Add ESP32 Analog input support for GPIO32 to GPIO39

This commit is contained in:
Theo Arends 2020-08-04 16:33:05 +02:00
parent 4db5a57816
commit ce388c799f
30 changed files with 385 additions and 165 deletions

View File

@ -57,3 +57,4 @@ The following binary downloads have been compiled with ESP8266/Arduino library c
- Fix ESP32 PWM range
- Add Zigbee better support for IKEA Motion Sensor
- Add ESP32 Analog input support for GPIO32 to GPIO39

View File

@ -4,6 +4,7 @@
- Fix ESP32 PWM range
- Add Zigbee better support for IKEA Motion Sensor
- Add ESP32 Analog input support for GPIO32 to GPIO39
### 8.4.0 20200730

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -687,6 +687,13 @@
#define D_SENSOR_TELEINFO_RX "TInfo Rx"
#define D_SENSOR_TELEINFO_ENABLE "TInfo EN"
#define D_SENSOR_LMT01_PULSE "LMT01 Pulse"
#define D_SENSOR_ADC_INPUT "ADC Input"
#define D_SENSOR_ADC_TEMP "ADC Temp"
#define D_SENSOR_ADC_LIGHT "ADC Light"
#define D_SENSOR_ADC_BUTTON "ADC Button"
#define D_SENSOR_ADC_RANGE "ADC Range"
#define D_SENSOR_ADC_CT_POWER "ADC CT Power"
#define D_SENSOR_ADC_JOYSTICK "ADC Joystick"
#define D_GPIO_WEBCAM_PWDN "CAM_PWDN"
#define D_GPIO_WEBCAM_RESET "CAM_RESET"
#define D_GPIO_WEBCAM_XCLK "CAM_XCLK"

View File

@ -768,6 +768,8 @@
// #define ETH_ADDR 0 // [EthAddress] 0 = PHY0 .. 31 = PHY31
// #define ETH_CLKMODE 0 // [EthClockMode] 0 = ETH_CLOCK_GPIO0_IN, 1 = ETH_CLOCK_GPIO0_OUT, 2 = ETH_CLOCK_GPIO16_OUT, 3 = ETH_CLOCK_GPIO17_OUT
#define USE_ADC // Add support for ADC on GPIO32 to GPIO39
//#define USE_SPI // Add support for hardware SPI
//#define USE_MI_ESP32 // Add support for ESP32 as a BLE-bridge (+9k2 mem, +292k flash)
//#define USE_WEBCAM // Add support for webcam

View File

@ -127,6 +127,18 @@ size_t strchrspn(const char *str1, int character)
return ret;
}
uint32_t ChrCount(const char *str, const char *delim) {
uint32_t count = 0;
char* read = (char*)str;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (ch == *delim) { count++; }
}
return count;
}
// Function to return a substring defined by a delimiter at an index
char* subStr(char* dest, char* str, const char *delim, int index)
{
@ -152,6 +164,8 @@ float CharToFloat(const char *str)
strlcpy(strbuf, str, sizeof(strbuf));
char *pt = strbuf;
if (*pt == '\0') { return 0.0; }
while ((*pt != '\0') && isblank(*pt)) { pt++; } // Trim leading spaces
signed char sign = 1;
@ -394,11 +408,13 @@ char* UpperCase_P(char* dest, const char* source)
char* Trim(char* p)
{
while ((*p != '\0') && isblank(*p)) { p++; } // Trim leading spaces
char* q = p + strlen(p) -1;
while ((q >= p) && isblank(*q)) { q--; } // Trim trailing spaces
q++;
*q = '\0';
if (*p != '\0') {
while ((*p != '\0') && isblank(*p)) { p++; } // Trim leading spaces
char* q = p + strlen(p) -1;
while ((q >= p) && isblank(*q)) { q--; } // Trim trailing spaces
q++;
*q = '\0';
}
return p;
}

