Merge pull request #15015 from curzon01/dev-neopool

Update NeoPool controller
This commit is contained in:
Theo Arends 2022-03-02 16:49:14 +01:00 committed by GitHub
commit d3f330e18c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 331 additions and 80 deletions

View File

@ -7,11 +7,14 @@ All notable changes to this project will be documented in this file.
### Added ### Added
- TasmotaSerial implement ``end()`` - TasmotaSerial implement ``end()``
- ESP32 TasmotaSerial uart mapping to support multiple ``begin()`` and implement ``getUart()`` (#14981) - ESP32 TasmotaSerial uart mapping to support multiple ``begin()`` and implement ``getUart()`` (#14981)
- Neopool commands ``NPpHMin``, ``NPpHMax``, ``NPpH``, ``NPRedox``, ``NPHydrolysis``, ``NPIonization``, ``NPChlorine`` and ``NPControl``
- NeoPool system voltages display
### Changed ### Changed
- Extent number of pulsetimers from 8 to 32 (#8266) - Extent number of pulsetimers from 8 to 32 (#8266)
- Tasmota ESP32 Arduino core to v2.0.2.3 (#14979) - Tasmota ESP32 Arduino core to v2.0.2.3 (#14979)
- TasmotaSerial library from v3.4.0 to v3.5.0 (#14981) - TasmotaSerial library from v3.4.0 to v3.5.0 (#14981)
- NeoPool limit relay output to the number actually available
### Fixed ### Fixed

View File

@ -1,7 +1,7 @@
/* /*
xsns_83_neopool.ino - Sugar Valley NeoPool Control System Modbus support for Tasmota xsns_83_neopool.ino - Sugar Valley NeoPool Control System Modbus support for Tasmota
Copyright (C) 2021 Norbert Richter Copyright (C) 2022 Norbert Richter
This program is free software: you can redistribute it and/or modify This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -31,12 +31,12 @@
* Bayrol * Bayrol
* Hay * Hay
* *
* Sugar Valley RS485 connector inside (Display/Wifi/External) * Sugar Valley RS485 connector inside (DISPLAY/WIFI/EXTERN)
* pins (from top to bottom): * pins (from top to bottom):
* *
* RS485 MODBUS * RS485 MODBUS
* ___ * ___
* 1 |* |- +12V * 1 |* |- +12V (internal power supply)
* 2 |* |- * 2 |* |-
* 3 |* |- Modbus A+ * 3 |* |- Modbus A+
* 4 |* |- Modbus B- * 4 |* |- Modbus B-
@ -44,6 +44,9 @@
* *
* RS485 Parameter: 19200 Baud / 1 Stopbit / Parity None * RS485 Parameter: 19200 Baud / 1 Stopbit / Parity None
* *
* Channel connector DISPLAY is useless as long as the internal display is also connect,
* use WIFI or EXTERN instead.
*
* Hardware serial will be selected if GPIO1 = [NeoPool Rx] and GPIO3 = [NeoPool Tx] * Hardware serial will be selected if GPIO1 = [NeoPool Rx] and GPIO3 = [NeoPool Tx]
\*********************************************************************************************/ \*********************************************************************************************/
@ -54,7 +57,7 @@
#endif #endif
#ifndef NEOPOOL_MODBUS_ADDRESS #ifndef NEOPOOL_MODBUS_ADDRESS
#define NEOPOOL_MODBUS_ADDRESS 1 // Modbus address #define NEOPOOL_MODBUS_ADDRESS 1 // Modbus address, "WIFI" uses 1, "EXTERN" defaults also 1
#endif #endif
@ -552,6 +555,8 @@ enum NeoPoolConstAndBitMask {
#include <TasmotaModbus.h> #include <TasmotaModbus.h>
TasmotaModbus *NeoPoolModbus; TasmotaModbus *NeoPoolModbus;
#define NEOPOOL_RELAY_MAX 7 // Number of relais build-in
enum NeoPoolResult { enum NeoPoolResult {
NEOPOOL_RESULT_DEC = false, NEOPOOL_RESULT_DEC = false,
NEOPOOL_RESULT_HEX, NEOPOOL_RESULT_HEX,
@ -579,35 +584,20 @@ uint8_t neopoll_cmd_delay = 0;
void (* neopoll_cmd)(void) = nullptr; void (* neopoll_cmd)(void) = nullptr;
// Modbus register set to read // Modbus register set to read
// Can be either a block of register read once with a single read or a list of disjoined addr which has to read reg by reg // Defines blocks of register read once with a single read
// This keeps the update cycle fast even we have a lot of register to read
#define NEOPOOL_REG_TYPE_BLOCK 0
#define NEOPOOL_REG_TYPE_LIST 1
typedef struct {
const uint16_t addr;
const uint16_t cnt;
uint16_t *data;
} NeoPoolRegBlock;
typedef struct {
const uint16_t addr;
uint16_t data;
} NeoPoolRegList;
struct { struct {
const uint16_t type; const uint16_t addr;
union { const uint16_t cnt;
NeoPoolRegBlock block; uint16_t *data;
NeoPoolRegList *list;
};
} NeoPoolReg[] = { } NeoPoolReg[] = {
