Add files via upload

Added ESP32 support for changing the displayed temperature unit on LYWSD02 BLE device
This commit is contained in:
rando-calrissian 2020-05-29 15:41:49 -07:00 committed by GitHub
parent 10e059c363
commit ce3dfd1066
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 236 additions and 199 deletions

View File

@ -229,18 +229,26 @@ class MI32SensorCallback : public NimBLEClientCallbacks {
class MI32AdvCallbacks: public NimBLEAdvertisedDeviceCallbacks {
void onResult(NimBLEAdvertisedDevice* advertisedDevice) {
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Advertised Device: %s Buffer: %u"),advertisedDevice.getAddress().toString().c_str(),advertisedDevice.getServiceData().length());
if (advertisedDevice->getServiceData().length() == 0) return;
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Advertised Device: %s Buffer: %u"),advertisedDevice->getAddress().toString().c_str(),advertisedDevice->getServiceData().length());
if (advertisedDevice->getServiceData().length() == 0) {
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("No Xiaomi Device: %s Buffer: %u"),advertisedDevice->getAddress().toString().c_str(),advertisedDevice->getServiceData().length());
MI32Scan->erase(advertisedDevice->getAddress());
return;
}
uint16_t uuid = advertisedDevice->getServiceDataUUID().getNative()->u16.value;
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%x"),uuid);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("UUID: %x"),uuid);
uint8_t addr[6];
memcpy(addr,advertisedDevice->getAddress().getNative(),6);
MI32_ReverseMAC(addr);
if(uuid==0xfe95) {
MI32ParseResponse((char*)advertisedDevice->getServiceData().c_str(),advertisedDevice->getServiceData().length(), addr);
MI32ParseResponse((char*)advertisedDevice->getServiceData().data(),advertisedDevice->getServiceData().length(), addr);
}
else if(uuid==0xfdcd) {
MI32parseCGD1Packet((char*)advertisedDevice->getServiceData().c_str(),advertisedDevice->getServiceData().length(), addr);
MI32parseCGD1Packet((char*)advertisedDevice->getServiceData().data(),advertisedDevice->getServiceData().length(), addr);
}
else {
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("No Xiaomi Device: %s Buffer: %u"),advertisedDevice->getAddress().toString().c_str(),advertisedDevice->getServiceData().length());
MI32Scan->erase(advertisedDevice->getAddress());
}
};
};
@ -399,47 +407,57 @@ void MI32StartTask(uint32_t task){
}
}
void MI32ConnectActiveSensor(){ // only use inside a task !!
bool MI32ConnectActiveSensor(){ // only use inside a task !!
MI32.mode.connected = 0;
MI32Client = nullptr;
esp_bd_addr_t address;
memcpy(address,MIBLEsensors[MI32.state.sensor].serial,sizeof(address));
Wifi.counter = Wifi.counter + 20; // hopefully less interference
NimBLEAddress _address = NimBLEAddress(MIBLEsensors[MI32.state.sensor].serial);
if(NimBLEDevice::getClientListSize()) {
MI32Client = NimBLEDevice::getClientByPeerAddress(NimBLEAddress(address));
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: found any clients in the cList"),D_CMND_MI32);
MI32Client = NimBLEDevice::getClientByPeerAddress(_address);
