Corrections to reduce settings

This commit is contained in:
Javier Arigita 2020-04-17 20:24:12 +02:00
parent 80f364cc5a
commit ba0a2ff2eb
3 changed files with 166 additions and 196 deletions

View File

@ -526,38 +526,11 @@ struct SYSCFG {
uint16_t pms_wake_interval; // F34
uint8_t config_version; // F36
uint8_t free_f37[69]; // F37 - Decrement if adding new Setting variables just above and below
uint8_t free_f37[129]; // F37 - Decrement if adding new Setting variables just above and below
// Only 32 bit boundary variables below
uint8_t time_output_delay; // F7C
uint8_t temp_rampup_pi_acc_error; // F7D
uint8_t temp_rampup_delta_out; // F7E
uint8_t temp_rampup_delta_in; // F7F
uint32_t time_rampup_max; // F80
uint32_t time_rampup_cycle; // F84
uint32_t time_allow_rampup; // F88
uint32_t time_sens_lost; // F8C
uint8_t temp_sens_number; // F90
bool state_emergency; // F91
uint8_t output_relay_number; // F92
uint8_t input_switch_number; // F93
uint32_t time_manual_to_auto; // F94
uint32_t time_on_limit; // F98
uint32_t time_reset; // F9C
uint32_t time_pi_cycle; // FA0
uint32_t time_max_action; // FA4
uint32_t time_min_action; // FA8
uint32_t time_min_turnoff_action; // FAC
uint8_t val_prop_band; // FB0
uint8_t temp_reset_anti_windup; // FB1
int8_t temp_hysteresis; // FB2
uint8_t temp_frost_protect; // FB3
uint16_t power_max; // FB4
uint16_t energy_heating_output_max; // FB6
uint16_t pulse_counter_debounce_low; // FB8
uint16_t pulse_counter_debounce_high; // FBA
uint32_t keeloq_master_msb; // FBC
uint32_t keeloq_master_lsb; // FC0
uint32_t keeloq_serial; // FC4

View File

@ -1001,34 +1001,6 @@ void SettingsDefaultSet2(void)
Settings.flag3.shutter_mode = SHUTTER_SUPPORT;
Settings.flag3.pcf8574_ports_inverted = PCF8574_INVERT_PORTS;
Settings.flag4.zigbee_use_names = ZIGBEE_FRIENDLY_NAMES;
// Heating
Settings.energy_heating_output_max = HEATING_ENERGY_OUTPUT_MAX;
Settings.time_output_delay = HEATING_TIME_OUTPUT_DELAY;
Settings.temp_rampup_pi_acc_error = HEATING_TEMP_PI_RAMPUP_ACC_E;
Settings.temp_rampup_delta_out = HEATING_TEMP_RAMPUP_DELTA_OUT;
Settings.temp_rampup_delta_in = HEATING_TEMP_RAMPUP_DELTA_IN;
Settings.output_relay_number = HEATING_RELAY_NUMBER;
Settings.input_switch_number = HEATING_SWITCH_NUMBER;
Settings.time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP;
Settings.time_rampup_max = HEATING_TIME_RAMPUP_MAX;
Settings.time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE;
Settings.time_sens_lost = HEAT_TIME_SENS_LOST;
Settings.temp_sens_number = HEAT_TEMP_SENS_NUMBER;
Settings.state_emergency = HEAT_STATE_EMERGENCY;
Settings.power_max = HEAT_POWER_MAX;
Settings.time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO;
Settings.time_on_limit = HEAT_TIME_ON_LIMIT;
Settings.time_reset = HEAT_TIME_RESET;
Settings.time_pi_cycle = HEAT_TIME_PI_CYCLE;
Settings.time_max_action = HEAT_TIME_MAX_ACTION;
Settings.time_min_action = HEAT_TIME_MIN_ACTION;
Settings.time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION;
Settings.val_prop_band = HEAT_PROP_BAND;
Settings.temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP;
Settings.temp_hysteresis = HEAT_TEMP_HYSTERESIS;
Settings.temp_frost_protect = HEAT_TEMP_FROST_PROTECT;
}
/********************************************************************************************/

View File

@ -1,5 +1,5 @@
/*
xdrv_90_heating.ino - Heating controller for Tasmota
xdrv_39_heating.ino - Heating controller for Tasmota
Copyright (C) 2020 Javier Arigita
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -63,60 +63,85 @@ void (* const HeatingCommand[])(void) PROGMEM = {
const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"}";
struct HEATING {
uint32_t counter_seconds = 0; // Counter incremented every second
uint8_t heating_mode = HEAT_OFF; // Operation mode of the heating system
uint8_t controller_mode = CTR_HYBRID; // Operation mode of the heating controller
bool sensor_alive = false; // Bool stating if temperature sensor is alive
bool command_output = false; // Bool stating state to save the command to the output (true = active, false = inactive)
uint8_t phase_hybrid_ctr = CTR_HYBRID_PI; // Phase of the hybrid controller (Ramp-up or PI)
uint8_t status_output = IFACE_OFF; // Status of the output switch