// 6 entries so using 250ms poll interval we are through in 1,5 for all register // 7 entries each polled every 250ms needs 1750 ms for complete register set
{NEOPOOL_REG_TYPE_BLOCK, {MBF_ION_CURRENT, MBF_NOTIFICATION - MBF_ION_CURRENT + 1, nullptr}}, {MBF_ION_CURRENT, MBF_NOTIFICATION - MBF_ION_CURRENT + 1, nullptr},
{NEOPOOL_REG_TYPE_BLOCK, {MBF_CELL_RUNTIME_LOW, MBF_CELL_RUNTIME_HIGH - MBF_CELL_RUNTIME_LOW + 1, nullptr}}, {MBF_CELL_RUNTIME_LOW, MBF_CELL_RUNTIME_HIGH - MBF_CELL_RUNTIME_LOW + 1, nullptr},
{NEOPOOL_REG_TYPE_BLOCK, {MBF_PAR_VERSION, MBF_PAR_MODEL - MBF_PAR_VERSION + 1, nullptr}}, {MBF_PAR_VERSION, MBF_PAR_MODEL - MBF_PAR_VERSION + 1, nullptr},
{NEOPOOL_REG_TYPE_BLOCK, {MBF_PAR_TIME_LOW, MBF_PAR_FILT_GPIO - MBF_PAR_TIME_LOW + 1, nullptr}}, {MBF_PAR_TIME_LOW, MBF_PAR_FILT_GPIO - MBF_PAR_TIME_LOW + 1, nullptr},
{NEOPOOL_REG_TYPE_BLOCK, {MBF_PAR_ION, MBF_PAR_FILTRATION_CONF - MBF_PAR_ION + 1, nullptr}}, {MBF_PAR_ION, MBF_PAR_FILTRATION_CONF - MBF_PAR_ION + 1, nullptr},
{NEOPOOL_REG_TYPE_BLOCK, {MBF_PAR_UICFG_MACHINE, MBF_PAR_UICFG_MACH_VISUAL_STYLE - MBF_PAR_UICFG_MACHINE + 1, nullptr}} {MBF_PAR_UICFG_MACHINE, MBF_PAR_UICFG_MACH_VISUAL_STYLE - MBF_PAR_UICFG_MACHINE + 1, nullptr},
{MBF_VOLT_24_36, MBF_VOLT_12 - MBF_VOLT_24_36 + 1, nullptr}
}; };
// NeoPool modbus function errors // NeoPool modbus function errors
@ -625,7 +615,7 @@ typedef struct {
uint16_t cl : 2; uint16_t cl : 2;
uint16_t ion : 2; uint16_t ion : 2;
} NeoPoolResMBitfield; } NeoPoolResMBitfield;
NeoPoolResMBitfield neopool_resolution { NeoPoolResMBitfield neopool_resolution {
.ph = 1, .ph = 1,
.cl = 1, .cl = 1,
.ion = 1 .ion = 1
@ -693,6 +683,7 @@ const char kNeoPoolpHAlarms[] PROGMEM =
#define D_NEOPOOL_UNIT_GPERH "g/h" #define D_NEOPOOL_UNIT_GPERH "g/h"
const char HTTP_SNS_NEOPOOL_TIME[] PROGMEM = "{s}%s " D_NEOPOOL_TIME "{m}%s" "{e}"; const char HTTP_SNS_NEOPOOL_TIME[] PROGMEM = "{s}%s " D_NEOPOOL_TIME "{m}%s" "{e}";
const char HTTP_SNS_NEOPOOL_VOLTAGE[] PROGMEM = "{s}%s " D_VOLTAGE "{m}%*_f / %*_f " D_UNIT_VOLT "{e}";
const char HTTP_SNS_NEOPOOL_HYDROLYSIS[] PROGMEM = "{s}%s " D_NEOPOOL_HYDROLYSIS "{m}" NEOPOOL_FMT_HIDRO " %s "; const char HTTP_SNS_NEOPOOL_HYDROLYSIS[] PROGMEM = "{s}%s " D_NEOPOOL_HYDROLYSIS "{m}" NEOPOOL_FMT_HIDRO " %s ";
const char HTTP_SNS_NEOPOOL_PH[] PROGMEM = "{s}%s " D_PH "{m}" NEOPOOL_FMT_PH; const char HTTP_SNS_NEOPOOL_PH[] PROGMEM = "{s}%s " D_PH "{m}" NEOPOOL_FMT_PH;
const char HTTP_SNS_NEOPOOL_REDOX[] PROGMEM = "{s}%s " D_NEOPOOL_REDOX "{m}" NEOPOOL_FMT_RX " " D_UNIT_MILLIVOLT; const char HTTP_SNS_NEOPOOL_REDOX[] PROGMEM = "{s}%s " D_NEOPOOL_REDOX "{m}" NEOPOOL_FMT_RX " " D_UNIT_MILLIVOLT;
@ -740,6 +731,44 @@ const char HTTP_SNS_NEOPOOL_STATUS_ACTIVE[] PROGMEM = "filter:invert(1)";
* prg change by switch light of for delay time then switch on * prg change by switch light of for delay time then switch on
* delay in ms from 0.5 - 10 sec * delay in ms from 0.5 - 10 sec
* *
* NPpHMin {<ph>}
* (only available if pH module is installed)
* get/set pH lower limit (ph = 0..14)
* get current limit if <ph> is omitted, otherwise set
*
* NPpHMax {<ph>}
* (only available if pH module is installed)
* get/set pH upper limit (ph = 0..14)
* get current limit if <ph> is omitted, otherwise set
*
* NPpH {<ph>}
* (only available if pH module is installed)
* get/set pH upper limit (ph = 0..14)
* same as NPpHMax
*
* NPRedox {<setpoint>}
* (only available if redox module is installed)
* get/set redox set point in mV (setpoint = 0..100, the upper limit of the range may vary depending on the MBF_PAR_HIDRO_NOM register)
* get current set point if <setpoint> is omitted, otherwise set
*
* NPHydrolysis {<level>}
* (only available if hydrolysis/electrolysis control is present)
* get/set hydrolysis/electrolysis level in % (level = 0..100)
* get current level if <level> is omitted, otherwise set
*
* NPIonization {<level>}
* (only available if ionization control is present)
* get/set ionization target production level (level = 0..x, the upper limit of the range may vary depending on the MBF_PAR_ION_NOM register)
* get current level if <level> is omitted, otherwise set
*
* NPChlorine {<setpoint>}
* (only available if free chlorine probe detector is installed)
* get/set chlorine set point in ppm (setpoint = 0..10)
* get current set point if <setpoint> is omitted, otherwise set