if(MI32Client){
if(!MI32Client->connect(NimBLEAddress(address), 0,false)) {
MI32.mode.willConnect = 0;
vTaskDelete( NULL );
}
// Should be impossible
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: got connected client"),D_CMND_MI32);
}
else {
// Should be the norm after the first iteration
MI32Client = NimBLEDevice::getDisconnectedClient();
DEBUG_SENSOR_LOG(PSTR("%s: got disconnected client"),D_CMND_MI32);
}
}
if(NimBLEDevice::getClientListSize() >= NIMBLE_MAX_CONNECTIONS) {
MI32.mode.willConnect = 0;
DEBUG_SENSOR_LOG(PSTR("%s: max connection already reached"),D_CMND_MI32);
return false;
}
if(!MI32Client) {
if(NimBLEDevice::getClientListSize() >= NIMBLE_MAX_CONNECTIONS) {
MI32.mode.willConnect = 0;
vTaskDelete( NULL );
}
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: will create client"),D_CMND_MI32);
MI32Client = NimBLEDevice::createClient();
MI32Client->setClientCallbacks(&MI32SensorCB , false);
MI32Client->setConnectionParams(12,12,0,51);
MI32Client->setConnectTimeout(10);
if (!MI32Client->connect(NimBLEAddress(address),0,false)) {
MI32.mode.willConnect = 0;
NimBLEDevice::deleteClient(MI32Client);
vTaskDelete( NULL );
}
MI32Client->setConnectionParams(12,12,0,48);
MI32Client->setConnectTimeout(30);
}
if (!MI32Client->connect(_address,false)) {
MI32.mode.willConnect = 0;
NimBLEDevice::deleteClient(MI32Client);
DEBUG_SENSOR_LOG(PSTR("%s: did not connect client"),D_CMND_MI32);
return false;
}
DEBUG_SENSOR_LOG(PSTR("%s: did create new client"),D_CMND_MI32);
return true;
// }
}
void MI32StartScanTask(){
if (MI32.mode.connected) return;
MI32.mode.runningScan = 1;
// Wifi.counter = Wifi.counter + 3;
xTaskCreatePinnedToCore(
MI32ScanTask, /* Function to implement the task */
"MI32ScanTask", /* Name of the task */
4096, /* Stack size in words */
8192, /* Stack size in words */
NULL, /* Task input parameter */
0, /* Priority of the task */
NULL, /* Task handle. */
@ -448,17 +466,18 @@ void MI32StartScanTask(){
}
void MI32ScanTask(void *pvParameters){
NimBLEScan* pScan = NimBLEDevice::getScan();
pScan->setAdvertisedDeviceCallbacks(&MI32ScanCallbacks);
pScan->setActiveScan(false);
pScan->start(5, MI32scanEndedCB); // hard coded duration
if (MI32Scan == nullptr) MI32Scan = NimBLEDevice::getScan();
DEBUG_SENSOR_LOG(PSTR("%s: Scan Cache Length: %u"),D_CMND_MI32, MI32Scan->getResults().getCount());
MI32Scan->setAdvertisedDeviceCallbacks(&MI32ScanCallbacks);
MI32Scan->setActiveScan(false);
MI32Scan->start(5, MI32scanEndedCB, true); // hard coded duration
uint32_t timer = 0;
while (MI32.mode.runningScan){
if (timer>15){
vTaskDelete( NULL );
}
timer++;
vTaskDelay(1000);
vTaskDelay(1000/ portTICK_PERIOD_MS);
}
vTaskDelete( NULL );
}
@ -482,47 +501,62 @@ void MI32SensorTask(void *pvParameters){
MI32.mode.willConnect = 0;
vTaskDelete( NULL );
}
MI32ConnectActiveSensor();
MI32.mode.readingDone = 1;
switch(MIBLEsensors[MI32.state.sensor].type){
case LYWSD03MMC:
MI32.mode.readingDone = 0;
MI32connectLYWSD03();
break;
default:
break;
}
uint32_t timer = 0;
while (!MI32.mode.readingDone){
if (timer>150){
if (MI32ConnectActiveSensor()){