uint16_t temp_target_level = 180; // Target level of the heating in tenths of degrees
uint16_t temp_target_level_ctr = 180; // Target level set for the controller
int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees
uint32_t timestamp_temp_target_update = 0; // Timestamp of latest target value update
uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement value update
uint32_t timestamp_temp_meas_change_update = 0;// Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_on = 0; // Timestamp of latest heating output On state
uint32_t timestamp_output_off = 0; // Timestamp of latest heating output Off state
uint32_t timestamp_input_on = 0; // Timestamp of latest input On state
uint32_t time_heating_total = 0; // Time heating on within a specific timeframe
uint32_t time_pi_checkpoint = 0; // Time to finalize the pi control cycle
uint32_t time_pi_changepoint = 0; // Time until switching off output within a pi control cycle
uint32_t time_rampup_checkpoint = 0; // Time to switch from ramp-up controller mode to PI
uint32_t time_rampup_output_off = 0; // Time to switch off relay output within the ramp-up controller
uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0; // Time constant of the heating system (step response time)
uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle
uint32_t counter_rampup_cycles = 0; // Counter of ramp-up cycles
int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour
int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in tenths of degrees
int16_t temp_pi_error = 0; // Temperature error for the PI controller in tenths of degrees
int32_t time_proportional_pi; // Time proportional part of the PI controller
int32_t time_integral_pi; // Time integral part of the PI controller
int32_t time_total_pi; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0; // kP value for the PI controller
uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100
uint16_t heating_plan[7][6] = { // Heating plan for the week (3 times/temperatures per day in tenths of degrees)
{0,0,0,0,0,0}, // Monday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Tuesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Wednesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Thursday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Friday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Saturday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0} // Sunday, format {time/temp, time/temp, time/temp}
uint32_t counter_seconds = 0; // Counter incremented every second
uint8_t heating_mode = HEAT_OFF; // Operation mode of the heating system
uint8_t controller_mode = CTR_HYBRID; // Operation mode of the heating controller
bool sensor_alive = false; // Bool stating if temperature sensor is alive
bool command_output = false; // Bool stating state to save the command to the output (true = active, false = inactive)
uint8_t phase_hybrid_ctr = CTR_HYBRID_PI; // Phase of the hybrid controller (Ramp-up or PI)
uint8_t status_output = IFACE_OFF; // Status of the output switch
uint16_t temp_target_level = 180; // Target level of the heating in tenths of degrees
uint16_t temp_target_level_ctr = 180; // Target level set for the controller
int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees
uint32_t timestamp_temp_target_update = 0; // Timestamp of latest target value update
uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement value update
uint32_t timestamp_temp_meas_change_update = 0; // Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_on = 0; // Timestamp of latest heating output On state
uint32_t timestamp_output_off = 0; // Timestamp of latest heating output Off state
uint32_t timestamp_input_on = 0; // Timestamp of latest input On state
uint32_t time_heating_total = 0; // Time heating on within a specific timeframe
uint32_t time_pi_checkpoint = 0; // Time to finalize the pi control cycle
uint32_t time_pi_changepoint = 0; // Time until switching off output within a pi control cycle
uint32_t time_rampup_checkpoint = 0; // Time to switch from ramp-up controller mode to PI
uint32_t time_rampup_output_off = 0; // Time to switch off relay output within the ramp-up controller
uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0; // Time constant of the heating system (step response time)
uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle
uint32_t counter_rampup_cycles = 0; // Counter of ramp-up cycles
int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour
int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in tenths of degrees
int16_t temp_pi_error = 0; // Temperature error for the PI controller in tenths of degrees
int32_t time_proportional_pi; // Time proportional part of the PI controller
int32_t time_integral_pi; // Time integral part of the PI controller
int32_t time_total_pi; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0; // kP value for the PI controller
uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100
uint16_t heating_plan[7][6] = { // Heating plan for the week (3 times/temperatures per day in tenths of degrees)
{0,0,0,0,0,0}, // Monday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Tuesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Wednesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Thursday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Friday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Saturday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0} // Sunday, format {time/temp, time/temp, time/temp}
};
bool status_cycle_active = false; // Status showing if cycle is active (Output ON) or not (Output OFF)
bool status_cycle_active = false; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint8_t time_output_delay = HEATING_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t temp_rampup_pi_acc_error = HEATING_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI
uint8_t temp_rampup_delta_out = HEATING_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = HEATING_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
uint32_t time_rampup_max = HEATING_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration
uint32_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE; // Time ramp-up cycle
uint32_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP; // Time in seconds after last target update to allow ramp-up controller phase
uint32_t time_sens_lost = HEAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost
uint8_t temp_sens_number = HEAT_TEMP_SENS_NUMBER; // Temperature sensor number
bool state_emergency = HEAT_STATE_EMERGENCY; // State for heating emergency
uint8_t output_relay_number = HEATING_RELAY_NUMBER; // Output relay number
uint8_t input_switch_number = HEATING_SWITCH_NUMBER; // Input switch number
uint32_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in seconds
uint32_t time_on_limit = HEAT_TIME_ON_LIMIT; // Maximum time with output active in seconds
uint32_t time_reset = HEAT_TIME_RESET; // Reset time of the PI controller in seconds
uint32_t time_pi_cycle = HEAT_TIME_PI_CYCLE; // Cycle time for the heating controller in seconds
uint32_t time_max_action = HEAT_TIME_MAX_ACTION; // Maximum heating time per cycle in seconds
uint32_t time_min_action = HEAT_TIME_MIN_ACTION; // Minimum heating time per cycle in seconds
uint32_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in seconds, below it the heating will be held on
uint8_t val_prop_band = HEAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius
uint8_t temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = HEAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = HEAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius
uint16_t power_max = HEAT_POWER_MAX; // Maximum output power in Watt
uint16_t energy_heating_output_max = HEATING_ENERGY_OUTPUT_MAX; // Maximum allowed energy output for heating valve in Watts
} Heating;
/*********************************************************************************************/
void HeatingInit()
{
ExecuteCommandPower(Settings.output_relay_number, POWER_OFF, SRC_HEATING); // Make sure the Output is OFF
ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING); // Make sure the Output is OFF
}
bool HeatingMinuteCounter()
@ -151,7 +176,7 @@ uint8_t HeatingSwitchStatus(uint8_t input_switch)
void HeatingSignalProcessingSlow()
{
if ((uptime - Heating.timestamp_temp_measured_update) > Settings.time_sens_lost) { // Check if sensor alive
if ((uptime - Heating.timestamp_temp_measured_update) > Heating.time_sens_lost) { // Check if sensor alive
