Refactor PCF8574 driver

This commit is contained in:
Theo Arends 2023-03-04 15:06:52 +01:00
parent 6f44003cb5
commit ccdab295e7
3 changed files with 25 additions and 454 deletions

View File

@ -1,386 +0,0 @@
/*
xdrv_28_pcf8574.ino - PCF8574 I2C support for Tasmota
Copyright (C) 2021 Stefan Bode
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_PCF8574_V1
/*********************************************************************************************\
* PCF8574 - I2C IO Expander
*
* I2C Address: PCF8574 = 0x20 .. 0x27 (0x27 is not supported),
* PCF8574A = 0x39 .. 0x3F (0x38 is not supported)
\*********************************************************************************************/
#define XDRV_28 28
#define XI2C_02 2 // See I2CDEVICES.md
// Start address and count can be overriden in user_config_override.h to allow better
// sharing of the I2C address space. Still the covered range must remains valid.
// A count of 0 can be used totaly disable any of the 2 ranges.
// By default, the following addresses are explicitly excluded (as per the docs) :
// - 0x27 and 0x37 are reserved for USE_DISPLAY_LCD in xdsp_01_lcd.ino
// - 0X38 is reserved for other sensors
// If the respective drivers are not used, overrides allows to recover those addresses
// If defined, USE_MCP230xx_ADDR is also always excluded
// PCF8574 address range from 0x20 to 0x26
#ifndef PCF8574_ADDR1
#define PCF8574_ADDR1 0x20 // PCF8574
#endif
#ifndef PCF8574_ADDR1_COUNT
#define PCF8574_ADDR1_COUNT 7
#endif
// PCF8574A address range from 0x39 to 0x3E
#ifndef PCF8574_ADDR2
#define PCF8574_ADDR2 0x39 // PCF8574A
#endif
#ifndef PCF8574_ADDR2_COUNT
#define PCF8574_ADDR2_COUNT 6
#endif
// Consitency tests - Checked across the complete range for the PCF8574/PCF8574A to allow override
#if (PCF8574_ADDR1 < 0x20) || ((PCF8574_ADDR1 + PCF8574_ADDR1_COUNT - 1) > 0x27)
#error PCF8574_ADDR1 and/or PCF8574_ADDR1_COUNT badly overriden. Fix your user_config_override
#endif
#if (PCF8574_ADDR2 < 0x38) || ((PCF8574_ADDR2 + PCF8574_ADDR2_COUNT - 1) > 0x3F)
#error PCF8574_ADDR2 and/or PCF8574_ADDR2_COUNT badly overriden. Fix your user_config_override.
#endif
struct PCF8574 {
int error;
uint8_t pin[64];
uint8_t address[MAX_PCF8574];
uint8_t pin_mask[MAX_PCF8574] = { 0 };
#ifdef USE_PCF8574_MQTTINPUT
uint8_t last_input[MAX_PCF8574] = { 0 };
#endif
uint8_t max_connected_ports = 0; // Max numbers of devices comming from PCF8574 modules
uint8_t max_devices = 0; // Max numbers of PCF8574 modules
char stype[9];
bool type = false;
} Pcf8574;
uint8_t Pcf8574Read(uint8_t idx)
{
Wire.requestFrom(Pcf8574.address[idx],(uint8_t)1);
return Wire.read();
}
uint8_t Pcf8574Write(uint8_t idx)
{
Wire.beginTransmission(Pcf8574.address[idx]);
Wire.write(Pcf8574.pin_mask[idx]);
return Wire.endTransmission();
}
void Pcf8574SwitchRelay(void)
{
for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) {
uint8_t relay_state = bitRead(XdrvMailbox.index, i);