View File

@ -85,7 +85,7 @@ const uint8_t MAX_DEV_GROUP_NAMES = 4; // Max number of Device Group names
const uint8_t MAX_HUE_DEVICES = 15; // Max number of Philips Hue device per emulation
const uint8_t MAX_ROTARIES = 2; // Max number of Rotary Encoders
const uint8_t MAX_ADCS = 18; // Max number of ESP32 ADC pins
const uint8_t MAX_ADCS = 8; // Max number of ESP32 ADC pins (ADC2 pins are unusable with Wifi enabled)
const char MQTT_TOKEN_PREFIX[] PROGMEM = "%prefix%"; // To be substituted by mqtt_prefix[x]
const char MQTT_TOKEN_TOPIC[] PROGMEM = "%topic%"; // To be substituted by mqtt_topic, mqtt_grptopic, mqtt_buttontopic, mqtt_switchtopic
@ -297,6 +297,9 @@ enum SettingsTextIndex { SET_OTAURL,
SET_DEV_GROUP_NAME1, SET_DEV_GROUP_NAME2, SET_DEV_GROUP_NAME3, SET_DEV_GROUP_NAME4,
SET_DEVICENAME,
SET_TELEGRAM_TOKEN, SET_TELEGRAM_CHATID,
#ifdef ESP32
SET_ADC_PARAM1, SET_ADC_PARAM2, SET_ADC_PARAM3, SET_ADC_PARAM4, SET_ADC_PARAM5, SET_ADC_PARAM6, SET_ADC_PARAM7, SET_ADC_PARAM8, // Relates to MAX_ADCS
#endif
SET_MAX };
enum DevGroupMessageType { DGR_MSGTYP_FULL_STATUS, DGR_MSGTYP_PARTIAL_UPDATE, DGR_MSGTYP_UPDATE, DGR_MSGTYP_UPDATE_MORE_TO_COME, DGR_MSGTYP_UPDATE_DIRECT, DGR_MSGTYPE_UPDATE_COMMAND };

View File

@ -88,8 +88,9 @@ enum UserSelectablePins {
GPIO_ARIRFRCV, GPIO_ARIRFSEL, // Arilux RF Receive input
GPIO_TXD, GPIO_RXD, // Serial interface
GPIO_ROT1A, GPIO_ROT1B, // Rotary switch
GPIO_ADC_JOY, // Analog joystick
GPIO_SPARE1, GPIO_SPARE2, // Spare GPIOs
GPIO_SPARE1, // Spare GPIOs
GPIO_HRE_CLOCK, GPIO_HRE_DATA, // HR-E Water Meter
GPIO_ADE7953_IRQ, // ADE7953 IRQ
@ -193,8 +194,9 @@ const char kSensorNames[] PROGMEM =
D_SENSOR_ARIRFRCV "|" D_SENSOR_ARIRFSEL "|"
D_SENSOR_TXD "|" D_SENSOR_RXD "|"
D_SENSOR_ROTARY "_a|" D_SENSOR_ROTARY "_b|"
D_SENSOR_ADC_JOYSTICK "|"
"Spare1|Spare2|"
"Spare1|"
D_SENSOR_HRE_CLOCK "|" D_SENSOR_HRE_DATA "|"
D_SENSOR_ADE7953_IRQ "|"
@ -216,11 +218,12 @@ const char kSensorNames[] PROGMEM =
D_SENSOR_HRXL_RX "|"
D_SENSOR_ELECTRIQ_MOODL "|"
D_SENSOR_AS3935 "|"
D_ANALOG_INPUT "|"
D_TEMPERATURE "|" D_LIGHT "|"
D_SENSOR_BUTTON "|" D_SENSOR_BUTTON "_i|"
D_RANGE "|"
D_CT_POWER "|"
D_SENSOR_ADC_INPUT "|"
D_SENSOR_ADC_TEMP "|"
D_SENSOR_ADC_LIGHT "|"
D_SENSOR_ADC_BUTTON "|" D_SENSOR_ADC_BUTTON "_i|"
D_SENSOR_ADC_RANGE "|"
D_SENSOR_ADC_CT_POWER "|"
D_GPIO_WEBCAM_PWDN "|" D_GPIO_WEBCAM_RESET "|" D_GPIO_WEBCAM_XCLK "|"
D_GPIO_WEBCAM_SIOD "|" D_GPIO_WEBCAM_SIOC "|"
D_GPIO_WEBCAM_DATA "|"
@ -564,6 +567,7 @@ const uint16_t kGpioNiceList[] PROGMEM = {
AGPIO(GPIO_ADC_BUTTON_INV) + MAX_ADCS,
AGPIO(GPIO_ADC_RANGE) + MAX_ADCS, // Range
AGPIO(GPIO_ADC_CT_POWER) + MAX_ADCS, // Current
AGPIO(GPIO_ADC_JOY) + MAX_ADCS, // Joystick
#endif
#ifdef USE_WEBCAM
AGPIO(GPIO_WEBCAM_PWDN),
@ -598,7 +602,7 @@ enum UserSelectableAdc {
ADC_BUTTON_INV,
ADC_RANGE, // Range
ADC_CT_POWER, // Current
ADC_JOY, // Joystick
// ADC_SWITCH, // Switch
// ADC_SWITCH_INV,
ADC_END };
@ -609,7 +613,7 @@ enum UserSelectableAdc {
#define WEMOS_MODULE 0 // Wemos module
// 0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839
const char PINS_WEMOS[] PROGMEM = "IOTXIORXIOIOflashcFLFLolIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOA6A7A0IoIoA3";
const char PINS_WEMOS[] PROGMEM = "IOTXIORXIOIOflashcFLFLolIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOAOAOIAIAIAIAIAIA";
//********************************************************************************************