*
* NPControl
* Show information about system controls
*
* NPSave * NPSave
* write data permanently into EEPROM * write data permanently into EEPROM
* *
@ -854,6 +883,14 @@ const char HTTP_SNS_NEOPOOL_STATUS_ACTIVE[] PROGMEM = "filter:invert(1)";
#define D_CMND_NP_FILTRATIONMODE "Filtrationmode" #define D_CMND_NP_FILTRATIONMODE "Filtrationmode"
#define D_CMND_NP_TIME "Time" #define D_CMND_NP_TIME "Time"
#define D_CMND_NP_LIGHT "Light" #define D_CMND_NP_LIGHT "Light"
#define D_CMND_NP_PHMIN "pHMin"
#define D_CMND_NP_PHMAX "pHMax"
#define D_CMND_NP_PH "pH"
#define D_CMND_NP_REDOX "Redox"
#define D_CMND_NP_HYDROLYSIS "Hydrolysis"
#define D_CMND_NP_IONIZATION "Ionization"
#define D_CMND_NP_CHLORINE "Chlorine"
#define D_CMND_NP_CONTROL "Control"
#define D_CMND_NP_SAVE "Save" #define D_CMND_NP_SAVE "Save"
#define D_CMND_NP_EXEC "Exec" #define D_CMND_NP_EXEC "Exec"
#define D_CMND_NP_ESCAPE "Escape" #define D_CMND_NP_ESCAPE "Escape"
@ -874,6 +911,14 @@ const char kNPCommands[] PROGMEM = D_PRFX_NEOPOOL "|" // Prefix
D_CMND_NP_FILTRATIONMODE "|" D_CMND_NP_FILTRATIONMODE "|"
D_CMND_NP_TIME "|" D_CMND_NP_TIME "|"
D_CMND_NP_LIGHT "|" D_CMND_NP_LIGHT "|"
D_CMND_NP_PHMIN "|"
D_CMND_NP_PHMAX "|"
D_CMND_NP_PH "|"
D_CMND_NP_REDOX "|"
D_CMND_NP_HYDROLYSIS "|"
D_CMND_NP_IONIZATION "|"
D_CMND_NP_CHLORINE "|"
D_CMND_NP_CONTROL "|"
D_CMND_NP_SAVE "|" D_CMND_NP_SAVE "|"
D_CMND_NP_EXEC "|" D_CMND_NP_EXEC "|"
D_CMND_NP_ESCAPE "|" D_CMND_NP_ESCAPE "|"
@ -895,6 +940,14 @@ void (* const NPCommand[])(void) PROGMEM = {
&CmndNeopoolFiltrationMode, &CmndNeopoolFiltrationMode,
&CmndNeopoolTime, &CmndNeopoolTime,
&CmndNeopoolLight, &CmndNeopoolLight,
&CmndNeopoolpHMin,
&CmndNeopoolpHMax,
&CmndNeopoolpHMax,
&CmndNeopoolRedox,
&CmndNeopoolHydrolysis,
&CmndNeopoolIonization,
&CmndNeopoolChlorine,
&CmndNeopoolControl,
&CmndNeopoolSave, &CmndNeopoolSave,
&CmndNeopoolExec, &CmndNeopoolExec,
&CmndNeopoolEscape, &CmndNeopoolEscape,
@ -925,17 +978,17 @@ void NeoPool250ms(void) // Every 250 mSec
bool data_ready = NeoPoolModbus->ReceiveReady(); bool data_ready = NeoPoolModbus->ReceiveReady();
if (data_ready && nullptr != NeoPoolReg[neopool_read_state].block.data) { if (data_ready && nullptr != NeoPoolReg[neopool_read_state].data) {
uint8_t *buffer = (uint8_t *)malloc(5+(NeoPoolReg[neopool_read_state].block.cnt)*2); uint8_t *buffer = (uint8_t *)malloc(5+(NeoPoolReg[neopool_read_state].cnt)*2);
if (nullptr != buffer) { if (nullptr != buffer) {
uint8_t error = NeoPoolModbus->ReceiveBuffer(buffer, NeoPoolReg[neopool_read_state].block.cnt); // cnt x 16bit register uint8_t error = NeoPoolModbus->ReceiveBuffer(buffer, NeoPoolReg[neopool_read_state].cnt); // cnt x 16bit register
if (0 == error) { if (0 == error) {
neopool_failed_count = 0; neopool_failed_count = 0;
neopool_error = false; neopool_error = false;
for (uint32_t i = 0; i < NeoPoolReg[neopool_read_state].block.cnt; i++) { for (uint32_t i = 0; i < NeoPoolReg[neopool_read_state].cnt; i++) {
NeoPoolReg[neopool_read_state].block.data[i] = (buffer[i*2+3] << 8) | buffer[i*2+4]; NeoPoolReg[neopool_read_state].data[i] = (buffer[i*2+3] << 8) | buffer[i*2+4];
} }
} }
#ifdef DEBUG_TASMOTA_SENSOR #ifdef DEBUG_TASMOTA_SENSOR
@ -947,7 +1000,7 @@ void NeoPool250ms(void) // Every 250 mSec
} }
#ifdef DEBUG_TASMOTA_SENSOR #ifdef DEBUG_TASMOTA_SENSOR
else { else {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: modbus block 0x%04X - 0x%04X skipped"), NeoPoolReg[neopool_read_state].block.addr, NeoPoolReg[neopool_read_state].block.addr+NeoPoolReg[neopool_read_state].block.cnt); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: modbus block 0x%04X - 0x%04X skipped"), NeoPoolReg[neopool_read_state].addr, NeoPoolReg[neopool_read_state].addr+NeoPoolReg[neopool_read_state].cnt);
} }
#endif // DEBUG_TASMOTA_SENSOR #endif // DEBUG_TASMOTA_SENSOR
@ -959,24 +1012,24 @@ void NeoPool250ms(void) // Every 250 mSec
#endif // NEOPOOL_OPTIMIZE_READINGS #endif // NEOPOOL_OPTIMIZE_READINGS
} }
if (nullptr != NeoPoolReg[neopool_read_state].block.data) { if (nullptr != NeoPoolReg[neopool_read_state].data) {
if (0 == neopool_send_retry || data_ready) { if (0 == neopool_send_retry || data_ready) {