Heating.sensor_alive = false;
Heating.temp_measured_gradient = 0;
Heating.temp_measured = 0;
@ -160,7 +185,7 @@ void HeatingSignalProcessingSlow()
void HeatingSignalProcessingFast()
{
if (HeatingSwitchStatus(Settings.input_switch_number)) { // Check if input switch active and register last update
if (HeatingSwitchStatus(Heating.input_switch_number)) { // Check if input switch active and register last update
Heating.timestamp_input_on = uptime;
}
}
@ -198,9 +223,9 @@ void HeatingHybridCtrPhase()
// AND temp target has changed
// AND temp target - target actual bigger than threshold
// then go to ramp-up
if (((uptime - Heating.timestamp_output_off) > Settings.time_allow_rampup)
if (((uptime - Heating.timestamp_output_off) > Heating.time_allow_rampup)
&& (Heating.temp_target_level != Heating.temp_target_level_ctr)
&&((Heating.temp_target_level - Heating.temp_measured) > Settings.temp_rampup_delta_in)) {
&&((Heating.temp_target_level - Heating.temp_measured) > Heating.temp_rampup_delta_in)) {
Heating.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP;
Heating.timestamp_rampup_start = uptime;
Heating.temp_rampup_start = Heating.temp_measured;
@ -221,7 +246,7 @@ bool HeatStateAutoOrPlanToManual()
// If switch input is active
// OR temperature sensor is not alive
// then go to manual
if ((HeatingSwitchStatus(Settings.input_switch_number) == 1)
if ((HeatingSwitchStatus(Heating.input_switch_number) == 1)
|| (Heating.sensor_alive == false)) {
change_state = true;
}
@ -235,8 +260,8 @@ bool HeatStateManualToAuto()
// If switch input inactive
// AND no switch input action (time in current state) bigger than a pre-defined time
// then go to automatic
if ((HeatingSwitchStatus(Settings.input_switch_number) == 0)
&& ((uptime - Heating.timestamp_input_on) > Settings.time_manual_to_auto)) {
if ((HeatingSwitchStatus(Heating.input_switch_number) == 0)
&& ((uptime - Heating.timestamp_input_on) > Heating.time_manual_to_auto)) {
change_state = true;
}
return change_state;
@ -247,7 +272,7 @@ bool HeatStateAllToOff()
bool change_state;
// If emergency mode then switch OFF the output inmediately
if (Settings.state_emergency) {
if (Heating.state_emergency) {
Heating.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
return change_state;
@ -290,13 +315,13 @@ void HeatingState()
void HeatingOutputRelay(bool active)
{
// TODO: See if the real output state can be read by f.i. bitRead(power, Settings.output_relay_number))
// TODO: See if the real output state can be read by f.i. bitRead(power, Heating.output_relay_number))
// If command received to enable output
// AND current output status is OFF
// then switch output to ON
if ((active == true)
&& (Heating.status_output == IFACE_OFF)) {
ExecuteCommandPower(Settings.output_relay_number, POWER_ON, SRC_HEATING);
ExecuteCommandPower(Heating.output_relay_number, POWER_ON, SRC_HEATING);
Heating.timestamp_output_on = uptime;
Heating.status_output = IFACE_ON;
}
@ -304,7 +329,7 @@ void HeatingOutputRelay(bool active)
// AND current output status is ON
// then switch output to OFF
else if ((active == false) && (Heating.status_output == IFACE_ON)) {
ExecuteCommandPower(Settings.output_relay_number, POWER_OFF, SRC_HEATING);
ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING);
Heating.timestamp_output_off = uptime;
Heating.status_output = IFACE_OFF;
}
@ -315,33 +340,33 @@ void HeatingCalculatePI()
// Calculate error
Heating.temp_pi_error = Heating.temp_target_level_ctr - Heating.temp_measured;
// Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller)
Heating.kP_pi = 100 / (uint16_t)(Settings.val_prop_band);
Heating.kP_pi = 100 / (uint16_t)(Heating.val_prop_band);
// Calculate proportional
Heating.time_proportional_pi = ((int32_t)(Heating.temp_pi_error * (int16_t)Heating.kP_pi) * Settings.time_pi_cycle) / 1000;
Heating.time_proportional_pi = ((int32_t)(Heating.temp_pi_error * (int16_t)Heating.kP_pi) * Heating.time_pi_cycle) / 1000;
// Minimum proportional action limiter
// If proportional action is less than the minimum action time
// AND proportional > 0
// then adjust to minimum value
if ((Heating.time_proportional_pi < abs(Settings.time_min_action))
if ((Heating.time_proportional_pi < abs(Heating.time_min_action))