uint32_t timer = 0;
while (MI32.mode.connected == 0){
if (timer>1000){
MI32Client->disconnect();
NimBLEDevice::deleteClient(MI32Client);
MI32.mode.willConnect = 0;
vTaskDelay(100/ portTICK_PERIOD_MS);
vTaskDelete( NULL );
}
timer++;
vTaskDelay(10/ portTICK_PERIOD_MS);
}
timer = 150;
switch(MIBLEsensors[MI32.state.sensor].type){
case LYWSD03MMC:
MI32.mode.readingDone = 0;
if(MI32connectLYWSD03forNotification()) timer=0;
break;
default:
break;
}
timer++;
vTaskDelay(100);
while (!MI32.mode.readingDone){
if (timer>150){
break;
}
timer++;
vTaskDelay(100/ portTICK_PERIOD_MS);
}
MI32Client->disconnect();
DEBUG_SENSOR_LOG(PSTR("%s: requested disconnect"),D_CMND_MI32);
}
MI32Client->disconnect();
NimBLEDevice::deleteClient(MI32Client);
vTaskDelay(500);
vTaskDelay(500/ portTICK_PERIOD_MS);
MI32.mode.connected = 0;
vTaskDelete( NULL );
}
void MI32connectLYWSD03(){
bool MI32connectLYWSD03forNotification(){
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID serviceUUID("ebe0ccb0-7a0a-4b0c-8a1a-6ff2997da3a6");
static BLEUUID charUUID("ebe0ccc1-7a0a-4b0c-8a1a-6ff2997da3a6");
static BLEUUID serviceUUID(0xebe0ccb0,0x7a0a,0x4b0c,0x8a1a6ff2997da3a6);
static BLEUUID charUUID(0xebe0ccc1,0x7a0a,0x4b0c,0x8a1a6ff2997da3a6);
pSvc = MI32Client->getService(serviceUUID);
if(pSvc) {
pChr = pSvc->getCharacteristic(charUUID);
}
if(pChr->canNotify()) {
if(!pChr->registerForNotify(MI32notifyCB)) {
MI32.mode.willConnect = 0;
MI32Client->disconnect();
return;
if (pChr){
if(pChr->canNotify()) {
if(pChr->registerForNotify(MI32notifyCB)) {
return true;
}
}
}
return false;
}
void MI32StartTimeTask(){
@ -544,45 +578,48 @@ void MI32TimeTask(void *pvParameters){
MI32.mode.shallSetTime = 0;
vTaskDelete( NULL );
}
MI32ConnectActiveSensor();
uint32_t timer = 0;
while (MI32.mode.connected == 0){
if (timer>1000){
break;
if(MI32ConnectActiveSensor()){
uint32_t timer = 0;
while (MI32.mode.connected == 0){
if (timer>1000){
break;
}
timer++;
vTaskDelay(10/ portTICK_PERIOD_MS);
}
timer++;
vTaskDelay(10);
}
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID serviceUUID("EBE0CCB0-7A0A-4B0C-8A1A-6FF2997DA3A6");
static BLEUUID charUUID("EBE0CCB7-7A0A-4B0C-8A1A-6FF2997DA3A6");
pSvc = MI32Client->getService(serviceUUID);
if(pSvc) {
pChr = pSvc->getCharacteristic(charUUID);
}
if(pChr->canWrite()) {
union {
uint8_t buf[5];
uint32_t time;
} _utc;
_utc.time = Rtc.utc_time;
_utc.buf[4] = Rtc.time_timezone / 60;
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID serviceUUID(0xEBE0CCB0,0x7A0A,0x4B0C,0x8A1A6FF2997DA3A6);
static BLEUUID charUUID(0xEBE0CCB7,0x7A0A,0x4B0C,0x8A1A6FF2997DA3A6);
pSvc = MI32Client->getService(serviceUUID);
if(pSvc) {
pChr = pSvc->getCharacteristic(charUUID);
if(!pChr->writeValue(_utc.buf,sizeof(_utc.buf),true)) { // true is important !
MI32.mode.willConnect = 0;
MI32Client->disconnect();
}
else {
MI32.mode.shallSetTime = 0;
MI32.mode.willSetTime = 0;
if (pChr){
if(pChr->canWrite()) {
union {
uint8_t buf[5];
uint32_t time;
} _utc;
_utc.time = Rtc.utc_time;
_utc.buf[4] = Rtc.time_timezone / 60;
if(!pChr->writeValue(_utc.buf,sizeof(_utc.buf),true)) { // true is important !