neopool_send_retry = SENSOR_MAX_MISS; // controller sometimes takes long time to answer neopool_send_retry = SENSOR_MAX_MISS; // controller sometimes takes long time to answer
#ifdef NEOPOOL_OPTIMIZE_READINGS #ifdef NEOPOOL_OPTIMIZE_READINGS
// optimize register block reads by attend to MBF_NOTIFICATION bits // optimize register block reads by attend to MBF_NOTIFICATION bits
if (neopool_first_read || 0x0100 == (NeoPoolReg[neopool_read_state].block.addr & 0x0700) || if (neopool_first_read || 0x0100 == (NeoPoolReg[neopool_read_state].addr & 0x0700) ||
(NeoPoolGetData(MBF_NOTIFICATION) & (1 << (NeoPoolReg[neopool_read_state].block.addr >> 8)-1))) { (NeoPoolGetData(MBF_NOTIFICATION) & (1 << (NeoPoolReg[neopool_read_state].addr >> 8)-1))) {
#endif // NEOPOOL_OPTIMIZE_READINGS #endif // NEOPOOL_OPTIMIZE_READINGS
#ifdef DEBUG_TASMOTA_SENSOR #ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: modbus send(%d, %d, 0x%04X, %d)"), NEOPOOL_MODBUS_ADDRESS, NEOPOOL_READ_REGISTER, NeoPoolReg[neopool_read_state].block.addr, NeoPoolReg[neopool_read_state].block.cnt); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: modbus send(%d, %d, 0x%04X, %d)"), NEOPOOL_MODBUS_ADDRESS, NEOPOOL_READ_REGISTER, NeoPoolReg[neopool_read_state].addr, NeoPoolReg[neopool_read_state].cnt);
#endif // DEBUG_TASMOTA_SENSOR #endif // DEBUG_TASMOTA_SENSOR
NeoPoolModbus->Send(NEOPOOL_MODBUS_ADDRESS, NEOPOOL_READ_REGISTER, NeoPoolReg[neopool_read_state].block.addr, NeoPoolReg[neopool_read_state].block.cnt); NeoPoolModbus->Send(NEOPOOL_MODBUS_ADDRESS, NEOPOOL_READ_REGISTER, NeoPoolReg[neopool_read_state].addr, NeoPoolReg[neopool_read_state].cnt);
#ifdef NEOPOOL_OPTIMIZE_READINGS #ifdef NEOPOOL_OPTIMIZE_READINGS
} else { } else {
// search next addr block having notification // search next addr block having notification
while ((NeoPoolReg[neopool_read_state].block.addr & 0x0F00) != 0x100 || (NeoPoolGetData(MBF_NOTIFICATION) & (1 << (NeoPoolReg[neopool_read_state].block.addr >> 8)-1))) { while ((NeoPoolReg[neopool_read_state].addr & 0x0F00) != 0x100 || (NeoPoolGetData(MBF_NOTIFICATION) & (1 << (NeoPoolReg[neopool_read_state].addr >> 8)-1))) {
#ifdef DEBUG_TASMOTA_SENSOR #ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: notify 0x%04X - addr block 0x%04X ignored"), NeoPoolGetData(MBF_NOTIFICATION), NeoPoolReg[neopool_read_state].block.addr); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: notify 0x%04X - addr block 0x%04X ignored"), NeoPoolGetData(MBF_NOTIFICATION), NeoPoolReg[neopool_read_state].addr);
#endif // DEBUG_TASMOTA_SENSOR #endif // DEBUG_TASMOTA_SENSOR
++neopool_read_state %= nitems(NeoPoolReg); ++neopool_read_state %= nitems(NeoPoolReg);
} }
@ -1026,12 +1079,12 @@ bool NeoPoolInitData(void)
neopool_error = true; neopool_error = true;
for (uint32_t i = 0; i < nitems(NeoPoolReg); i++) { for (uint32_t i = 0; i < nitems(NeoPoolReg); i++) {
if (nullptr == NeoPoolReg[i].block.data) { if (nullptr == NeoPoolReg[i].data) {
NeoPoolReg[i].block.data = (uint16_t *)malloc(sizeof(uint16_t)*NeoPoolReg[i].block.cnt); NeoPoolReg[i].data = (uint16_t *)malloc(sizeof(uint16_t)*NeoPoolReg[i].cnt);
if (nullptr != NeoPoolReg[i].block.data) { if (nullptr != NeoPoolReg[i].data) {
memset(NeoPoolReg[i].block.data, 0, sizeof(uint16_t)*NeoPoolReg[i].block.cnt); memset(NeoPoolReg[i].data, 0, sizeof(uint16_t)*NeoPoolReg[i].cnt);
#ifdef DEBUG_TASMOTA_SENSOR #ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: Init - addr 0x%04x cnt %d data %p"), NeoPoolReg[i].block.addr, NeoPoolReg[i].block.cnt, NeoPoolReg[i].block.data); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: Init - addr 0x%04x cnt %d data %p"), NeoPoolReg[i].addr, NeoPoolReg[i].cnt, NeoPoolReg[i].data);
#endif // DEBUG_TASMOTA_SENSOR #endif // DEBUG_TASMOTA_SENSOR
res = true; res = true;
} }
@ -1072,7 +1125,7 @@ void NeoPool250msSetStatus(bool status)
if (!status) { if (!status) {
// clear rec buffer from possible prev periodical communication // clear rec buffer from possible prev periodical communication
uint32_t timeoutMS = millis() + 100 * NEOPOOL_READ_TIMEOUT; // Max delay before we timeout uint32_t timeoutMS = millis() + 100 * NEOPOOL_READ_TIMEOUT; // Max delay before we timeout
while (NeoPoolModbus->available() && millis() < timeoutMS) { while (NeoPoolModbus->available() && millis() < timeoutMS) {
NeoPoolModbus->read(); NeoPoolModbus->read();