View File

@ -20,11 +20,14 @@
#ifdef ESP32
#ifdef USE_ADC
/*********************************************************************************************\
* ADC support
* ADC support for up to 8 channels on GPIO32 to GPIO39
\*********************************************************************************************/
#define XSNS_02 2
#define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023
#define ANALOG_RANGE 4095
#define TO_CELSIUS(x) ((x) - 273.15)
#define TO_KELVIN(x) ((x) + 273.15)
@ -57,132 +60,140 @@
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1
#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
uint8_t adc_present = 0;
struct {
uint8_t present = 0;
uint8_t type = 0;
} Adcs;
struct {
float temperature = 0;
float current = 0;
float energy = 0;
uint32_t param1 = 0;
uint32_t param2 = 0;
int param3 = 0;
int param4 = 0;
uint32_t previous_millis = 0;
uint16_t last_value = 0;
uint8_t type = 0;
uint8_t pin = 0;
} Adc[MAX_ADCS];
void AdcInitParams(void) {
my_adc0 = Adc[0].type;
void AdcSaveSettings(uint32_t idx) {
char parameters[32];
snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"),
Adc[idx].type, Adc[idx].param1, Adc[idx].param2, Adc[idx].param3, Adc[idx].param4);
SettingsUpdateText(SET_ADC_PARAM1 + idx, parameters);
}
if ((Settings.adc_param_type != my_adc0) || (Settings.adc_param1 > 1000000)) {
if (ADC_TEMP == my_adc0) {
void AdcGetSettings(uint32_t idx) {
char parameters[32];
Adcs.type = 0;
Adc[idx].param1 = 0;
Adc[idx].param2 = 0;
Adc[idx].param3 = 0;
Adc[idx].param4 = 0;
if (strstr(SettingsText(SET_ADC_PARAM1 + idx), ",") != nullptr) {
Adcs.type = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 1));
Adc[idx].param1 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 2));
Adc[idx].param2 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 3));
Adc[idx].param3 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 4));
Adc[idx].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 5));
}
}
void AdcInitParams(uint8_t idx) {
if ((Adcs.type != Adc[idx].type) || (Adc[idx].param1 > 1000000)) {
if (ADC_TEMP == Adc[idx].type) {
// Default Shelly 2.5 and 1PM parameters
Settings.adc_param_type = ADC_TEMP;
Settings.adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_NTC_RESISTANCE;
Settings.adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
Adc[idx].param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
Adc[idx].param2 = ANALOG_NTC_RESISTANCE;
Adc[idx].param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
}
else if (ADC_LIGHT == my_adc0) {
Settings.adc_param_type = ADC_LIGHT;
Settings.adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR;
Settings.adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
else if (ADC_LIGHT == Adc[idx].type) {
Adc[idx].param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
Adc[idx].param2 = ANALOG_LDR_LUX_CALC_SCALAR;
Adc[idx].param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
}
else if (ADC_RANGE == my_adc0) {
Settings.adc_param_type = ADC_RANGE;
Settings.adc_param1 = 0;
Settings.adc_param2 = 1023;
Settings.adc_param3 = 0;
Settings.adc_param4 = 100;
else if (ADC_RANGE == Adc[idx].type) {
Adc[idx].param1 = 0;
Adc[idx].param2 = ANALOG_RANGE;
Adc[idx].param3 = 0;
Adc[idx].param4 = 100;