if (Pcf8574.max_devices > 0 && Pcf8574.pin[i] < 99) {
uint8_t board = Pcf8574.pin[i]>>3;
uint8_t pin = Pcf8574.pin[i]&0x7;
uint8_t oldpinmask = Pcf8574.pin_mask[board];
uint8_t _val = bitRead(TasmotaGlobal.rel_inverted, i) ? !relay_state : relay_state;
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay %d=%d => PCF-%d.D%d=%d"), i, relay_state, board +1, pin, _val);
bitWrite(Pcf8574.pin_mask[board], pin, _val);
if (oldpinmask != Pcf8574.pin_mask[board]) {
Pcf8574.error = Pcf8574Write(board);
}
//else AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay skipped"));
}
}
}
void Pcf8574Init(void)
{
uint8_t pcf8574_address = (PCF8574_ADDR1_COUNT > 0) ? PCF8574_ADDR1 : PCF8574_ADDR2;
while ((Pcf8574.max_devices < MAX_PCF8574) && (pcf8574_address < PCF8574_ADDR2 +PCF8574_ADDR2_COUNT)) {
#if defined(USE_MCP230xx) && defined(USE_MCP230xx_ADDR)
if (USE_MCP230xx_ADDR == pcf8574_address) {
AddLog(LOG_LEVEL_INFO, PSTR("PCF: Address 0x%02x reserved for MCP320xx skipped"), pcf8574_address);
pcf8574_address++;
if ((PCF8574_ADDR1 +PCF8574_ADDR1_COUNT) == pcf8574_address) { // See comment on allowed addresses and overrides
pcf8574_address = PCF8574_ADDR2;
}
}
#endif
// AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Probing addr: 0x%x for PCF8574"), pcf8574_address);
if (I2cSetDevice(pcf8574_address)) {
Pcf8574.type = true;
Pcf8574.address[Pcf8574.max_devices] = pcf8574_address;
Pcf8574.max_devices++;
strcpy(Pcf8574.stype, "PCF8574");
if (pcf8574_address >= PCF8574_ADDR2) {
strcpy(Pcf8574.stype, "PCF8574A");
}
I2cSetActiveFound(pcf8574_address, Pcf8574.stype);
}
pcf8574_address++;
if ((PCF8574_ADDR1 +PCF8574_ADDR1_COUNT) == pcf8574_address) { // Support I2C addresses 0x20 to 0x26 and 0x39 to 0x3F
pcf8574_address = PCF8574_ADDR2;
}
}
if (Pcf8574.type) {
for (uint32_t i = 0; i < sizeof(Pcf8574.pin); i++) {
Pcf8574.pin[i] = 99;
}
UpdateDevicesPresent(-Pcf8574.max_connected_ports); // reset no of devices to avoid duplicate ports on duplicate init.
Pcf8574.max_connected_ports = 0; // reset no of devices to avoid duplicate ports on duplicate init.
for (uint32_t idx = 0; idx < Pcf8574.max_devices; idx++) { // suport up to 8 boards PCF8574
uint8_t gpio = Pcf8574Read(idx);
// Insure the input pins are actually writen a 1 for proper input operation
Pcf8574.pin_mask[idx] = gpio | ~Settings->pcf8574_config[idx];
Pcf8574Write(idx); // Write back to the register
#ifdef USE_PCF8574_MQTTINPUT
Pcf8574.last_input[idx] = gpio & ~Settings->pcf8574_config[idx];
#endif // #ifdef USE_PCF8574_MQTTINPUT
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: PCF-%d config=0x%02x, gpio=0x%02X"), idx +1, Settings->pcf8574_config[idx], gpio);
for (uint32_t i = 0; i < 8; i++, gpio>>=1) {
uint8_t _result = Settings->pcf8574_config[idx] >> i &1;
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: I2C shift i %d: %d. Powerstate: %d, TasmotaGlobal.devices_present: %d"), i,_result, Settings->power>>i&1, TasmotaGlobal.devices_present);