SleepDelay(0); SleepDelay(0);
} }
@ -1239,8 +1292,8 @@ uint8_t NeoPoolWriteRegisterWord(uint16_t addr, uint16_t data)
uint16_t NeoPoolGetData(uint16_t addr) uint16_t NeoPoolGetData(uint16_t addr)
{ {
for (uint32_t i = 0; i < nitems(NeoPoolReg); i++) { for (uint32_t i = 0; i < nitems(NeoPoolReg); i++) {
if (nullptr != NeoPoolReg[i].block.data && addr >= NeoPoolReg[i].block.addr && addr < NeoPoolReg[i].block.addr+NeoPoolReg[i].block.cnt) { if (nullptr != NeoPoolReg[i].data && addr >= NeoPoolReg[i].addr && addr < NeoPoolReg[i].addr+NeoPoolReg[i].cnt) {
return NeoPoolReg[i].block.data[addr - NeoPoolReg[i].block.addr]; return NeoPoolReg[i].data[addr - NeoPoolReg[i].addr];
} }
} }
return 0; return 0;
@ -1262,6 +1315,42 @@ uint32_t NeoPoolGetSpeedIndex(uint16_t speedvalue)
} }
bool NeoPoolIsHydrolysis(void)
{
return (((NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_HIDRO)) ||
(NeoPoolGetData(MBF_HIDRO_STATUS) & (MBMSK_HIDRO_STATUS_CTRL_ACTIVE | MBMSK_HIDRO_STATUS_CTRL_ACTIVE)));
}
bool NeoPoolIspHModule(void)
{
return (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsRedox(void)
{
return (NeoPoolGetData(MBF_RX_STATUS) & MBMSK_RX_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsChlorine(void)
{
return (NeoPoolGetData(MBF_CL_STATUS) & MBMSK_CL_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsConductivity(void)
{
return (NeoPoolGetData(MBF_CD_STATUS) & MBMSK_CD_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsIonization(void)
{
return (NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_ION);
}
/*********************************************************************************************/ /*********************************************************************************************/
@ -1314,7 +1403,7 @@ void NeoPoolShow(bool json)
#ifndef NEOPOOL_OPTIMIZE_READINGS #ifndef NEOPOOL_OPTIMIZE_READINGS
// Time // Time
ResponseAppend_P(PSTR("\"" D_JSON_TIME "\":\"%s\""), ResponseAppend_P(PSTR("\"" D_JSON_TIME "\":\"%s\""),
GetDT((uint32_t)NeoPoolGetData(MBF_PAR_TIME_LOW) + ((uint32_t)NeoPoolGetData(MBF_PAR_TIME_HIGH) << 16)).c_str()); GetDT((uint32_t)NeoPoolGetData(MBF_PAR_TIME_LOW) + ((uint32_t)NeoPoolGetData(MBF_PAR_TIME_HIGH) << 16)).c_str());
// Type // Type
@ -1329,8 +1418,17 @@ void NeoPoolShow(bool json)
ResponseAppend_P(PSTR(",\"" D_TEMPERATURE "\":%*_f"), Settings->flag2.temperature_resolution, &fvalue); ResponseAppend_P(PSTR(",\"" D_TEMPERATURE "\":%*_f"), Settings->flag2.temperature_resolution, &fvalue);
} }
// Voltage
{
float f12volt = (float)NeoPoolGetData(MBF_VOLT_12)/1000;
float f24_36volt = (float)NeoPoolGetData(MBF_VOLT_24_36)/1000;
ResponseAppend_P(PSTR(",\"" D_VOLTAGE "\":{\"12\":%*_f,\"24\":%*_f}"),
Settings->flag2.voltage_resolution, &f12volt,
Settings->flag2.voltage_resolution, &f24_36volt);
}
// pH // pH
if (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_MEASURE_ACTIVE) { if (NeoPoolIspHModule()) {
fvalue = (float)NeoPoolGetData(MBF_MEASURE_PH)/100; fvalue = (float)NeoPoolGetData(MBF_MEASURE_PH)/100;
ResponseAppend_P(PSTR(",\"" D_PH "\":{\"" D_JSON_DATA "\":" NEOPOOL_FMT_PH), neopool_resolution.ph, &fvalue); ResponseAppend_P(PSTR(",\"" D_PH "\":{\"" D_JSON_DATA "\":" NEOPOOL_FMT_PH), neopool_resolution.ph, &fvalue);
@ -1363,30 +1461,29 @@ void NeoPoolShow(bool json)
} }
// Redox // Redox
if (NeoPoolGetData(MBF_RX_STATUS) & MBMSK_RX_STATUS_MEASURE_ACTIVE) { if (NeoPoolIsRedox()) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_REDOX "\":" NEOPOOL_FMT_RX), NeoPoolGetData(MBF_MEASURE_RX)); ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_REDOX "\":" NEOPOOL_FMT_RX), NeoPoolGetData(MBF_MEASURE_RX));
} }
// Chlorine // Chlorine
if (NeoPoolGetData(MBF_CL_STATUS) & MBMSK_CL_STATUS_MEASURE_ACTIVE) { if (NeoPoolIsChlorine()) {
fvalue = (float)NeoPoolGetData(MBF_MEASURE_CL)/100; fvalue = (float)NeoPoolGetData(MBF_MEASURE_CL)/100;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CHLORINE "\":" NEOPOOL_FMT_CL), neopool_resolution.cl, &fvalue); ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CHLORINE "\":" NEOPOOL_FMT_CL), neopool_resolution.cl, &fvalue);
} }
// Conductivity // Conductivity