}
else if (ADC_CT_POWER == my_adc0) {
Settings.adc_param_type = ADC_CT_POWER;
Settings.adc_param1 = ANALOG_CT_FLAGS; //(uint32_t) 0
Settings.adc_param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000
Settings.adc_param3 = ANALOG_CT_VOLTAGE; //(int) 10
else if (ADC_CT_POWER == Adc[idx].type) {
Adc[idx].param1 = ANALOG_CT_FLAGS; //(uint32_t) 0
Adc[idx].param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000
Adc[idx].param3 = ANALOG_CT_VOLTAGE; //(int) 10
}
else if (ADC_JOY == Adc[idx].type) {
Adc[idx].param1 = (ANALOG_RANGE / 2) -128;
}
}
}
void AdcAttach(uint8_t pin, uint8_t type) {
Adc[Adcs.present].pin = pin;
if (adcAttachPin(Adc[Adcs.present].pin)) {
Adc[Adcs.present].type = type;
// analogSetPinAttenuation(Adc[Adcs.present].pin, ADC_11db); // Default
Adcs.present++;
}
}
void AdcInit(void) {
adc_present = 0;
Adcs.present = 0;
for (uint32_t i = 0; i < MAX_ADCS; i++) {
if (PinUsed(GPIO_ADC_INPUT, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_INPUT, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_INPUT;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
AdcAttach(Pin(GPIO_ADC_INPUT, i), ADC_INPUT);
}
if (PinUsed(GPIO_ADC_TEMP, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_TEMP, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_TEMP;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
AdcAttach(Pin(GPIO_ADC_TEMP, i), ADC_TEMP);
}
if (PinUsed(GPIO_ADC_LIGHT, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_LIGHT, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_LIGHT;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
AdcAttach(Pin(GPIO_ADC_LIGHT, i), ADC_LIGHT);
}
if (PinUsed(GPIO_ADC_BUTTON, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_BUTTON, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_BUTTON;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
AdcAttach(Pin(GPIO_ADC_BUTTON, i), ADC_BUTTON);
}
if (PinUsed(ADC_BUTTON_INV, i)) {
Adc[adc_present].pin = Pin(ADC_BUTTON_INV, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_BUTTON_INV;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
if (PinUsed(GPIO_ADC_BUTTON_INV, i)) {
AdcAttach(Pin(GPIO_ADC_BUTTON_INV, i), ADC_BUTTON_INV);
}
if (PinUsed(GPIO_ADC_RANGE, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_RANGE, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_RANGE;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
AdcAttach(Pin(GPIO_ADC_RANGE, i), ADC_RANGE);
}
if (PinUsed(GPIO_ADC_CT_POWER, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_CT_POWER, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_CT_POWER;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
AdcAttach(Pin(GPIO_ADC_CT_POWER, i), ADC_CT_POWER);
}
if (PinUsed(GPIO_ADC_JOY, i)) {
AdcAttach(Pin(GPIO_ADC_JOY, i), ADC_JOY);
}
}
if (adc_present) {
analogSetClockDiv(1); // Default 1
analogSetWidth(12); // Default 12 bits (0 - 4095)
analogSetAttenuation(ADC_11db); // Default 11db
if (Adcs.present) {
analogSetClockDiv(1); // Default 1
analogSetWidth(ANALOG_RESOLUTION); // Default 12 bits (0 - 4095)
analogSetAttenuation(ADC_11db); // Default 11db
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
AdcGetSettings(idx);
AdcInitParams(idx);
AdcSaveSettings(idx);
}
}
AdcInitParams();
