {
}
}
if (uptime%3600==0 && uptime>60) {
if (TasmotaGlobal.uptime%3600==0 && TasmotaGlobal.uptime>60) {
// should auto clean once per week runtime
// so count hours, should be in Settings
SPS30_HOURS++;

View File

@ -119,7 +119,7 @@ void hm17_every_second(void) {
if (!IBEACON_Serial) return;
if (hm17_found) {
if (IB_UPDATE_TIME && (uptime%IB_UPDATE_TIME==0)) {
if (IB_UPDATE_TIME && (TasmotaGlobal.uptime%IB_UPDATE_TIME==0)) {
if (hm17_cmd!=99) {
if (hm17_flag&2) {
ib_sendbeep();
@ -140,7 +140,7 @@ void hm17_every_second(void) {
}
}
} else {
if (uptime%20==0) {
if (TasmotaGlobal.uptime%20==0) {
hm17_sendcmd(HM17_TEST);
}
}

View File

@ -76,7 +76,7 @@ void Hih6Detect(void)
{
if (I2cActive(HIH6_ADDR)) { return; }
if (uptime < 2) { delay(20); } // Skip entering power on comand mode
if (TasmotaGlobal.uptime < 2) { delay(20); } // Skip entering power on comand mode
Hih6.type = Hih6Read();
if (Hih6.type) {
I2cSetActiveFound(HIH6_ADDR, Hih6.types);
@ -85,7 +85,7 @@ void Hih6Detect(void)
void Hih6EverySecond(void)
{
if (uptime &1) {
if (TasmotaGlobal.uptime &1) {
// HIH6130: 30mS
if (!Hih6Read()) {
AddLogMissed(Hih6.types, Hih6.valid);

View File

@ -79,7 +79,7 @@ void Dht12Detect(void)
void Dht12EverySecond(void)
{
if (uptime &1) {
if (TasmotaGlobal.uptime &1) {
// DHT12: 55mS
if (!Dht12Read()) {
AddLogMissed(Dht12.name, Dht12.valid);

View File

@ -259,7 +259,7 @@ void HdcDetect(void) {
*
*/
void HdcEverySecond(void) {
if (uptime &1) { // Every 2 seconds
if (TasmotaGlobal.uptime &1) { // Every 2 seconds
if (!HdcTriggerRead()) {
AddLogMissed((char*) hdc_type_name, hdc_valid);
}

View File

@ -88,7 +88,7 @@ void HP303B_Detect(void) {
void HP303B_EverySecond(void) {
for (uint32_t i = 0; i < hp303b_cfg.count; i++) {
if (uptime &1) {
if (TasmotaGlobal.uptime &1) {
if (!HP303B_Read(i)) {
AddLogMissed(hp303b_cfg.types, hp303b_sensor[i].valid);
}

View File

@ -38,7 +38,7 @@ void HandleMetrics(void)
// Pseudo-metric providing metadata about the running firmware version.
WSContentSend_P(PSTR("# TYPE tasmota_info gauge\ntasmota_info{version=\"%s\",image=\"%s\",build_timestamp=\"%s\"} 1\n"),
my_version, my_image, GetBuildDateAndTime().c_str());
WSContentSend_P(PSTR("# TYPE tasmota_uptime_seconds gauge\ntasmota_uptime_seconds %d\n"), uptime);
WSContentSend_P(PSTR("# TYPE tasmota_uptime_seconds gauge\ntasmota_uptime_seconds %d\n"), TasmotaGlobal.uptime);
WSContentSend_P(PSTR("# TYPE tasmota_boot_count counter\ntasmota_boot_count %d\n"), Settings.bootcount);
WSContentSend_P(PSTR("# TYPE tasmota_flash_writes_total counter\ntasmota_flash_writes_total %d\n"), Settings.save_flag);

View File

@ -32,7 +32,7 @@ struct EZOCO2 : public EZOStruct {
EZOStruct::ProcessMeasurement(data, sizeof(data), EZO_CO2_READ_LATENCY);
// sensor has a 10s warmup period
if (uptime >= 10) {
if (TasmotaGlobal.uptime >= 10) {
CO2 = atoi(data);
}
}

View File

@ -138,12 +138,12 @@ struct EZOManager {
// Do we have to deal with the 2 stage booting process?
if (count < 0) {
// EZO devices take 2s to boot
if (uptime >= next) {
if (TasmotaGlobal.uptime >= next) {
count++;
if (count == -1) {
DetectRequest();
next = uptime + 1;
next = TasmotaGlobal.uptime + 1;
} else if (count == 0) {
ProcessDetection();
}

View File

@ -917,7 +917,7 @@ bool XsnsCall(uint8_t Function)
uint32_t profile_millis = millis() - profile_start_millis;
if (profile_millis) {
if (FUNC_EVERY_SECOND == Function) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PRF: At %08u XsnsCall %d to Sensor %d took %u mS"), uptime, Function, x, profile_millis);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PRF: At %08u XsnsCall %d to Sensor %d took %u mS"), TasmotaGlobal.uptime, Function, x, profile_millis);
}
}
#endif // PROFILE_XSNS_SENSOR_EVERY_SECOND
@ -937,7 +937,7 @@ bool XsnsCall(uint8_t Function)
uint32_t profile_millis = millis() - profile_start_millis;
if (profile_millis) {
if (FUNC_EVERY_SECOND == Function) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PRF: At %08u XsnsCall %d took %u mS"), uptime, Function, profile_millis);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PRF: At %08u XsnsCall %d took %u mS"), TasmotaGlobal.uptime, Function, profile_millis);
}
}
#endif // PROFILE_XSNS_EVERY_SECOND