if (_result > 0) {
Pcf8574.pin[TasmotaGlobal.devices_present] = i + 8 * idx;
bitWrite(TasmotaGlobal.rel_inverted, TasmotaGlobal.devices_present, Settings->flag3.pcf8574_ports_inverted); // SetOption81 - Invert all ports on PCF8574 devices
if (!Settings->flag.save_state && !Settings->flag3.no_power_feedback) { // SetOption63 - Don't scan relay power state at restart - #5594 and #5663
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Set power from from chip state"));
uint8_t power_state = Settings->flag3.pcf8574_ports_inverted ? 1 & ~gpio : 1 & gpio;
bitWrite(TasmotaGlobal.power, TasmotaGlobal.devices_present, power_state);
bitWrite(Settings->power, TasmotaGlobal.devices_present, power_state);
}
//else AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: DON'T set power from chip state"));
UpdateDevicesPresent(1);
Pcf8574.max_connected_ports++;
}
}
}
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Settings->power=0x%08X, TasmotaGlobal.power=0x%08X"), Settings->power, TasmotaGlobal.power);
AddLog(LOG_LEVEL_INFO, PSTR("PCF: Total devices %d, PCF8574 output ports %d"), Pcf8574.max_devices, Pcf8574.max_connected_ports);
}
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
#ifdef USE_WEBSERVER
#define WEB_HANDLE_PCF8574 "pcf"
const char HTTP_BTN_MENU_PCF8574[] PROGMEM =
"<p><form action='" WEB_HANDLE_PCF8574 "' method='get'><button>" D_CONFIGURE_PCF8574 "</button></form></p>";
const char HTTP_FORM_I2C_PCF8574_1[] PROGMEM =
"<fieldset><legend><b>&nbsp;" D_PCF8574_PARAMETERS "&nbsp;</b></legend>"
"<form method='get' action='" WEB_HANDLE_PCF8574 "'>"
"<p><label><input id='b1' name='b1' type='checkbox'%s><b>" D_INVERT_PORTS "</b></label></p><hr/>";
const char HTTP_FORM_I2C_PCF8574_2[] PROGMEM =
"<tr><td><b>" D_DEVICE " %d " D_PORT " %d</b></td><td style='width:100px'><select id='i2cs%d' name='i2cs%d'>"
"<option%s value='0'>" D_DEVICE_INPUT "</option>"
"<option%s value='1'>" D_DEVICE_OUTPUT "</option>"
"</select></td></tr>";
const char HTTP_SNS_PCF8574_GPIO[] PROGMEM = "{s}PCF8574%c%d D%d{m}%d{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
void HandlePcf8574(void)
{
if (!HttpCheckPriviledgedAccess()) { return; }
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_HTTP D_CONFIGURE_PCF8574));
if (Webserver->hasArg("save")) {
Pcf8574SaveSettings();
WebRestart(1);
return;
}
WSContentStart_P(D_CONFIGURE_PCF8574);
WSContentSendStyle();
WSContentSend_P(HTTP_FORM_I2C_PCF8574_1, (Settings->flag3.pcf8574_ports_inverted) ? PSTR(" checked") : ""); // SetOption81 - Invert all ports on PCF8574 devices
WSContentSend_P(HTTP_TABLE100);
for (uint32_t idx = 0; idx < Pcf8574.max_devices; idx++) {
for (uint32_t idx2 = 0; idx2 < 8; idx2++) { // 8 ports on PCF8574
uint8_t helper = 1 << idx2;
WSContentSend_P(HTTP_FORM_I2C_PCF8574_2,
idx +1, idx2,
idx2 + 8*idx,
idx2 + 8*idx,
((helper & Settings->pcf8574_config[idx]) >> idx2 == 0) ? PSTR(" selected ") : " ",