if (NeoPoolGetData(MBF_CD_STATUS) & MBMSK_CD_STATUS_MEASURE_ACTIVE) { if (NeoPoolIsConductivity()) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_CONDUCTIVITY "\":" NEOPOOL_FMT_CD), NeoPoolGetData(MBF_MEASURE_CONDUCTIVITY)); ResponseAppend_P(PSTR(",\"" D_NEOPOOL_CONDUCTIVITY "\":" NEOPOOL_FMT_CD), NeoPoolGetData(MBF_MEASURE_CONDUCTIVITY));
} }
// Ionization // Ionization
if (NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_ION) { if (NeoPoolIsIonization()) {
fvalue = (float)NeoPoolGetData(MBF_ION_CURRENT); fvalue = (float)NeoPoolGetData(MBF_ION_CURRENT);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_IONIZATION "\":" NEOPOOL_FMT_ION), neopool_resolution.ion, &fvalue); ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_IONIZATION "\":" NEOPOOL_FMT_ION), neopool_resolution.ion, &fvalue);
} }
// Hydrolysis // Hydrolysis
if (((NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_HIDRO)) || if (NeoPoolIsHydrolysis()) {
(NeoPoolGetData(MBF_HIDRO_STATUS) & (MBMSK_HIDRO_STATUS_CTRL_ACTIVE | MBMSK_HIDRO_STATUS_CTRL_ACTIVE))) {
fvalue = (float)NeoPoolGetData(MBF_HIDRO_CURRENT)/10; fvalue = (float)NeoPoolGetData(MBF_HIDRO_CURRENT)/10;
const char *sunit; const char *sunit;
int dec = 1; int dec = 1;
@ -1401,7 +1498,7 @@ void NeoPoolShow(bool json)
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_UNIT "\":\"%s\""), sunit); ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_UNIT "\":\"%s\""), sunit);
#ifndef NEOPOOL_OPTIMIZE_READINGS #ifndef NEOPOOL_OPTIMIZE_READINGS
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CELL_RUNTIME "\":\"%s\""), ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CELL_RUNTIME "\":\"%s\""),
GetDuration((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_LOW) + ((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_HIGH) << 16)).c_str()); GetDuration((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_LOW) + ((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_HIGH) << 16)).c_str());
#endif // NEOPOOL_OPTIMIZE_READINGS #endif // NEOPOOL_OPTIMIZE_READINGS
@ -1447,7 +1544,7 @@ void NeoPoolShow(bool json)
// Relays // Relays
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY "\":{\"" D_NEOPOOL_JSON_STATE "\":[")); ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY "\":{\"" D_NEOPOOL_JSON_STATE "\":["));
for(uint16_t i = 0; i < 8; i++) { for(uint16_t i = 0; i < NEOPOOL_RELAY_MAX; i++) {
ResponseAppend_P(PSTR("%s%d"), i ? PSTR(",") : PSTR(""), (NeoPoolGetData(MBF_RELAY_STATE) >> i) & 1); ResponseAppend_P(PSTR("%s%d"), i ? PSTR(",") : PSTR(""), (NeoPoolGetData(MBF_RELAY_STATE) >> i) & 1);
} }
ResponseAppend_P(PSTR("]")); ResponseAppend_P(PSTR("]"));
@ -1496,9 +1593,17 @@ void NeoPoolShow(bool json)
WSContentSend_PD(HTTP_SNS_F_TEMP, neopool_type, Settings->flag2.temperature_resolution, &fvalue, TempUnit()); WSContentSend_PD(HTTP_SNS_F_TEMP, neopool_type, Settings->flag2.temperature_resolution, &fvalue, TempUnit());
} }
// Voltage
{
float f12volt = (float)NeoPoolGetData(MBF_VOLT_12)/1000;
float f24_36volt = (float)NeoPoolGetData(MBF_VOLT_24_36)/1000;
WSContentSend_PD(HTTP_SNS_NEOPOOL_VOLTAGE, neopool_type,
Settings->flag2.voltage_resolution, &f12volt,
Settings->flag2.voltage_resolution, &f24_36volt);
}
// Hydrolysis // Hydrolysis
if (((NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_HIDRO)) || if (NeoPoolIsHydrolysis()) {
(NeoPoolGetData(MBF_HIDRO_STATUS) & (MBMSK_HIDRO_STATUS_CTRL_ACTIVE | MBMSK_HIDRO_STATUS_CTRL_ACTIVE))) {
// Data // Data
fvalue = (float)NeoPoolGetData(MBF_HIDRO_CURRENT)/10; fvalue = (float)NeoPoolGetData(MBF_HIDRO_CURRENT)/10;
const char *sunit = PSTR("%"); const char *sunit = PSTR("%");
@ -1546,7 +1651,7 @@ void NeoPoolShow(bool json)
} }
// pH // pH
if (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_MEASURE_ACTIVE) { if (NeoPoolIspHModule()) {
// Data // Data
fvalue = (float)NeoPoolGetData(MBF_MEASURE_PH)/100; fvalue = (float)NeoPoolGetData(MBF_MEASURE_PH)/100;
WSContentSend_PD(HTTP_SNS_NEOPOOL_PH, neopool_type, neopool_resolution.ph, &fvalue); WSContentSend_PD(HTTP_SNS_NEOPOOL_PH, neopool_type, neopool_resolution.ph, &fvalue);
@ -1589,7 +1694,7 @@ void NeoPoolShow(bool json)
// Status/Alarm: S1 S2 // Status/Alarm: S1 S2
// S1: 0 // S1: 0
// S2: FL1 // S2: FL1