MI32.mode.willConnect = 0;
MI32Client->disconnect();
}
else {
MI32.mode.shallSetTime = 0;
MI32.mode.willSetTime = 0;
}
}
}
MI32Client->disconnect();
}
MI32Client->disconnect();
NimBLEDevice::deleteClient(MI32Client);
vTaskDelay(500);
vTaskDelay(500/ portTICK_PERIOD_MS);
MI32.mode.connected = 0;
vTaskDelete( NULL );
}
@ -606,61 +643,58 @@ void MI32UnitTask(void *pvParameters){
MI32.mode.shallSetUnit = 0;
vTaskDelete( NULL );
}
MI32ConnectActiveSensor();
uint32_t timer = 0;
while (MI32.mode.connected == 0){
if (timer>1000){
break;
if(MI32ConnectActiveSensor()){
uint32_t timer = 0;
while (MI32.mode.connected == 0){
if (timer>1000){
break;
}
timer++;
vTaskDelay(10/ portTICK_PERIOD_MS);
}
timer++;
vTaskDelay(10);
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID serviceUUID("EBE0CCB0-7A0A-4B0C-8A1A-6FF2997DA3A6");
static BLEUUID charUUID("EBE0CCBE-7A0A-4B0C-8A1A-6FF2997DA3A6");
pSvc = MI32Client->getService(serviceUUID);
if(pSvc) {
pChr = pSvc->getCharacteristic(charUUID);
}
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID serviceUUID("EBE0CCB0-7A0A-4B0C-8A1A-6FF2997DA3A6");
static BLEUUID charUUID("EBE0CCBE-7A0A-4B0C-8A1A-6FF2997DA3A6");
pSvc = MI32Client->getService(serviceUUID);
if(pSvc) {
pChr = pSvc->getCharacteristic(charUUID);
}
if(pChr->canRead()){
uint8_t curUnit;
const char *buf = pChr->readValue().c_str();
if( buf[0] != 0 && buf[0]<101 ){
curUnit = buf[0];
}
uint8_t curUnit;
if(pChr->canWrite()) {
curUnit = curUnit == 0x01?0xFF:0x01; // C/F
if(pChr->canRead()) {
const char *buf = pChr->readValue().c_str();
if( buf[0] != 0 && buf[0]<101 ){
curUnit = buf[0];
if(!pChr->writeValue(&curUnit,sizeof(curUnit),true)) { // true is important !
MI32.mode.willConnect = 0;
MI32Client->disconnect();
}
else {
MI32.mode.shallSetUnit = 0;
MI32.mode.willSetUnit = 0;
}
}
}
MI32Client->disconnect();
}
else {
return;
}
if(pChr->canWrite()) {
curUnit = curUnit == 0x01?0xFF:0x01; // C/F
if(!pChr->writeValue(&curUnit,sizeof(curUnit),true)) { // true is important !
MI32.mode.willConnect = 0;
MI32Client->disconnect();
}
else {
MI32.mode.shallSetUnit = 0;
MI32.mode.willSetUnit = 0;
}
}
MI32Client->disconnect();
NimBLEDevice::deleteClient(MI32Client);
vTaskDelay(500);
vTaskDelay(500/ portTICK_PERIOD_MS);
MI32.mode.connected = 0;
vTaskDelete( NULL );
}
void MI32StartBatteryTask(){
if (MI32.mode.connected) return;
MI32.mode.willReadBatt = 1;
MI32.mode.willConnect = 1;
MI32.mode.canScan = 0;
xTaskCreatePinnedToCore(
MI32BatteryTask, /* Function to implement the task */
"MI32BatteryTask", /* Name of the task */
@ -684,31 +718,32 @@ void MI32BatteryTask(void *pvParameters){
}
MI32.mode.connected = 0;
MI32ConnectActiveSensor();
uint32_t timer = 0;
while (MI32.mode.connected == 0){
if (timer>1000){
if(MI32ConnectActiveSensor()){
uint32_t timer = 0;
while (MI32.mode.connected == 0){
if (timer>1000){
break;
}
timer++;
vTaskDelay(30/ portTICK_PERIOD_MS);
}
switch(MIBLEsensors[MI32.state.sensor].type){
case FLORA:
MI32batteryFLORA();
break;
case LYWSD02:
MI32batteryLYWSD02();
break;
case CGD1:
MI32batteryCGD1();
break;
}
timer++;
vTaskDelay(10);
}
switch(MIBLEsensors[MI32.state.sensor].type){
case FLORA:
MI32batteryFLORA();
break;
case LYWSD02:
MI32batteryLYWSD02();
break;
case CGD1:
MI32batteryCGD1();
break;
}
MI32Client->disconnect();
MI32Client->disconnect();
}
MI32.mode.willReadBatt = 0;
NimBLEDevice::deleteClient(MI32Client);
vTaskDelay(500);
// Wifi.counter = 0; // Now check it
vTaskDelay(500/ portTICK_PERIOD_MS);
MI32.mode.connected = 0;
vTaskDelete( NULL );
}
@ -720,27 +755,26 @@ void MI32batteryFLORA(){
break;
}
timer++;
vTaskDelay(10);
vTaskDelay(10/ portTICK_PERIOD_MS);
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s connected for battery"),kMI32SlaveType[MIBLEsensors[MI32.state.sensor].type-1] );
DEBUG_SENSOR_LOG(PSTR("%s connected for battery"),kMI32SlaveType[MIBLEsensors[MI32.state.sensor].type-1] );
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID FLserviceUUID("00001204-0000-1000-8000-00805f9b34fb");
static BLEUUID FLcharUUID("00001a02-0000-1000-8000-00805f9b34fb");
static BLEUUID FLserviceUUID(0x00001204,0x0000,0x1000,0x800000805f9b34fb);
static BLEUUID FLcharUUID(0x00001a02,0x0000,0x1000,0x800000805f9b34fb);
pSvc = MI32Client->getService(FLserviceUUID);
if(pSvc) { /** make sure it's not null */
if(pSvc) {
pChr = pSvc->getCharacteristic(FLcharUUID);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: got Flora char %s"),D_CMND_MI32, pChr->getUUID().toString().c_str());
}
else {
MI32.mode.readingDone = 1;
return;
}
if(pChr->canRead()) {
const char *buf = pChr->readValue().c_str();
MI32readBat((char*)buf);
if (pChr){
DEBUG_SENSOR_LOG(PSTR("%s: got Flora char %s"),D_CMND_MI32, pChr->getUUID().toString().c_str());
if(pChr->canRead()) {
const char *buf = pChr->readValue().c_str();
MI32readBat((char*)buf);
}
}
MI32.mode.readingDone = 1;
}
void MI32batteryLYWSD02(){
@ -750,27 +784,27 @@ void MI32batteryLYWSD02(){
break;
}
timer++;
vTaskDelay(10);
vTaskDelay(10/ portTICK_PERIOD_MS);
}
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID LY2serviceUUID("EBE0CCB0-7A0A-4B0C-8A1A-6FF2997DA3A6");
static BLEUUID LY2charUUID("EBE0CCC4-7A0A-4B0C-8A1A-6FF2997DA3A6");
static BLEUUID LY2serviceUUID(0xEBE0CCB0,0x7A0A,0x4B0C,0x8A1A6FF2997DA3A6);
static BLEUUID LY2charUUID(0xEBE0CCC4,0x7A0A,0x4B0C,0x8A1A6FF2997DA3A6);
pSvc = MI32Client->getService(LY2serviceUUID);
if(pSvc) {
pChr = pSvc->getCharacteristic(LY2charUUID);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: got LYWSD02 char %s"),D_CMND_MI32, pChr->getUUID().toString().c_str());
}
else {
return;
}
if(pChr->canRead()) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("LYWSD02 char"));
const char *buf = pChr->readValue().c_str();
MI32readBat((char*)buf);
if (pChr){
DEBUG_SENSOR_LOG( PSTR("%s: got LYWSD02 char %s"),D_CMND_MI32, pChr->getUUID().toString().c_str());
if(pChr->canRead()) {
DEBUG_SENSOR_LOG(PSTR("LYWSD02 char"));
const char *buf = pChr->readValue().c_str();
MI32readBat((char*)buf);
}
}
MI32.mode.readingDone = 1;
}
void MI32batteryCGD1(){
@ -780,26 +814,26 @@ void MI32batteryCGD1(){
break;
}
timer++;
vTaskDelay(10);
vTaskDelay(10/ portTICK_PERIOD_MS);
}
NimBLERemoteService* pSvc = nullptr;
NimBLERemoteCharacteristic* pChr = nullptr;
static BLEUUID CGD1serviceUUID("180F");
static BLEUUID CGD1charUUID("2A19");
static BLEUUID CGD1serviceUUID((uint16_t)0x180F);
static BLEUUID CGD1charUUID((uint16_t)0x2A19);
pSvc = MI32Client->getService(CGD1serviceUUID);
if(pSvc) {