((helper & Settings->pcf8574_config[idx]) >> idx2 == 1) ? PSTR(" selected ") : " "
);
}
}
WSContentSend_P(PSTR("</table>"));
WSContentSend_P(HTTP_FORM_END);
WSContentSpaceButton(BUTTON_CONFIGURATION);
WSContentStop();
}
#if defined(USE_PCF8574_SENSOR) || defined(USE_PCF8574_DISPLAYINPUT)
void Pcf8574Show(bool json)
{
#ifdef USE_PCF8574_SENSOR
if (json) {
for (int idx = 0 ; idx < Pcf8574.max_devices ; idx++)
{
uint8_t gpio = Pcf8574Read(idx);
ResponseAppend_P(PSTR(",\"PCF8574%c%d\":{\"D0\":%i,\"D1\":%i,\"D2\":%i,\"D3\":%i,\"D4\":%i,\"D5\":%i,\"D6\":%i,\"D7\":%i}"),
IndexSeparator(), idx +1,
(gpio>>0)&1,(gpio>>1)&1,(gpio>>2)&1,(gpio>>3)&1,(gpio>>4)&1,(gpio>>5)&1,(gpio>>6)&1,(gpio>>7)&1);
}
}
#endif // #ifdef USE_PCF8574_SENSOR
#if defined(USE_WEBSERVER) && defined(USE_PCF8574_DISPLAYINPUT)
if(!json) {
for (int idx = 0 ; idx < Pcf8574.max_devices ; idx++)
{
uint8_t input_mask = ~Settings->pcf8574_config[idx]; //invert to 1 = input
uint8_t gpio = Pcf8574Read(idx);
for (int pin = 0 ; pin < 8 ; ++pin, input_mask>>=1, gpio>>=1)
{
if (input_mask & 1)
WSContentSend_P(HTTP_SNS_PCF8574_GPIO, IndexSeparator(), idx +1, pin, gpio & 1);
}
}
}
#endif // defined(USE_WEBSERVER) && defined(USE_PCF8574_DISPLAYINPUT)
}
#endif // #if defined(USE_PCF8574_SENSOR) || defined(USE_PCF8574_DISPLAYINPUT)
#ifdef USE_PCF8574_MQTTINPUT
void Pcf8574CheckForInputChange(void)
{
for (int idx = 0 ; idx < Pcf8574.max_devices ; idx++)
{
uint8_t input_mask = ~Settings->pcf8574_config[idx]; //invert to 1 = input
uint8_t input = Pcf8574Read(idx) & input_mask;
uint8_t last_input = Pcf8574.last_input[idx];
if (input != last_input) { // don't scan bits if no change (EVERY_50_MS !)
for (uint8_t pin = 0 ; pin < 8 ; ++pin) {
if (bitRead(input_mask,pin) && bitRead(input,pin) != bitRead(last_input,pin)) {
ResponseTime_P(PSTR(",\"PCF8574%c%d_INP\":{\"D%i\":%i}}"), IndexSeparator(), idx +1, pin, bitRead(input,pin));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("PCF8574_INP"));
if (Settings->flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/SENSOR in addition to stat/%topic%/RESULT
MqttPublishSensor();
}
}
Pcf8574.last_input[idx] = input;
}
}
}
}
#endif //#ifdef USE_PCF8574_MQTTINPUT
void Pcf8574SaveSettings(void)
{
char stemp[7];
char tmp[100];
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Start working on Save arguements: inverted:%d")), Webserver->hasArg("b1");
Settings->flag3.pcf8574_ports_inverted = Webserver->hasArg("b1"); // SetOption81 - Invert all ports on PCF8574 devices
for (byte idx = 0; idx < Pcf8574.max_devices; idx++) {
byte count=0;
byte n = Settings->pcf8574_config[idx];
while(n!=0) {
n = n&(n-1);
count++;
}
if (count <= TasmotaGlobal.devices_present) {
UpdateDevicesPresent(-count);
}
for (byte i = 0; i < 8; i++) {
snprintf_P(stemp, sizeof(stemp), PSTR("i2cs%d"), i+8*idx);
WebGetArg(stemp, tmp, sizeof(tmp));
byte _value = (!strlen(tmp)) ? 0 : atoi(tmp);
if (_value) {
Settings->pcf8574_config[idx] = Settings->pcf8574_config[idx] | 1 << i;