if (NeoPoolGetData(MBF_RX_STATUS) & MBMSK_RX_STATUS_MEASURE_ACTIVE) { if (NeoPoolIsRedox()) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_REDOX, neopool_type, NeoPoolGetData(MBF_MEASURE_RX)); WSContentSend_PD(HTTP_SNS_NEOPOOL_REDOX, neopool_type, NeoPoolGetData(MBF_MEASURE_RX));
WSContentSend_PD(PSTR("&nbsp;")); WSContentSend_PD(PSTR("&nbsp;"));
// S1 // S1
@ -1601,18 +1706,18 @@ void NeoPoolShow(bool json)
} }
// Chlorine // Chlorine
if (NeoPoolGetData(MBF_CL_STATUS) & MBMSK_CL_STATUS_MEASURE_ACTIVE) { if (NeoPoolIsChlorine()) {
fvalue = (float)NeoPoolGetData(MBF_MEASURE_CL)/100; fvalue = (float)NeoPoolGetData(MBF_MEASURE_CL)/100;
WSContentSend_PD(HTTP_SNS_NEOPOOL_PPM_CHLORINE, neopool_type, neopool_resolution.ph, &fvalue); WSContentSend_PD(HTTP_SNS_NEOPOOL_PPM_CHLORINE, neopool_type, neopool_resolution.ph, &fvalue);
} }
// Conductivity // Conductivity
if (NeoPoolGetData(MBF_CD_STATUS) & MBMSK_CD_STATUS_MEASURE_ACTIVE) { if (NeoPoolIsConductivity()) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_CONDUCTIVITY, neopool_type, NeoPoolGetData(MBF_MEASURE_CONDUCTIVITY)); WSContentSend_PD(HTTP_SNS_NEOPOOL_CONDUCTIVITY, neopool_type, NeoPoolGetData(MBF_MEASURE_CONDUCTIVITY));
} }
// Ionization // Ionization
if (NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_ION) { if (NeoPoolIsIonization()) {
char spol[32]; char spol[32];
snprintf_P(spol, sizeof(spol), PSTR(" " D_NEOPOOL_POLARIZATION "%d"), NeoPoolGetData(MBF_ION_STATUS)>>13); snprintf_P(spol, sizeof(spol), PSTR(" " D_NEOPOOL_POLARIZATION "%d"), NeoPoolGetData(MBF_ION_STATUS)>>13);
snprintf_P(stemp, sizeof(stemp), PSTR("%s%s%s"), snprintf_P(stemp, sizeof(stemp), PSTR("%s%s%s"),
@ -1629,7 +1734,7 @@ void NeoPoolShow(bool json)
WSContentSend_PD(HTTP_SNS_NEOPOOL_FILT_MODE, neopool_type, stemp); WSContentSend_PD(HTTP_SNS_NEOPOOL_FILT_MODE, neopool_type, stemp);
// Relays // Relays
for (uint32_t i = 0; i < 8; i++) { for (uint32_t i = 0; i < NEOPOOL_RELAY_MAX; i++) {
char sdesc[24]; char sdesc[24];
memset(sdesc, 0, nitems(sdesc)); memset(sdesc, 0, nitems(sdesc));
memset(stemp, 0, nitems(stemp)); memset(stemp, 0, nitems(stemp));
@ -1657,18 +1762,15 @@ void NeoPoolShow(bool json)
snprintf_P(sdesc, sizeof(sdesc), PSTR(D_NEOPOOL_RELAY " %d"), i+1); snprintf_P(sdesc, sizeof(sdesc), PSTR(D_NEOPOOL_RELAY " %d"), i+1);
} }
WSContentSend_PD(HTTP_SNS_NEOPOOL_RELAY,neopool_type, sdesc, WSContentSend_PD(HTTP_SNS_NEOPOOL_RELAY, neopool_type, sdesc,
'\0' == *stemp ? ((NeoPoolGetData(MBF_RELAY_STATE) & (1<<i))?PSTR(D_ON):PSTR(D_OFF)) : stemp); '\0' == *stemp ? ((NeoPoolGetData(MBF_RELAY_STATE) & (1<<i))?PSTR(D_ON):PSTR(D_OFF)) : stemp);
} }
#ifndef NEOPOOL_OPTIMIZE_READINGS #ifndef NEOPOOL_OPTIMIZE_READINGS
{ {
// Cell runtime // Cell runtime
char dt[16]; WSContentSend_PD(HTTP_SNS_NEOPOOL_CELL_RUNTIME, neopool_type,
TIME_T tmpTime; GetDuration((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_LOW) + ((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_HIGH) << 16)).c_str());
BreakTime((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_LOW) + ((uint32_t)NeoPoolGetData(MBF_CELL_RUNTIME_HIGH) << 16), tmpTime);
snprintf_P(dt, sizeof(dt), PSTR("%dT%02d:%02d"), tmpTime.days, tmpTime.hour, tmpTime.minute);
WSContentSend_PD(HTTP_SNS_NEOPOOL_CELL_RUNTIME, neopool_type, dt);
} }
#endif // NEOPOOL_OPTIMIZE_READINGS #endif // NEOPOOL_OPTIMIZE_READINGS
@ -1883,8 +1985,8 @@ void CmndNeopoolFiltration(void)
} }
uint16_t speed = (NeoPoolGetData(MBF_RELAY_STATE) >> 8) & 0x07; uint16_t speed = (NeoPoolGetData(MBF_RELAY_STATE) >> 8) & 0x07;
if (speed) { if (speed) {
Response_P(PSTR("{\"%s\":\"%s\",\"" D_NEOPOOL_JSON_FILTRATION_SPEED "\":\"%d\"}"), Response_P(PSTR("{\"%s\":\"%s\",\"" D_NEOPOOL_JSON_FILTRATION_SPEED "\":\"%d\"}"),
XdrvMailbox.command, XdrvMailbox.command,
GetStateText(data), GetStateText(data),
(speed < 3) ? speed : 3); (speed < 3) ? speed : 3);
} else { } else {
@ -1975,7 +2077,7 @@ void CmndNeopoolLight(void)
NeopoolResponseError(); NeopoolResponseError();
return; return;
} }
if (neopool_light_relay >= 1 && neopool_light_relay <= 8) { if (neopool_light_relay >= 1 && neopool_light_relay <= NEOPOOL_RELAY_MAX) {
// get/set light // get/set light
if (1 == params_cnt && XdrvMailbox.payload >= 0 && XdrvMailbox.payload < nitems(timer_val)) { if (1 == params_cnt && XdrvMailbox.payload >= 0 && XdrvMailbox.payload < nitems(timer_val)) {
if (POWER_TOGGLE == timer_val[XdrvMailbox.payload]) { if (POWER_TOGGLE == timer_val[XdrvMailbox.payload]) {
@ -2056,6 +2158,152 @@ void CmndNeopoolLightPrgEnd(void)
} }
bool CmndNeopoolSetParam(uint16_t reg, uint16_t factor, float min, float max)
{
uint16_t data;
if (XdrvMailbox.data_len) {
data = (int)(CharToFloat(XdrvMailbox.data) * (float)factor);
if (data >= min*(float)factor && data <= max*(float)factor) {
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(reg, data) ||
NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_EXEC, 1) ||
NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_SAVE_TO_EEPROM, 1)) {
NeopoolResponseError();
return false;
} else {
return true;
}
} else {
return false;
}
}
return true;
}
void CmndNeopoolGetParam(uint16_t reg, uint16_t factor, uint16_t res)
{
uint16_t data;
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(reg, &data, 1)) {
NeopoolResponseError();
return;
}
ResponseCmndFloat((float)(data) / (float)factor, res);
}
void CmndNeopoolpHMin(void)
{
if (NeoPoolIspHModule()) {
uint16_t data;
// read pH max
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_PH1, &data, 1)) {
NeopoolResponseError();
return;
}
if (CmndNeopoolSetParam(MBF_PAR_PH2, 100, 0, (float)data/100)) {
CmndNeopoolGetParam(MBF_PAR_PH2, 100, neopool_resolution.ph);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolpHMax(void)
{
if (NeoPoolIspHModule()) {
uint16_t data;
// read pH min
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_PH2, &data, 1)) {
NeopoolResponseError();
return;
}
if (CmndNeopoolSetParam(MBF_PAR_PH1, 100, (float)data/100, 14)) {
CmndNeopoolGetParam(MBF_PAR_PH1, 100, neopool_resolution.ph);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolRedox(void)
{
if (NeoPoolIsRedox()) {
if (CmndNeopoolSetParam(MBF_PAR_RX1, 1, 0, 1000)) {
CmndNeopoolGetParam(MBF_PAR_RX1, 1, 0);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolHydrolysis(void)
{
if (NeoPoolIsHydrolysis()) {
uint16_t data;
// read hydrolysis maximum production level
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_HIDRO_NOM, &data, 1)) {
NeopoolResponseError();
return;
}
if (CmndNeopoolSetParam(MBF_PAR_HIDRO, 10, 0, (float)data/10)) {
CmndNeopoolGetParam(MBF_PAR_HIDRO, 10, 0);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolIonization(void)
{
if (NeoPoolIsIonization()) {
uint16_t data;
// read ionization maximum production level
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_ION_NOM, &data, 1)) {
NeopoolResponseError();
return;
}
if (CmndNeopoolSetParam(MBF_PAR_ION, 1, 0, (float)data)) {
CmndNeopoolGetParam(MBF_PAR_ION, 1, neopool_resolution.ion);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolChlorine(void)
{
if (NeoPoolIsChlorine()) {
if (CmndNeopoolSetParam(MBF_PAR_CL1, 100, 0, 10)) {
CmndNeopoolGetParam(MBF_PAR_CL1, 100, neopool_resolution.cl);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolControl(void)
{
Response_P(PSTR("{\"Modules\":{"));
ResponseAppend_P(PSTR( "\"" D_NEOPOOL_JSON_HYDROLYSIS "\":%d"), NeoPoolIsHydrolysis());
ResponseAppend_P(PSTR(",\"" D_JSON_PH "\":%d"), NeoPoolIspHModule());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_REDOX "\":%d"), NeoPoolIsRedox());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CHLORINE "\":%d"), NeoPoolIsChlorine());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CONDUCTIVITY "\":%d"), NeoPoolIsConductivity());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_IONIZATION "\":%d"), NeoPoolIsIonization());
ResponseJsonEnd();
ResponseAppend_P(PSTR(",\"Relay\":{"));
ResponseAppend_P(PSTR( "\"" D_NEOPOOL_JSON_RELAY_PH_ACID "\":%d"), NeoPoolGetData(MBF_PAR_PH_ACID_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_PH_BASE "\":%d"), NeoPoolGetData(MBF_PAR_PH_BASE_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_RX "\":%d"), NeoPoolGetData(MBF_PAR_RX_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_CL "\":%d"), NeoPoolGetData(MBF_PAR_CL_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_CD "\":%d"), NeoPoolGetData(MBF_PAR_CD_RELAY_GPIO));
ResponseJsonEndEnd();
}
void CmndNeopoolSave(void) void CmndNeopoolSave(void)
{ {
if (NEOPOOL_MODBUS_OK == NeoPoolWriteRegisterWord(MBF_SAVE_TO_EEPROM, 1)) { if (NEOPOOL_MODBUS_OK == NeoPoolWriteRegisterWord(MBF_SAVE_TO_EEPROM, 1)) {