pChr = pSvc->getCharacteristic(CGD1charUUID);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%s: got CGD1 char %s"),D_CMND_MI32, pChr->getUUID().toString().c_str());
}
else {
return;
}
if(pChr->canRead()) {
const char *buf = pChr->readValue().c_str();
MI32readBat((char*)buf);
if (pChr){
DEBUG_SENSOR_LOG(PSTR("%s: got CGD1 char %s"),D_CMND_MI32, pChr->getUUID().toString().c_str());
if(pChr->canRead()) {
const char *buf = pChr->readValue().c_str();
MI32readBat((char*)buf);
}
}
MI32.mode.readingDone = 1;
}
@ -819,14 +853,14 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot){
}
MI32_ReverseMAC(_beacon.Mac);
DEBUG_SENSOR_LOG(PSTR("MiBeacon type:%02x: %02x %02x %02x %02x %02x %02x %02x %02x"),_beacon.type, (uint8_t)_buf[0],(uint8_t)_buf[1],(uint8_t)_buf[2],(uint8_t)_buf[3],(uint8_t)_buf[4],(uint8_t)_buf[5],(uint8_t)_buf[6],(uint8_t)_buf[7]);
DEBUG_SENSOR_LOG(PSTR(" type:%02x: %02x %02x %02x %02x %02x %02x %02x %02x"),_beacon.type, (uint8_t)_buf[8],(uint8_t)_buf[9],(uint8_t)_buf[10],(uint8_t)_buf[11],(uint8_t)_buf[12],(uint8_t)_buf[13],(uint8_t)_buf[14],(uint8_t)_buf[15]);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MiBeacon type:%02x: %02x %02x %02x %02x %02x %02x %02x %02x"),_beacon.type, (uint8_t)_buf[0],(uint8_t)_buf[1],(uint8_t)_buf[2],(uint8_t)_buf[3],(uint8_t)_buf[4],(uint8_t)_buf[5],(uint8_t)_buf[6],(uint8_t)_buf[7]);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR(" type:%02x: %02x %02x %02x %02x %02x %02x %02x %02x"),_beacon.type, (uint8_t)_buf[8],(uint8_t)_buf[9],(uint8_t)_buf[10],(uint8_t)_buf[11],(uint8_t)_buf[12],(uint8_t)_buf[13],(uint8_t)_buf[14],(uint8_t)_buf[15]);
if(MIBLEsensors[_slot].type==4 || MIBLEsensors[_slot].type==6){
DEBUG_SENSOR_LOG(PSTR("LYWSD03 and CGD1 no support for MiBeacon, type %u"),MIBLEsensors[_slot].type);
return;
}
DEBUG_SENSOR_LOG(PSTR("%s at slot %u"), kMI32SlaveType[MIBLEsensors[_slot].type-1],_slot);
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s at slot %u"), kMI32SlaveType[MIBLEsensors[_slot].type-1],_slot);
switch(_beacon.type){
case 0x04:
_tempFloat=(float)(_beacon.temp)/10.0f;
@ -834,7 +868,7 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot){
MIBLEsensors[_slot].temp=_tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode 4: temp updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 4: U16: %u Temp"), _beacon.temp );
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 4: U16: %u Temp"), _beacon.temp );
break;
case 0x06:
_tempFloat=(float)(_beacon.hum)/10.0f;
@ -842,11 +876,11 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot){
MIBLEsensors[_slot].hum=_tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode 6: hum updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 6: U16: %u Hum"), _beacon.hum);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 6: U16: %u Hum"), _beacon.hum);
break;
case 0x07:
MIBLEsensors[_slot].lux=_beacon.lux & 0x00ffffff;
DEBUG_SENSOR_LOG(PSTR("Mode 7: U24: %u Lux"), _beacon.lux & 0x00ffffff);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 7: U24: %u Lux"), _beacon.lux & 0x00ffffff);
break;
case 0x08:
_tempFloat =(float)_beacon.moist;
@ -854,7 +888,7 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot){