&& (Heating.time_proportional_pi > 0)) {
Heating.time_proportional_pi = Settings.time_min_action;
Heating.time_proportional_pi = Heating.time_min_action;
}
if (Heating.time_proportional_pi < 0) {
Heating.time_proportional_pi = 0;
}
else if (Heating.time_proportional_pi > Settings.time_pi_cycle) {
Heating.time_proportional_pi = Settings.time_pi_cycle;
else if (Heating.time_proportional_pi > Heating.time_pi_cycle) {
Heating.time_proportional_pi = Heating.time_pi_cycle;
}
// Calculate integral
Heating.kI_pi = (uint16_t)(((float)Heating.kP_pi * ((float)Settings.time_pi_cycle / (float)Settings.time_reset)) * 100);
Heating.kI_pi = (uint16_t)(((float)Heating.kP_pi * ((float)Heating.time_pi_cycle / (float)Heating.time_reset)) * 100);
// Reset of antiwindup
// If error does not lay within the integrator scope range, do not use the integral
// and accumulate error = 0
if (abs(Heating.temp_pi_error) > Settings.temp_reset_anti_windup) {
if (abs(Heating.temp_pi_error) > Heating.temp_reset_anti_windup) {
Heating.time_integral_pi = 0;
Heating.temp_pi_accum_error = 0;
}
@ -360,7 +385,7 @@ void HeatingCalculatePI()
// AND we are within the hysteresis
// AND we are rising
if ((Heating.temp_pi_error >= 0)
&& (abs(Heating.temp_pi_error) <= (int16_t)Settings.temp_hysteresis)
&& (abs(Heating.temp_pi_error) <= (int16_t)Heating.temp_hysteresis)
&& (Heating.temp_measured_gradient > 0)) {
Heating.temp_pi_accum_error += Heating.temp_pi_error;
// Reduce accumulator error 20% in each cycle
@ -384,13 +409,13 @@ void HeatingCalculatePI()
}
// Integral calculation
Heating.time_integral_pi = ((((int32_t)Heating.temp_pi_accum_error * (int32_t)Heating.kI_pi) / 100) * (int32_t)(Settings.time_pi_cycle)) / 1000;
Heating.time_integral_pi = ((((int32_t)Heating.temp_pi_accum_error * (int32_t)Heating.kI_pi) / 100) * (int32_t)(Heating.time_pi_cycle)) / 1000;
// Antiwindup of the integrator
// If integral calculation is bigger than cycle time, adjust result
// to the cycle time and error will not be cummulated]]
if (Heating.time_integral_pi > Settings.time_pi_cycle) {
Heating.time_integral_pi = Settings.time_pi_cycle;
if (Heating.time_integral_pi > Heating.time_pi_cycle) {
Heating.time_integral_pi = Heating.time_pi_cycle;
}
}
@ -400,9 +425,9 @@ void HeatingCalculatePI()
// Antiwindup of the output
// If result is bigger than cycle time, the result will be adjusted
// to the cylce time minus safety time and error will not be cummulated]]
if (Heating.time_total_pi > Settings.time_pi_cycle) {
if (Heating.time_total_pi > Heating.time_pi_cycle) {
// Limit to cycle time //at least switch down a minimum time
Heating.time_total_pi = Settings.time_pi_cycle;
Heating.time_total_pi = Heating.time_pi_cycle;
}
else if (Heating.time_total_pi < 0) {
Heating.time_total_pi = 0;
@ -412,7 +437,7 @@ void HeatingCalculatePI()
// If target value has been reached or we are over it]]
if (Heating.temp_pi_error <= 0) {
// If we are over the hysteresis or the gradient is positive
if ((abs(Heating.temp_pi_error) > Settings.temp_hysteresis)
if ((abs(Heating.temp_pi_error) > Heating.temp_hysteresis)
|| (Heating.temp_measured_gradient >= 0)) {
Heating.time_total_pi = 0;
}
@ -422,31 +447,31 @@ void HeatingCalculatePI()
// AND gradient is positive
// then set value to 0
else if ((Heating.temp_pi_error > 0)
&& (abs(Heating.temp_pi_error) <= Settings.temp_hysteresis)
&& (abs(Heating.temp_pi_error) <= Heating.temp_hysteresis)
&& (Heating.temp_measured_gradient > 0)) {
Heating.time_total_pi = 0;
}
// Minimum action limiter
// If result is less than the minimum action time, adjust to minimum value]]
if ((Heating.time_total_pi <= abs(Settings.time_min_action))
if ((Heating.time_total_pi <= abs(Heating.time_min_action))
&& (Heating.time_total_pi != 0)) {
Heating.time_total_pi = Settings.time_min_action;
Heating.time_total_pi = Heating.time_min_action;
}
// Maximum action limiter
// If result is more than the maximum action time, adjust to maximum value]]
else if (Heating.time_total_pi > abs(Settings.time_max_action)) {
Heating.time_total_pi = Settings.time_max_action;
else if (Heating.time_total_pi > abs(Heating.time_max_action)) {
Heating.time_total_pi = Heating.time_max_action;
}
// If switched off less time than safety time, do not switch off