UpdateDevicesPresent(1);
Pcf8574.max_connected_ports++;
} else {
Settings->pcf8574_config[idx] = Settings->pcf8574_config[idx] & ~(1 << i );
}
}
//Settings->pcf8574_config[0] = (!strlen(webServer->arg("i2cs0").c_str())) ? 0 : atoi(webServer->arg("i2cs0").c_str());
//AddLog(LOG_LEVEL_INFO, PSTR("PCF: I2C Board: %d, Config: %2x")), idx, Settings->pcf8574_config[idx];
}
}
#endif // USE_WEBSERVER
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv28(uint32_t function)
{
if (!I2cEnabled(XI2C_02)) { return false; }
bool result = false;
if (FUNC_PRE_INIT == function) {
Pcf8574Init();
}
else if (Pcf8574.type) {
switch (function) {
case FUNC_SET_POWER:
Pcf8574SwitchRelay();
break;
#ifdef USE_PCF8574_MQTTINPUT
case FUNC_EVERY_50_MSECOND:
Pcf8574CheckForInputChange();
break;
#endif // #ifdef USE_PCF8574_MQTTINPUT
#ifdef USE_PCF8574_SENSOR
case FUNC_JSON_APPEND:
Pcf8574Show(1);
break;
#endif // #ifdef USE_PCF8574_SENSOR
#ifdef USE_WEBSERVER
case FUNC_WEB_ADD_BUTTON:
WSContentSend_P(HTTP_BTN_MENU_PCF8574);
break;
case FUNC_WEB_ADD_HANDLER:
WebServer_on(PSTR("/" WEB_HANDLE_PCF8574), HandlePcf8574);
break;
#ifdef USE_PCF8574_DISPLAYINPUT
case FUNC_WEB_SENSOR:
Pcf8574Show(0);
break;
#endif // #ifdef USE_PCF8574_DISPLAYINPUT
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_PCF8574
#endif // USE_I2C

View File

@ -71,8 +71,6 @@
* {"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]}
* B1 B2 B3 B4 Ri4 Ri3 Ri2 Ri1 B5 B6 B7 B8 Ri8 Ri7 Ri6 Ri5
* {"NAME":"PCF8574 A=B1-4,Ri4-1, B=B5-8,Ri8-5","GPIO":[32,33,34,35,259,258,257,256,36,37,38,39,263,262,261,260]}
* B1 B2 B3 B4 Ri4 Ri3 Ri2 Ri1 B5 B6 B7 B8 Ri8 Ri7 Ri6 Ri5
* {"NAME":"PCF8574 A=Bi1-4,Ri4-1, B=Bi5-8,Ri8-5","GPIO":[64,65,66,67,259,258,257,256,68,69,70,71,263,262,261,260]}
\*********************************************************************************************/
#define XDRV_28 28
@ -108,7 +106,6 @@
#endif
struct PCF8574 {
int error;
uint32_t relay_inverted;
uint32_t button_inverted;
uint16_t pin[PCF8574_MAX_PINS];
@ -120,7 +117,6 @@ struct PCF8574 {
uint8_t max_connected_ports = 0; // Max numbers of devices comming from PCF8574 modules
uint8_t max_devices = 0; // Max numbers of PCF8574 modules
uint8_t mode;
uint8_t chip;
uint8_t relay_max;
uint8_t relay_offset;
uint8_t button_max;
@ -139,30 +135,17 @@ uint8_t Pcf8574Read(uint8_t idx) {
return Wire.read();
}
uint8_t Pcf8574Write(uint8_t idx) {
void Pcf8574Write(uint8_t idx) {
Wire.beginTransmission(Pcf8574.address[idx]);
Wire.write(Pcf8574.pin_mask[idx]);
return Wire.endTransmission();
}
/*********************************************************************************************/
uint8_t Pcf8574ReadByte(void) {
Wire.requestFrom(Pcf8574.address[Pcf8574.chip], (uint8_t)1);
return Wire.read();
}
uint8_t Pcf8574WriteByte(uint8_t value) {
Wire.beginTransmission(Pcf8574.address[Pcf8574.chip]);
Wire.write(value);
return Wire.endTransmission();
Wire.endTransmission();
}
bool Pcf8574DigitalRead(uint8_t pin) {
// pin 0 - 63
Pcf8574.chip = pin / 8;
uint8_t bit = pin % 8;
uint8_t value = Pcf8574ReadByte();
uint32_t chip = pin / 8;
uint32_t bit = pin % 8;
uint32_t value = Pcf8574Read(chip);
return value & (1 << bit);
}
@ -170,15 +153,17 @@ void Pcf8574DigitalWrite(uint8_t pin, bool pin_value) {
// pin 0 - 63
// INPUT or INPUT_PULLUP = Pcf8574DigitalWrite(pin, 1);
// OUTPUT = Pcf8574DigitalWrite(pin, 0); or Pcf8574DigitalWrite(pin, 1);
Pcf8574.chip = pin / 8;
uint8_t bit = pin % 8;
uint8_t reg_value = Pcf8574ReadByte();
uint32_t chip = pin / 8;
uint32_t bit = pin % 8;
uint32_t value = Pcf8574Read(chip);
if (pin_value) {
reg_value |= 1 << bit;
value |= 1 << bit;
} else {
reg_value &= ~(1 << bit);
value &= ~(1 << bit);
}
Pcf8574WriteByte(reg_value);
Wire.beginTransmission(Pcf8574.address[chip]);
Wire.write(value);
Wire.endTransmission();
}
/*********************************************************************************************\
@ -244,7 +229,6 @@ bool Pcf8574LoadTemplate(void) {
if (!root) { return false; }
// rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=B1-4,Ri4-1, B=B5-8,Ri8-5","GPIO":[32,33,34,35,259,258,257,256,36,37,38,39,263,262,261,260]} endon
// rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=Bi1-4,Ri4-1, B=Bi5-8,Ri8-5","GPIO":[64,65,66,67,259,258,257,256,68,69,70,71,263,262,261,260]} endon
JsonParserToken val = root[PSTR(D_JSON_NAME)];
if (val) {
AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Template %s"), val.getStr());
@ -289,13 +273,13 @@ bool Pcf8574LoadTemplate(void) {
}
else if ((mpin >= AGPIO(GPIO_REL1)) && (mpin < (AGPIO(GPIO_REL1) + MAX_RELAYS_SET))) {
Pcf8574.relay_max++;
Pcf8574DigitalWrite(pin, 1); // OUTPUT
// Pcf8574DigitalWrite(pin, 1); // OUTPUT - Leave unchanged to fix restart and power on spikes (default is 1)
}
else if ((mpin >= AGPIO(GPIO_REL1_INV)) && (mpin < (AGPIO(GPIO_REL1_INV) + MAX_RELAYS_SET))) {
bitSet(Pcf8574.relay_inverted, mpin - AGPIO(GPIO_REL1_INV));
mpin -= (AGPIO(GPIO_REL1_INV) - AGPIO(GPIO_REL1));
Pcf8574.relay_max++;
Pcf8574DigitalWrite(pin, 0); // OUTPUT
// Pcf8574DigitalWrite(pin, 1); // OUTPUT - Leave unchanged to fix restart and power on spikes (default is 1)
}
else if (mpin == AGPIO(GPIO_OUTPUT_HI)) {
Pcf8574DigitalWrite(pin, 1); // OUTPUT
@ -315,38 +299,15 @@ bool Pcf8574LoadTemplate(void) {
}
Pcf8574.max_connected_ports = pin; // Max number of configured pins
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Pins %d, pin %*_V"), Pcf8574.max_connected_ports, Pcf8574.max_connected_ports, (uint8_t*)Pcf8574.pin);
return true;
}
uint32_t Pcf8574TemplateGpio(void) {
String pcftmplt = Pcf8574TemplateLoadFile();
uint32_t len = pcftmplt.length() +1;
if (len < 7) { return 0; } // No PcfTmplt found
JsonParser parser((char*)pcftmplt.c_str());
JsonParserObject root = parser.getRootObject();
if (!root) { return 0; }
JsonParserArray arr = root[PSTR(D_JSON_GPIO)];
if (arr.isArray()) {