MIBLEsensors[_slot].moisture=_tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode 8: moisture updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 8: U8: %u Moisture"), _beacon.moist);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 8: U8: %u Moisture"), _beacon.moist);
break;
case 0x09:
_tempFloat=(float)(_beacon.fert);
@ -862,14 +896,14 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot){
MIBLEsensors[_slot].fertility=_tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode 9: fertility updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode 9: U16: %u Fertility"), _beacon.fert);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 9: U16: %u Fertility"), _beacon.fert);
break;
case 0x0a:
if(_beacon.bat<101){
MIBLEsensors[_slot].bat = _beacon.bat;
DEBUG_SENSOR_LOG(PSTR("Mode a: bat updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode a: U8: %u %%"), _beacon.bat);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode a: U8: %u %%"), _beacon.bat);
break;
case 0x0d:
_tempFloat=(float)(_beacon.HT.temp)/10.0f;
@ -882,7 +916,7 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot){
MIBLEsensors[_slot].hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode d: hum updated"));
}
DEBUG_SENSOR_LOG(PSTR("Mode d: U16: %x Temp U16: %x Hum"), _beacon.HT.temp, _beacon.HT.hum);
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode d: U16: %x Temp U16: %x Hum"), _beacon.HT.temp, _beacon.HT.hum);
break;
}
}
@ -990,6 +1024,8 @@ void MI32EverySecond(bool restart){
_counter = 0;
MI32.mode.canScan = 0;
MI32.mode.canConnect = 1;
MI32.mode.willReadBatt = 0;
MI32.mode.willConnect = 0;
return;
}
@ -1028,9 +1064,9 @@ void MI32EverySecond(bool restart){
if(_counter==0) {
MI32.state.sensor = _nextSensorSlot;
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: active sensor now: %u"),D_CMND_MI32, MI32.state.sensor);
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: active sensor now: %u of %u"),D_CMND_MI32, MI32.state.sensor, MIBLEsensors.size()-1);
MI32.mode.canScan = 0;
if (MI32.mode.runningScan == 1 || MI32.mode.connected == 1) return;
if (MI32.mode.runningScan|| MI32.mode.connected || MI32.mode.willConnect) return;
_nextSensorSlot++;
MI32.mode.canConnect = 1;
if(MI32.mode.connected == 0) {
@ -1044,7 +1080,7 @@ void MI32EverySecond(bool restart){
}
}
if (MI32.state.sensor==MIBLEsensors.size()-1) {
if (_nextSensorSlot>(MIBLEsensors.size()-1)) {
_nextSensorSlot= 0;
_counter++;
if (MI32.mode.shallReadBatt){
@ -1159,6 +1195,7 @@ const char HTTP_MI32_HL[] PROGMEM = "{s}<hr>{m}<hr>{e}";
void MI32Show(bool json)
{
if (json) {
for (uint32_t i = 0; i < MIBLEsensors.size(); i++) {
/*
@ -1172,7 +1209,7 @@ void MI32Show(bool json)
MIBLEsensors[i].serial[3], MIBLEsensors[i].serial[4], MIBLEsensors[i].serial[5]);
if (MIBLEsensors[i].type == FLORA) {
if (!isnan(MIBLEsensors[i].temp)) { // this is the error code -> no temperature
if (!isnan(MIBLEsensors[i].temp)) {
char temperature[FLOATSZ]; // all sensors have temperature
dtostrfd(MIBLEsensors[i].temp, Settings.flag2.temperature_resolution, temperature);
ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), temperature);
@ -1299,4 +1336,4 @@ bool Xsns62(uint8_t function)
return result;
}
#endif // USE_MI_ESP32
#endif // ESP32
#endif // ESP32