else if (Heating.time_total_pi > (Settings.time_pi_cycle - Settings.time_min_turnoff_action)) {
Heating.time_total_pi = Settings.time_pi_cycle;
else if (Heating.time_total_pi > (Heating.time_pi_cycle - Heating.time_min_turnoff_action)) {
Heating.time_total_pi = Heating.time_pi_cycle;
}
// Adjust output switch point
Heating.time_pi_changepoint = uptime + Heating.time_total_pi;
// Adjust next cycle point
Heating.time_pi_checkpoint = uptime + Settings.time_pi_cycle;
Heating.time_pi_checkpoint = uptime + Heating.time_pi_cycle;
}
void HeatingWorkAutomaticPI()
@ -492,29 +517,29 @@ void HeatingWorkAutomaticRampUp()
// If time in ramp-up < max time
// AND temperature measured < target
if ((time_in_rampup <= Settings.time_rampup_max)
if ((time_in_rampup <= Heating.time_rampup_max)
&& (Heating.temp_measured < Heating.temp_target_level)) {
// DEADTIME point reached
// If temperature measured minus temperature at start of ramp-up >= threshold
// AND deadtime still 0
if ((temp_delta_rampup >= Settings.temp_rampup_delta_out)
if ((temp_delta_rampup >= Heating.temp_rampup_delta_out)
&& (Heating.time_rampup_deadtime == 0)) {
// Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered
// minus open time of the valve (arround 3 minutes). If rise very fast limit it to delay of output valve
int32_t time_aux;
time_aux = ((time_in_rampup / 2) - Settings.time_output_delay);
if (time_aux >= Settings.time_output_delay) {
time_aux = ((time_in_rampup / 2) - Heating.time_output_delay);
if (time_aux >= Heating.time_output_delay) {
Heating.time_rampup_deadtime = (uint32_t)time_aux;
}
else {
Heating.time_rampup_deadtime = Settings.time_output_delay;
Heating.time_rampup_deadtime = Heating.time_output_delay;
}
// Calculate gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Heating.temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup);
Heating.time_rampup_nextcycle = uptime + Settings.time_rampup_cycle;
Heating.time_rampup_nextcycle = uptime + Heating.time_rampup_cycle;
// Set auxiliary variables
Heating.temp_rampup_cycle = Heating.temp_measured;
Heating.time_rampup_output_off = uptime + Settings.time_rampup_max;
Heating.time_rampup_output_off = uptime + Heating.time_rampup_max;
Heating.temp_rampup_output_off = Heating.temp_target_level_ctr;
}
// Gradient calculation every time_rampup_cycle
@ -522,7 +547,7 @@ void HeatingWorkAutomaticRampUp()
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Heating.temp_measured - Heating.temp_rampup_cycle;
uint32_t time_total_rampup = Settings.time_rampup_cycle * Heating.counter_rampup_cycles;
uint32_t time_total_rampup = Heating.time_rampup_cycle * Heating.counter_rampup_cycles;
// Translate into gradient per hour (thousandths of ° per hour)
Heating.temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup);
if (Heating.temp_rampup_meas_gradient > 0) {
@ -538,7 +563,7 @@ void HeatingWorkAutomaticRampUp()
// Heating.temp_rampup_output_off = (int16_t)(((float)(temp_delta_rampup) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) * (float)(Heating.time_rampup_output_off - (uptime - (time_total_rampup)))) + Heating.temp_rampup_cycle;
Heating.temp_rampup_output_off = (int16_t)(((float)temp_delta_rampup * (float)(Heating.time_rampup_output_off - (uptime - (time_total_rampup)))) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) + Heating.temp_rampup_cycle;
// Set auxiliary variables
Heating.time_rampup_nextcycle = uptime + Settings.time_rampup_cycle;
Heating.time_rampup_nextcycle = uptime + Heating.time_rampup_cycle;
Heating.temp_rampup_cycle = Heating.temp_measured;
// Reset period counter
Heating.counter_rampup_cycles = 1;
@ -547,9 +572,9 @@ void HeatingWorkAutomaticRampUp()
// Increase the period counter
Heating.counter_rampup_cycles++;
// Set another period
Heating.time_rampup_nextcycle = uptime + Settings.time_rampup_cycle;
Heating.time_rampup_nextcycle = uptime + Heating.time_rampup_cycle;
// Reset time_rampup_output_off and temp_rampup_output_off
Heating.time_rampup_output_off = uptime + Settings.time_rampup_max - time_in_rampup;
Heating.time_rampup_output_off = uptime + Heating.time_rampup_max - time_in_rampup;
Heating.temp_rampup_output_off = Heating.temp_target_level_ctr;
}
// Set time to get out of calibration
@ -575,7 +600,7 @@ void HeatingWorkAutomaticRampUp()