}
uint16_t AdcRead(uint8_t pin, uint8_t factor) {
uint16_t AdcRead(uint32_t pin, uint32_t factor) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
uint32_t samples = 1 << factor;
uint32_t analog = 0;
for (uint32_t i = 0; i < samples; i++) {
analog += analogRead(pin);
delay(1);
@ -193,7 +204,7 @@ uint16_t AdcRead(uint8_t pin, uint8_t factor) {
#ifdef USE_RULES
void AdcEvery250ms(void) {
for (uint32_t idx = 0; idx < adc_present; idx++) {
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
if (ADC_INPUT == Adc[idx].type) {
uint16_t new_value = AdcRead(Adc[idx].pin, 5);
if ((new_value < Adc[idx].last_value -10) || (new_value > Adc[idx].last_value +10)) {
@ -203,27 +214,38 @@ void AdcEvery250ms(void) {
XdrvRulesProcess();
}
}
else if (ADC_JOY == Adc[idx].type) {
uint16_t new_value = AdcRead(Adc[idx].pin, 1);
if (new_value && (new_value != Adc[idx].last_value)) {
Adc[idx].last_value = new_value;
uint16_t value = new_value / Adc[idx].param1;
Response_P(PSTR("{\"ANALOG\":{\"JOY%d\":%d}}"), idx, value);
XdrvRulesProcess();
} else {
Adc[idx].last_value = 0;
}
}
}
}
#endif // USE_RULES
uint16_t AdcGetLux(uint8_t pin) {
int adc = AdcRead(pin, 2);
uint16_t AdcGetLux(uint32_t idx) {
int adc = AdcRead(Adc[idx].pin, 2);
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
double resistorVoltage = ((double)adc / 1023) * ANALOG_V33;
double resistorVoltage = ((double)adc / ANALOG_RANGE) * ANALOG_V33;
double ldrVoltage = ANALOG_V33 - resistorVoltage;
double ldrResistance = ldrVoltage / resistorVoltage * (double)Settings.adc_param1;
double ldrLux = (double)Settings.adc_param2 * FastPrecisePow(ldrResistance, (double)Settings.adc_param3 / 10000);
double ldrResistance = ldrVoltage / resistorVoltage * (double)Adc[idx].param1;
double ldrLux = (double)Adc[idx].param2 * FastPrecisePow(ldrResistance, (double)Adc[idx].param3 / 10000);
return (uint16_t)ldrLux;
}
uint16_t AdcGetRange(uint8_t pin) {
uint16_t AdcGetRange(uint32_t idx) {
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
// Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
int adc = AdcRead(pin, 2);
double adcrange = ( ((double)Settings.adc_param2 - (double)adc) / ( ((double)Settings.adc_param2 - (double)Settings.adc_param1)) * ((double)Settings.adc_param3 - (double)Settings.adc_param4) + (double)Settings.adc_param4 );
int adc = AdcRead(Adc[idx].pin, 2);
double adcrange = ( ((double)Adc[idx].param2 - (double)adc) / ( ((double)Adc[idx].param2 - (double)Adc[idx].param1)) * ((double)Adc[idx].param3 - (double)Adc[idx].param4) + (double)Adc[idx].param4 );
return (uint16_t)adcrange;
}
@ -235,10 +257,10 @@ void AdcGetCurrentPower(uint8_t idx, uint8_t factor) {
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
uint16_t analog_min = 1023;
uint16_t analog_min = ANALOG_RANGE;
uint16_t analog_max = 0;
if (0 == Settings.adc_param1) {
if (0 == Adc[idx].param1) {
for (uint32_t i = 0; i < samples; i++) {
analog = analogRead(Adc[idx].pin);
if (analog < analog_min) {
@ -249,32 +271,32 @@ void AdcGetCurrentPower(uint8_t idx, uint8_t factor) {
}
delay(1);
}
Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Settings.adc_param2) / 100000);
Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Adc[idx].param2) / 100000);
}
else {