return arr.size(); // Number of requested pins
}
return 0;
}
void Pcf8574ServiceInput(void) {
Pcf8574.interrupt = false;
// This works with no interrupt
// This works with no interrupt too
uint32_t pin_offset = 0;
uint32_t gpio;
for (Pcf8574.chip = 0; Pcf8574.chip < Pcf8574.max_devices; Pcf8574.chip++) {
gpio = Pcf8574ReadByte();
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("PCF: Chip %d, State %02X"), Pcf8574.chip, gpio);
for (uint32_t chip = 0; chip < Pcf8574.max_devices; chip++) {
uint32_t gpio = Pcf8574Read(chip);
uint32_t mask = 1;
for (uint32_t pin = 0; pin < 8; pin++) {
uint32_t state = ((gpio & mask) != 0);
@ -367,7 +328,7 @@ void Pcf8574ServiceInput(void) {
}
}
void IRAM_ATTR Pcf8574InputIsr(void) {
static void IRAM_ATTR Pcf8574InputIsr(void) {
Pcf8574.interrupt = true;
}
@ -381,14 +342,12 @@ void Pcf8574Init(void) {
}
void Pcf8574Power(void) {
// XdrvMailbox.index = 32-bit rpower bit mask
power_t rpower = XdrvMailbox.index >> Pcf8574.relay_offset;
for (uint32_t index = 0; index < Pcf8574.relay_max; index++) {
power_t state = rpower &1;
if (Pcf8574PinUsed(GPIO_REL1, index)) {
uint32_t pin = Pcf8574Pin(GPIO_REL1, index) & 0x3F; // Fix possible overflow over 63 gpios
// AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Power pin %d, state %d(%d)"), pin, state, bitRead(Pcf8574.relay_inverted, index));
Pcf8574DigitalWrite(pin, bitRead(Pcf8574.relay_inverted, index) ? !state : state);
}
rpower >>= 1; // Select next power
@ -401,9 +360,6 @@ bool Pcf8574AddButton(void) {
uint32_t index = XdrvMailbox.index - Pcf8574.button_offset;
if (index >= Pcf8574.button_max) { return false; }
XdrvMailbox.index = (Pcf8574DigitalRead(Pcf8574Pin(GPIO_KEY1, index)) != bitRead(Pcf8574.button_inverted, index));
// AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: AddButton index %d, state %d"), index, XdrvMailbox.index);
return true;
}
@ -433,7 +389,7 @@ void Pcf8574SwitchRelay(void) {
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay %d=%d => PCF-%d.D%d=%d"), i, relay_state, board +1, pin, _val);
bitWrite(Pcf8574.pin_mask[board], pin, _val);
if (oldpinmask != Pcf8574.pin_mask[board]) {
Pcf8574.error = Pcf8574Write(board);
Pcf8574Write(board);
}
//else AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay skipped"));
}
@ -459,8 +415,8 @@ void Pcf8574ModuleInit(void) {
if (I2cSetDevice(pcf8574_address)) {
Pcf8574.mode = 1;
Pcf8574.address[Pcf8574.max_devices] = pcf8574_address;
Pcf8574.max_connected_ports += 8;
Pcf8574.address[Pcf8574.max_devices] = pcf8574_address;
Pcf8574.max_devices++;
char stype[9];
@ -469,6 +425,7 @@ void Pcf8574ModuleInit(void) {
strcpy(stype, "PCF8574A");
}
I2cSetActiveFound(pcf8574_address, stype);
if (Pcf8574.max_connected_ports > PCF8574_MAX_PINS -8) { break; }
}
pcf8574_address++;

View File

@ -709,7 +709,7 @@ void MCP23xServiceInput(void) {
}
}
void IRAM_ATTR MCP23xInputIsr(void) {
static void IRAM_ATTR MCP23xInputIsr(void) {
Mcp23x.interrupt = true;
}