else {
// If we have not reached the temperature, start with an initial value for accumulated error for the PI controller
if (Heating.temp_measured < Heating.temp_target_level_ctr) {
Heating.temp_pi_accum_error = Settings.temp_rampup_pi_acc_error;
Heating.temp_pi_accum_error = Heating.temp_rampup_pi_acc_error;
}
// Set to now time to get out of calibration
Heating.time_rampup_checkpoint = uptime;
@ -628,7 +653,7 @@ void HeatingPlanTempTarget()
// Update target value if time delta to selected time is 0 or positive
if ((tmp_minute_delta[time_selected] >= 0)
&& (Heating.heating_plan[day_of_week - 1][(2 * time_selected) + 1] >= Settings.temp_frost_protect)) {
&& (Heating.heating_plan[day_of_week - 1][(2 * time_selected) + 1] >= Heating.temp_frost_protect)) {
Heating.temp_target_level = Heating.heating_plan[day_of_week - 1][(2 * time_selected) + 1];
}
}
@ -689,10 +714,10 @@ void CmndTempFrostProtectSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 255)) {
Settings.temp_frost_protect = value;
Heating.temp_frost_protect = value;
}
}
ResponseCmndFloat((float)(Settings.temp_frost_protect) / 10, 1);
ResponseCmndFloat((float)(Heating.temp_frost_protect) / 10, 1);
}
void CmndControllerModeSet(void)
@ -711,11 +736,11 @@ void CmndInputSwitchSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if (HeatingSwitchIdValid(value)) {
Settings.input_switch_number = value;
Heating.input_switch_number = value;
Heating.timestamp_input_on = uptime;
}
}
ResponseCmndNumber((int)Settings.input_switch_number);
ResponseCmndNumber((int)Heating.input_switch_number);
}
void CmndOutputRelaySet(void)
@ -723,10 +748,10 @@ void CmndOutputRelaySet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if (HeatingRelayIdValid(value)) {
Settings.output_relay_number = value;
Heating.output_relay_number = value;
}
}
ResponseCmndNumber((int)Settings.output_relay_number);
ResponseCmndNumber((int)Heating.output_relay_number);
}
void CmndTimeAllowRampupSet(void)
@ -734,10 +759,10 @@ void CmndTimeAllowRampupSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value < 86400)) {
Settings.time_allow_rampup = value;
Heating.time_allow_rampup = value;
}
}
ResponseCmndNumber((int)Settings.time_allow_rampup);
ResponseCmndNumber((int)Heating.time_allow_rampup);
}
void CmndTempMeasuredSet(void)
@ -767,7 +792,7 @@ void CmndTempTargetSet(void)
uint16_t value = (uint16_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= -1000)
&& (value <= 1000)
&& (value >= Settings.temp_frost_protect)) {
&& (value >= Heating.temp_frost_protect)) {
Heating.temp_target_level = value;
Heating.timestamp_temp_target_update = uptime;
}
@ -888,10 +913,10 @@ void CmndTempSensNumberSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 255)) {
Settings.temp_sens_number = value;
Heating.temp_sens_number = value;
}
}
ResponseCmndNumber((int)Settings.temp_sens_number);
ResponseCmndNumber((int)Heating.temp_sens_number);
}
void CmndStateEmergencySet(void)
@ -899,10 +924,10 @@ void CmndStateEmergencySet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1)) {
Settings.state_emergency = (bool)value;
Heating.state_emergency = (bool)value;
}
}
ResponseCmndNumber((int)Settings.state_emergency);
ResponseCmndNumber((int)Heating.state_emergency);
}
void CmndPowerMaxSet(void)
@ -910,10 +935,10 @@ void CmndPowerMaxSet(void)
if (XdrvMailbox.data_len > 0) {
uint16_t value = (uint16_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1300)) {
Settings.power_max = value;
Heating.power_max = value;
}
}
ResponseCmndNumber((int)Settings.power_max);
ResponseCmndNumber((int)Heating.power_max);
}
void CmndTimeManualToAutoSet(void)
@ -921,10 +946,10 @@ void CmndTimeManualToAutoSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_manual_to_auto = value;
Heating.time_manual_to_auto = value;
}
}
ResponseCmndNumber((int)Settings.time_manual_to_auto);
ResponseCmndNumber((int)Heating.time_manual_to_auto);
}
void CmndTimeOnLimitSet(void)
@ -932,10 +957,10 @@ void CmndTimeOnLimitSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_on_limit = value;
Heating.time_on_limit = value;
}
}
ResponseCmndNumber((int)Settings.time_on_limit);
ResponseCmndNumber((int)Heating.time_on_limit);
}
void CmndPropBandSet(void)
@ -943,10 +968,10 @@ void CmndPropBandSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 20)) {
Settings.val_prop_band = value;
Heating.val_prop_band = value;
}
}
ResponseCmndNumber((int)Settings.val_prop_band);
ResponseCmndNumber((int)Heating.val_prop_band);
}
void CmndTimeResetSet(void)
@ -954,10 +979,10 @@ void CmndTimeResetSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_reset = value;
Heating.time_reset = value;
}
}
ResponseCmndNumber((int)Settings.time_reset);
ResponseCmndNumber((int)Heating.time_reset);
}
void CmndTimePiCycleSet(void)
@ -965,10 +990,10 @@ void CmndTimePiCycleSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_pi_cycle = value;
Heating.time_pi_cycle = value;
}
}
ResponseCmndNumber((int)Settings.time_pi_cycle);
ResponseCmndNumber((int)Heating.time_pi_cycle);
}
void CmndTempAntiWindupResetSet(void)
@ -976,10 +1001,10 @@ void CmndTempAntiWindupResetSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= (float)(0)) && (value <= (float)(100.0))) {
Settings.temp_reset_anti_windup = value;
Heating.temp_reset_anti_windup = value;
}
}
ResponseCmndFloat((float)(Settings.temp_reset_anti_windup) / 10, 1);
ResponseCmndFloat((float)(Heating.temp_reset_anti_windup) / 10, 1);
}
void CmndTempHystSet(void)
@ -987,10 +1012,10 @@ void CmndTempHystSet(void)
if (XdrvMailbox.data_len > 0) {
int8_t value = (int8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= -100) && (value <= 100)) {
Settings.temp_hysteresis = value;
Heating.temp_hysteresis = value;
}
}
ResponseCmndFloat((float)(Settings.temp_hysteresis) / 10, 1);
ResponseCmndFloat((float)(Heating.temp_hysteresis) / 10, 1);
}
void CmndTimeMaxActionSet(void)
@ -998,10 +1023,10 @@ void CmndTimeMaxActionSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_max_action = value;
Heating.time_max_action = value;
}
}
ResponseCmndNumber((int)Settings.time_max_action);
ResponseCmndNumber((int)Heating.time_max_action);
}
void CmndTimeMinActionSet(void)
@ -1009,10 +1034,10 @@ void CmndTimeMinActionSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_min_action = value;
Heating.time_min_action = value;
}
}
ResponseCmndNumber((int)Settings.time_min_action);
ResponseCmndNumber((int)Heating.time_min_action);
}
void CmndTimeMinTurnoffActionSet(void)
@ -1020,10 +1045,10 @@ void CmndTimeMinTurnoffActionSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_min_turnoff_action = value;
Heating.time_min_turnoff_action = value;
}
}
ResponseCmndNumber((int)Settings.time_min_turnoff_action);
ResponseCmndNumber((int)Heating.time_min_turnoff_action);
}
void CmndTempRupDeltInSet(void)
@ -1031,10 +1056,10 @@ void CmndTempRupDeltInSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 100)) {
Settings.temp_rampup_delta_in = value;
Heating.temp_rampup_delta_in = value;
}
}
ResponseCmndFloat((float)(Settings.temp_rampup_delta_in) / 10, 1);
ResponseCmndFloat((float)(Heating.temp_rampup_delta_in) / 10, 1);
}
void CmndTempRupDeltOutSet(void)
@ -1042,10 +1067,10 @@ void CmndTempRupDeltOutSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 100)) {
Settings.temp_rampup_delta_out = value;
Heating.temp_rampup_delta_out = value;
}
}
ResponseCmndFloat((float)(Settings.temp_rampup_delta_out) / 10, 1);
ResponseCmndFloat((float)(Heating.temp_rampup_delta_out) / 10, 1);
}
void CmndTimeRampupMaxSet(void)
@ -1053,10 +1078,10 @@ void CmndTimeRampupMaxSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_rampup_max = value;
Heating.time_rampup_max = value;
}
}
ResponseCmndNumber((int)Settings.time_rampup_max);
ResponseCmndNumber((int)Heating.time_rampup_max);
}
void CmndTimeRampupCycleSet(void)
@ -1064,10 +1089,10 @@ void CmndTimeRampupCycleSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Settings.time_rampup_cycle = value;
Heating.time_rampup_cycle = value;
}
}
ResponseCmndNumber((int)Settings.time_rampup_cycle);
ResponseCmndNumber((int)Heating.time_rampup_cycle);
}
void CmndTempRampupPiAccErrSet(void)
@ -1075,10 +1100,10 @@ void CmndTempRampupPiAccErrSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 250)) {
Settings.temp_rampup_pi_acc_error = value;
Heating.temp_rampup_pi_acc_error = value;
}
}
ResponseCmndFloat((float)(Settings.temp_rampup_pi_acc_error) / 10, 1);
ResponseCmndFloat((float)(Heating.temp_rampup_pi_acc_error) / 10, 1);
}
void CmndTimePiProportRead(void)