analog = AdcRead(Adc[idx].pin, 5);
if (analog > Settings.adc_param1) {
Adc[idx].current = ((float)(analog) - (float)Settings.adc_param1) * ((float)(Settings.adc_param2) / 100000);
if (analog > Adc[idx].param1) {
Adc[idx].current = ((float)(analog) - (float)Adc[idx].param1) * ((float)(Adc[idx].param2) / 100000);
}
else {
Adc[idx].current = 0;
}
}
float power = Adc[idx].current * (float)(Settings.adc_param3) / 10;
float power = Adc[idx].current * (float)(Adc[idx].param3) / 10;
uint32_t current_millis = millis();
Adc[idx].energy = Adc[idx].energy + ((power * (current_millis - Adc[idx].previous_millis)) / 3600000000);
Adc[idx].previous_millis = current_millis;
}
void AdcEverySecond(void) {
for (uint32_t idx = 0; idx < adc_present; idx++) {
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
if (ADC_TEMP == Adc[idx].type) {
int adc = AdcRead(Adc[idx].pin, 2);
// Steinhart-Hart equation for thermistor as temperature sensor
double Rt = (adc * Settings.adc_param1) / (1024.0 * ANALOG_V33 - (double)adc);
double BC = (double)Settings.adc_param3 / 10000;
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Settings.adc_param2));
double Rt = (adc * Adc[idx].param1) / (1024.0 * ANALOG_V33 - (double)adc);
double BC = (double)Adc[idx].param3 / 10000;
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Adc[idx].param2));
Adc[idx].temperature = ConvertTemp(TO_CELSIUS(T));
}
else if (ADC_CT_POWER == Adc[idx].type) {
@ -286,7 +308,7 @@ void AdcEverySecond(void) {
void AdcShow(bool json) {
bool domo_flag[ADC_END] = { false };
char adc_name[10]; // ANALOG12
for (uint32_t idx = 0; idx < adc_present; idx++) {
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
snprintf_P(adc_name, sizeof(adc_name), PSTR("ANALOG%d"), idx);
switch (Adc[idx].type) {
@ -325,7 +347,7 @@ void AdcShow(bool json) {
break;
}
case ADC_LIGHT: {
uint16_t adc_light = AdcGetLux(Adc[idx].pin);
uint16_t adc_light = AdcGetLux(idx);
if (json) {
ResponseAppend_P(JSON_SNS_ILLUMINANCE, adc_name, adc_light);
@ -343,7 +365,7 @@ void AdcShow(bool json) {
break;
}
case ADC_RANGE: {
uint16_t adc_range = AdcGetRange(Adc[idx].pin);
uint16_t adc_range = AdcGetRange(idx);
if (json) {
ResponseAppend_P(JSON_SNS_RANGE, adc_name, adc_range);
@ -357,7 +379,7 @@ void AdcShow(bool json) {
case ADC_CT_POWER: {
AdcGetCurrentPower(idx, 5);
float voltage = (float)(Settings.adc_param3) / 10;
float voltage = (float)(Adc[idx].param3) / 10;
char voltage_chr[FLOATSZ];
dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr);
char current_chr[FLOATSZ];
@ -403,60 +425,70 @@ void (* const AdcCommand[])(void) PROGMEM = {
&CmndAdcParam };
void CmndAdcParam(void) {
if (XdrvMailbox.data_len) {
if ((ADC_TEMP == XdrvMailbox.payload) ||
(ADC_LIGHT == XdrvMailbox.payload) ||
(ADC_RANGE == XdrvMailbox.payload) ||
(ADC_CT_POWER == XdrvMailbox.payload)) {
if (strstr(XdrvMailbox.data, ",") != nullptr) { // Process parameter entry
char sub_string[XdrvMailbox.data_len +1];
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, 1023, 0, 100
Settings.adc_param_type = XdrvMailbox.payload;
Settings.adc_param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
Settings.adc_param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
if (ADC_RANGE == XdrvMailbox.payload) {
Settings.adc_param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
Settings.adc_param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
} else {
Settings.adc_param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
}
if (ADC_CT_POWER == XdrvMailbox.payload) {
if (((1 == Settings.adc_param1) & CT_FLAG_ENERGY_RESET) > 0) {
for (uint32_t idx = 0; idx < MAX_ADCS; idx++) {
Adc[idx].energy = 0;
}
Settings.adc_param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) {
uint8_t idx = XdrvMailbox.index -1;
if (XdrvMailbox.data_len) {
if ((ADC_TEMP == XdrvMailbox.payload) ||
(ADC_LIGHT == XdrvMailbox.payload) ||
(ADC_RANGE == XdrvMailbox.payload) ||
(ADC_CT_POWER == XdrvMailbox.payload) ||
(ADC_JOY == XdrvMailbox.payload)) {
AdcGetSettings(idx);
if (ChrCount(XdrvMailbox.data, ",") > 2) { // Process parameter entry
char sub_string[XdrvMailbox.data_len +1];
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, ANALOG_RANGE, 0, 100
// AdcParam 7, 0, 2146, 0.23
// AdcParam 8, 1000, 0, 0
Adc[idx].type = XdrvMailbox.payload;
Adc[idx].param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
Adc[idx].param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
if (ADC_RANGE == XdrvMailbox.payload) {
Adc[idx].param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
Adc[idx].param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
} else {
Adc[idx].param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
}
if (ADC_CT_POWER == XdrvMailbox.payload) {
if (((1 == Adc[idx].param1) & CT_FLAG_ENERGY_RESET) > 0) {
for (uint32_t idx = 0; idx < MAX_ADCS; idx++) {
Adc[idx].energy = 0;
}
Adc[idx].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
}
}
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
// AdcParam 8
Adcs.type = 0;
AdcInitParams(idx);
}
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
Settings.adc_param_type = 0;
AdcInitParams();
AdcSaveSettings(idx);
}
}
}
// AdcParam
Response_P(PSTR("{\"" D_CMND_ADCPARAM "\":[%d,%d,%d"), Settings.adc_param_type, Settings.adc_param1, Settings.adc_param2);
if (ADC_RANGE == my_adc0) {
ResponseAppend_P(PSTR(",%d,%d"), Settings.adc_param3, Settings.adc_param4);
} else {
int value = Settings.adc_param3;
uint8_t precision;
for (precision = 4; precision > 0; precision--) {
if (value % 10) { break; }
value /= 10;
// AdcParam
AdcGetSettings(idx);
Response_P(PSTR("{\"" D_CMND_ADCPARAM "%d\":[%d,%d,%d"), idx +1, Adcs.type, Adc[idx].param1, Adc[idx].param2);
if (ADC_RANGE == my_adc0) {
ResponseAppend_P(PSTR(",%d,%d"), Adc[idx].param3, Adc[idx].param4);
} else {
int value = Adc[idx].param3;
uint8_t precision;
for (precision = 4; precision > 0; precision--) {
if (value % 10) { break; }
value /= 10;
}
char param3[33];
dtostrfd(((double)Adc[idx].param3)/10000, precision, param3);
ResponseAppend_P(PSTR(",%s"), param3);
}
char param3[33];
dtostrfd(((double)Settings.adc_param3)/10000, precision, param3);
ResponseAppend_P(PSTR(",%s"), param3);
ResponseAppend_P(PSTR("]}"));
}
ResponseAppend_P(PSTR("]}"));
}
/*********************************************************************************************\
@ -474,7 +506,7 @@ bool Xsns02(uint8_t function) {
AdcInit();
break;
default:
if (adc_present) {
if (Adcs.present) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND: