Refactor HX711 memory use

This commit is contained in:
Theo Arends 2024-09-10 15:59:25 +02:00
parent 07eb51764a
commit d8f01ed4c0
3 changed files with 191 additions and 178 deletions

View File

@ -5,7 +5,7 @@ All notable changes to this project will be documented in this file.
## [14.2.0.4]
### Added
- HX711 optional calibration precision option on command ``Sensor34 2 <weight in gram> <precision>`` where `<precision>` is 1 to 10 (#13983)
- HX711 optional calibration precision option on command ``Sensor34 2 <weight in gram> <precision>`` where `<precision>` is 1 to 20 (#13983)
- Matter support for Zigbee Occupancy and Light 0/1/2 (OnOff / Dimmer / White Color Temperature) (#22110)
- KNX additional KnxTx functions and define KNX_USE_DPT9 (#22071)

View File

@ -122,7 +122,7 @@ The latter links can be used for OTA upgrades too like ``OtaUrl https://ota.tasm
## Changelog v14.2.0.4
### Added
- Command ``SetOption69 1`` to enable Serial Bridge inverted Receive [#22000](https://github.com/arendst/Tasmota/issues/22000)
- HX711 optional calibration precision option on command ``Sensor34 2 <weight in gram> <precision>`` where `<precision>` is 1 to 10 [#13983](https://github.com/arendst/Tasmota/issues/13983)
- HX711 optional calibration precision option on command ``Sensor34 2 <weight in gram> <precision>`` where `<precision>` is 1 to 20 [#13983](https://github.com/arendst/Tasmota/issues/13983)
- Energy command ``PowerSet 60,230`` to calibrate both Current and Power with known resistive load of 60W at 230V using calibrated Voltage
- Energy command ``CurrentSet 60,230`` to calibrate both Power and Current with known resistive load of 60W at 230V using calibrated Voltage
- Energy Log level 4 message when (Calculated) Apparent Power is less than Active Power indicating wrong calibration [#20653](https://github.com/arendst/Tasmota/issues/20653)

View File

@ -44,7 +44,7 @@
#define HX_SCALE 120 // Default result of measured weight / reference weight when scale is 1
#endif
#ifndef HX711_CAL_PRECISION
#define HX711_CAL_PRECISION 1 // When calibration is to course, raise this value.
#define HX711_CAL_PRECISION 1 // When calibration is to course, raise this value to max 20 (otherwise uint32_t overflow)
#endif
@ -70,40 +70,40 @@
#define D_JSON_WEIGHT_ABSC_B "AbsConvB"
enum HxCalibrationSteps { HX_CAL_END, HX_CAL_LIMBO, HX_CAL_FINISH, HX_CAL_FAIL, HX_CAL_DONE, HX_CAL_FIRST, HX_CAL_RESET, HX_CAL_START };
enum HxCalibrationMsgs { HX_MSG_CAL_FAIL, HX_MSG_CAL_DONE, HX_MSG_CAL_REFERENCE, HX_MSG_CAL_REMOVE };
const char kHxCalibrationStates[] PROGMEM = D_HX_CAL_FAIL "|" D_HX_CAL_DONE "|" D_HX_CAL_REFERENCE "|" D_HX_CAL_REMOVE;
struct HX {
typedef struct Hx_t {
long reads[HX_SAMPLES];
long raw_empty = 0;
long raw_empty;
long raw_absolute;
long raw = 0;
long weight = 0;
long last_weight = 0;
long offset = 0;
long scale = 1;
long weight_diff = 0;
uint8_t type = 1;
uint8_t sample_count = 0;
uint8_t calibrate_step = HX_CAL_END;
uint8_t calibrate_timer = 0;
uint8_t calibrate_msg = 0;
long raw;
long weight;
long last_weight;
long offset;
long scale;
long weight_diff;
uint16_t weight_delta;
uint8_t sample_count;
uint8_t calibrate_step;
uint8_t calibrate_timer;
uint8_t calibrate_msg;
int8_t pin_sck;
int8_t pin_dout;
bool tare_flg = false;
bool weight_changed = false;
uint16_t weight_delta = 4;
} Hx;
bool tare_flg;
bool weight_changed;
} Hx_t;
Hx_t* Hx = nullptr;
/*********************************************************************************************/
bool HxIsReady(uint16_t timeout) {
// A reading can take up to 100 mS or 600mS after power on
uint32_t start = millis();
while ((digitalRead(Hx.pin_dout) == HIGH) && (millis() - start < timeout)) {
while ((digitalRead(Hx->pin_dout) == HIGH) && (millis() - start < timeout)) {
yield();
}
return (digitalRead(Hx.pin_dout) == LOW);
return (digitalRead(Hx->pin_dout) == LOW);
}
long HxRead(void) {
@ -113,17 +113,17 @@ long HxRead(void) {
uint8_t filler = 0x00;
// pulse the clock pin 24 times to read the data
data[2] = TasShiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
data[1] = TasShiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
data[0] = TasShiftIn(Hx.pin_dout, Hx.pin_sck, MSBFIRST);
data[2] = TasShiftIn(Hx->pin_dout, Hx->pin_sck, MSBFIRST);
data[1] = TasShiftIn(Hx->pin_dout, Hx->pin_sck, MSBFIRST);
data[0] = TasShiftIn(Hx->pin_dout, Hx->pin_sck, MSBFIRST);
// set the channel and the gain factor for the next reading using the clock pin
for (unsigned int i = 0; i < HX_GAIN_128; i++) {
digitalWrite(Hx.pin_sck, HIGH);
digitalWrite(Hx->pin_sck, HIGH);
#ifdef ESP32
delayMicroseconds(1);
#endif
digitalWrite(Hx.pin_sck, LOW);
digitalWrite(Hx->pin_sck, LOW);
#ifdef ESP32
delayMicroseconds(1);
#endif
@ -144,36 +144,34 @@ long HxRead(void) {
/*********************************************************************************************/
void HxTareInit(void) {
Hx.offset = (Settings->weight_user_tare != 0) ? Settings->weight_user_tare * Hx.scale : Settings->weight_offset;
if (0 == Hx.offset) {
Hx.tare_flg = true;
Hx->offset = (Settings->weight_user_tare != 0) ? Settings->weight_user_tare * Hx->scale : Settings->weight_offset;
if (0 == Hx->offset) {
Hx->tare_flg = true;
}
}
void HxCalibrationStateTextJson(uint8_t msg_id) {
char cal_text[30];
Hx.calibrate_msg = msg_id;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, GetTextIndexed(cal_text, sizeof(cal_text), Hx.calibrate_msg, kHxCalibrationStates));
Hx->calibrate_msg = msg_id;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, GetTextIndexed(cal_text, sizeof(cal_text), Hx->calibrate_msg, kHxCalibrationStates));
if (msg_id < 3) { MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("Sensor34")); }
if (msg_id < HX_MSG_CAL_REMOVE) { MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("Sensor34")); }
}
void SetWeightDelta(void) {
// backwards compatible: restore old default value of 4 grams
if (Settings->weight_change == 0) {
Hx.weight_delta = 4;
return;
// backwards compatible: restore old default value of 4 grams
Hx->weight_delta = 4;
}
else if (Settings->weight_change > 100) {
// map upper values 101-255 to
if (Settings->weight_change > 100) {
Hx.weight_delta = (Settings->weight_change - 100) * 10 + 100;
return;
Hx->weight_delta = (Settings->weight_change - 100) * 10 + 100;
}
else {
// map 1..100 to 0..99 grams
Hx.weight_delta = Settings->weight_change - 1;
Hx->weight_delta = Settings->weight_change - 1;
}
}
/*********************************************************************************************\
@ -203,64 +201,72 @@ void SetWeightDelta(void) {
bool HxCommand(void) {
bool serviced = true;
bool show_parms = true;
char argument[XdrvMailbox.data_len];
long value = 0;
for (uint32_t ca = 0; ca < XdrvMailbox.data_len; ca++) {
if ((' ' == XdrvMailbox.data[ca]) || ('=' == XdrvMailbox.data[ca])) { XdrvMailbox.data[ca] = ','; }
}
bool any_value = (ArgC() > 1);
if (any_value) { value = strtol(ArgV(argument, 2), nullptr, 10); }
long value;
char argument[32];
if (any_value) {
value = strtol(ArgV(argument, 2), nullptr, 10);
}
switch (XdrvMailbox.payload) {
case 1: // Reset scale
if (0 == Settings->weight_user_tare) {
Hx.tare_flg = true;
Hx->tare_flg = true;
Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, "Reset");
}
show_parms = false;
break;
case 2: // Calibrate
case 2: // Calibrate in gram and precision 1 to 10
if (any_value) {
Settings->weight_reference = value;
Settings->weight_reference = (value && (value < (Settings->weight_max * 1000))) ? value : HX_REFERENCE;
if (ArgC() > 2) {
value = strtol(ArgV(argument, 3), nullptr, 10);
Settings->weight_precision = (value && (value < 11)) ? value : HX711_CAL_PRECISION;
Settings->weight_precision = (value && (value <= 20)) ? value : HX711_CAL_PRECISION;
}
}
Hx.scale = 1; // Uncalibrated
Hx.sample_count = 0;
Hx.offset = 0; // Disable tare while calibrating
Hx.calibrate_step = HX_CAL_START;
Hx.calibrate_timer = 1;
// HxCalibrationStateTextJson(3); // D_HX_CAL_REMOVE
HxCalibrationStateTextJson(2); // D_HX_CAL_REFERENCE
Hx->scale = 1; // Uncalibrated
Hx->sample_count = 0;
Hx->offset = 0; // Disable tare while calibrating
Hx->calibrate_step = HX_CAL_START;
Hx->calibrate_timer = 1;
// HxCalibrationStateTextJson(HX_MSG_CAL_REMOVE);
HxCalibrationStateTextJson(HX_MSG_CAL_REFERENCE);
show_parms = false;
break;
case 3: // WeightRef to user reference
if (any_value) { Settings->weight_reference = value; }
case 3: // WeightRef to user reference in gram
if (any_value) {
Settings->weight_reference = (value && (value < (Settings->weight_max * 1000))) ? value : HX_REFERENCE;
}
break;
case 4: // WeightCal to user calculated value
if (any_value) {
Settings->weight_calibration = value; // Allow zero for re-init
Hx.scale = (value) ? Settings->weight_calibration : 1; // Fix divide by zero
Hx->scale = (value) ? Settings->weight_calibration : 1; // Fix divide by zero
}
break;
case 5: // WeightMax
if (any_value) { Settings->weight_max = value; }
case 5: // WeightMax in kg
if (any_value) {
Settings->weight_max = (value) ? value : HX_MAX_WEIGHT / 1000;
}
break;
case 6: // WeightItem
if (strchr(XdrvMailbox.data, ',') != nullptr) {
case 6: // WeightItem in gram
if (any_value) {
Settings->weight_item = (unsigned long)(CharToFloat(ArgV(argument, 2)) * 10);
}
break;
// case 7: // WeightSave
// Settings->energy_frequency_calibration = Hx.weight;
// Settings->energy_frequency_calibration = Hx->weight;
// Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_34, PSTR(D_JSON_DONE));
// show_parms = false;
// break;
case 8: // Json on weight change
if (any_value) { Settings->SensorBits1.hx711_json_weight_change = value &1; }
if (any_value) {
Settings->SensorBits1.hx711_json_weight_change = value &1;
}
break;
case 9: // WeightDelta
if (any_value) {
@ -270,16 +276,20 @@ bool HxCommand(void) {
break;
case 10: // Fixed (user) tare
if (any_value) {
Settings->weight_user_tare = (1 == value) ? Hx.raw : value;
Settings->weight_user_tare = (1 == value) ? Hx->raw : value;
HxTareInit();
Hx.weight_diff = Hx.weight_delta +1; // Force display of current weight
Hx->weight_diff = Hx->weight_delta +1; // Force display of current weight
}
break;
case 11: // AbsoluteConversion, A
if (any_value) { Settings->weight_absconv_a = value; }
if (any_value) {
Settings->weight_absconv_a = value;
}
break;
case 12: // AbsoluteConversion, B
if (any_value) { Settings->weight_absconv_b = value; }
if (any_value) {
Settings->weight_absconv_b = value;
}
break;
}
@ -303,19 +313,21 @@ bool HxCommand(void) {
/*********************************************************************************************/
long HxWeight(void) {
return (Hx.calibrate_step < HX_CAL_FAIL) ? Hx.weight : 0;
return (Hx->calibrate_step < HX_CAL_FAIL) ? Hx->weight : 0;
}
void HxInit(void) {
Hx.type = 0;
if (PinUsed(GPIO_HX711_DAT) && PinUsed(GPIO_HX711_SCK)) {
Hx.pin_sck = Pin(GPIO_HX711_SCK);
Hx.pin_dout = Pin(GPIO_HX711_DAT);
Hx = (Hx_t*)calloc(sizeof(Hx_t), 1); // Need calloc to reset registers to 0/false
if (nullptr == Hx) { return; }
pinMode(Hx.pin_sck, OUTPUT);
pinMode(Hx.pin_dout, INPUT);
// Hx->calibrate_step = HX_CAL_END; // HX_CAL_END = 0
digitalWrite(Hx.pin_sck, LOW);
Hx->pin_sck = Pin(GPIO_HX711_SCK);
Hx->pin_dout = Pin(GPIO_HX711_DAT);
pinMode(Hx->pin_sck, OUTPUT);
pinMode(Hx->pin_dout, INPUT);
digitalWrite(Hx->pin_sck, LOW);
SetWeightDelta();
@ -324,10 +336,12 @@ void HxInit(void) {
if (!Settings->weight_precision) { Settings->weight_precision = HX711_CAL_PRECISION; }
if (!Settings->weight_calibration) { Settings->weight_calibration = HX_SCALE * Settings->weight_precision; }
if (!Settings->weight_reference) { Settings->weight_reference = HX_REFERENCE; }
Hx.scale = Settings->weight_calibration;
Hx->scale = Settings->weight_calibration;
HxTareInit();
HxRead();
Hx.type = 1;
} else {
free(Hx);
Hx = nullptr;
}
}
}
@ -336,123 +350,123 @@ void HxEvery100mSecond(void) {
long raw = HxRead();
if (-1 == raw) { return; }
if (Hx.sample_count < HX_SAMPLES) { // Test for HxSaveBeforeRestart()
Hx.reads[Hx.sample_count] = raw;
if (Hx->sample_count < HX_SAMPLES) { // Test for HxSaveBeforeRestart()
Hx->reads[Hx->sample_count] = raw;
}
Hx.sample_count++;
if (HX_SAMPLES == Hx.sample_count) {
Hx.sample_count = 0;
Hx->sample_count++;
if (HX_SAMPLES == Hx->sample_count) {
Hx->sample_count = 0;
// Sort HX_SAMPLES
for (uint32_t i = 0; i < HX_SAMPLES; i++) {
for (uint32_t j = i + 1; j < HX_SAMPLES; j++) {
if (Hx.reads[j] > Hx.reads[i]) {
std::swap(Hx.reads[i], Hx.reads[j]);
if (Hx->reads[j] > Hx->reads[i]) {
std::swap(Hx->reads[i], Hx->reads[j]);
}
}
}
// Drop two lows and two highs from average
long sum_raw = 0;
for (uint32_t i = 2; i < HX_SAMPLES -2; i++) {
sum_raw += Hx.reads[i];
sum_raw += Hx->reads[i];
}
Hx.raw_absolute = (sum_raw / (HX_SAMPLES -4)) * Settings->weight_precision; // Uncalibrated value
Hx.raw = Hx.raw_absolute / Hx.scale; // grams
Hx->raw_absolute = (sum_raw / (HX_SAMPLES -4)) * Settings->weight_precision; // Uncalibrated value
Hx->raw = Hx->raw_absolute / Hx->scale; // grams
if ((0 == Settings->weight_user_tare) && Hx.tare_flg) { // Reset scale based on current load
Hx.tare_flg = false;
Settings->weight_offset = Hx.raw_absolute; // Save for restart use
Hx.offset = Hx.raw_absolute;
if ((0 == Settings->weight_user_tare) && Hx->tare_flg) { // Reset scale based on current load
Hx->tare_flg = false;
Settings->weight_offset = Hx->raw_absolute; // Save for restart use
Hx->offset = Hx->raw_absolute;
}
long value = Hx.raw_absolute - Hx.offset; // Uncalibrated value
Hx.weight = value / Hx.scale; // grams
if (Hx.weight < 0) { // We currently do not support negative weight
Hx.weight = 0;
long value = Hx->raw_absolute - Hx->offset; // Uncalibrated value
Hx->weight = value / Hx->scale; // grams
if (Hx->weight < 0) { // We currently do not support negative weight
Hx->weight = 0;
}
if (Hx.calibrate_step) {
Hx.calibrate_timer--;
if (Hx->calibrate_step) {
Hx->calibrate_timer--;
// AddLog(LOG_LEVEL_DEBUG, PSTR("HX7: Step %d, weight %d, last %d, raw %d, empty %d"), Hx.calibrate_step, Hx.weight, Hx.last_weight, Hx.raw, Hx.raw_empty);
// AddLog(LOG_LEVEL_DEBUG, PSTR("HX7: Step %d, weight %d, last %d, raw %d, empty %d"), Hx->calibrate_step, Hx->weight, Hx->last_weight, Hx->raw, Hx->raw_empty);
if (HX_CAL_START == Hx.calibrate_step) { // Skip reset just initiated
if (0 == Hx.offset) {
Hx.calibrate_step--; // HX_CAL_RESET
Hx.last_weight = Hx.weight; // Uncalibrated value
Hx.raw_empty = Hx.raw;
if (HX_CAL_START == Hx->calibrate_step) { // Skip reset just initiated
if (0 == Hx->offset) {
Hx->calibrate_step--; // HX_CAL_RESET
Hx->last_weight = Hx->weight; // Uncalibrated value
Hx->raw_empty = Hx->raw;
}
Hx.calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
Hx->calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
}
else if (HX_CAL_RESET == Hx.calibrate_step) { // Wait for stable reset
if (Hx.calibrate_timer) {
if (Hx.weight < Hx.last_weight -100) { // Load decrease detected
Hx.last_weight = Hx.weight;
Hx.raw_empty = Hx.raw;
// HxCalibrationStateTextJson(2); // D_HX_CAL_REFERENCE
else if (HX_CAL_RESET == Hx->calibrate_step) { // Wait for stable reset
if (Hx->calibrate_timer) {
if (Hx->weight < Hx->last_weight -100) { // Load decrease detected
Hx->last_weight = Hx->weight;
Hx->raw_empty = Hx->raw;
// HxCalibrationStateTextJson(HX_MSG_CAL_REFERENCE);
}
else if (Hx.weight > Hx.last_weight +100) { // Load increase detected
Hx.calibrate_step--; // HX_CAL_FIRST
Hx.calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
else if (Hx->weight > Hx->last_weight +100) { // Load increase detected
Hx->calibrate_step--; // HX_CAL_FIRST
Hx->calibrate_timer = HX_CAL_TIMEOUT * (10 / HX_SAMPLES);
}
} else {
Hx.calibrate_step = HX_CAL_FAIL;
Hx->calibrate_step = HX_CAL_FAIL;
}
}
else if (HX_CAL_FIRST == Hx.calibrate_step) { // Wait for first reference weight
if (Hx.calibrate_timer) {
if (Hx.weight > Hx.last_weight +100) {
Hx.calibrate_step--; // HX_CAL_DONE
else if (HX_CAL_FIRST == Hx->calibrate_step) { // Wait for first reference weight
if (Hx->calibrate_timer) {
if (Hx->weight > Hx->last_weight +100) {
Hx->calibrate_step--; // HX_CAL_DONE
}
} else {
Hx.calibrate_step = HX_CAL_FAIL;
Hx->calibrate_step = HX_CAL_FAIL;
}
}
else if (HX_CAL_DONE == Hx.calibrate_step) { // Second stable reference weight
if (Hx.weight > Hx.last_weight +100) {
Hx.calibrate_step = HX_CAL_FINISH; // Calibration done
Settings->weight_offset = Hx.raw_empty;
Hx.offset = Hx.raw_empty;
Settings->weight_calibration = (Hx.weight - Hx.raw_empty) / Settings->weight_reference; // 1 gram
Hx.weight = 0; // Reset calibration value
HxCalibrationStateTextJson(1); // D_HX_CAL_DONE
else if (HX_CAL_DONE == Hx->calibrate_step) { // Second stable reference weight
if (Hx->weight > Hx->last_weight +100) {
Hx->calibrate_step = HX_CAL_FINISH; // Calibration done
Settings->weight_offset = Hx->raw_empty;
Hx->offset = Hx->raw_empty;
Settings->weight_calibration = (Hx->weight - Hx->raw_empty) / Settings->weight_reference; // 1 gram
Hx->weight = 0; // Reset calibration value
HxCalibrationStateTextJson(HX_MSG_CAL_DONE);
} else {
Hx.calibrate_step = HX_CAL_FAIL;
Hx->calibrate_step = HX_CAL_FAIL;
}
}
if (HX_CAL_FAIL == Hx.calibrate_step) { // Calibration failed
Hx.calibrate_step--; // HX_CAL_FINISH
if (HX_CAL_FAIL == Hx->calibrate_step) { // Calibration failed
Hx->calibrate_step--; // HX_CAL_FINISH
HxTareInit();
HxCalibrationStateTextJson(0); // D_HX_CAL_FAIL
HxCalibrationStateTextJson(HX_MSG_CAL_FAIL);
}
if (HX_CAL_FINISH == Hx.calibrate_step) { // Calibration finished
Hx.calibrate_step--; // HX_CAL_LIMBO
Hx.calibrate_timer = 3 * (10 / HX_SAMPLES);
Hx.scale = Settings->weight_calibration;
if (HX_CAL_FINISH == Hx->calibrate_step) { // Calibration finished
Hx->calibrate_step--; // HX_CAL_LIMBO
Hx->calibrate_timer = 3 * (10 / HX_SAMPLES);
Hx->scale = Settings->weight_calibration;
if (Settings->weight_user_tare != 0) { // Re-enable fixed tare if needed
Settings->weight_user_tare = Hx.raw_empty / Hx.scale;
Settings->weight_user_tare = Hx->raw_empty / Hx->scale;
HxTareInit();
}
}
if (!Hx.calibrate_timer) {
Hx.calibrate_step = HX_CAL_END; // End of calibration
Hx.weight_diff = Hx.weight_delta +2;
if (!Hx->calibrate_timer) {
Hx->calibrate_step = HX_CAL_END; // End of calibration
Hx->weight_diff = Hx->weight_delta +2;
}
} else {
if (Settings->SensorBits1.hx711_json_weight_change) {
if (abs(Hx.weight - Hx.weight_diff) > Hx.weight_delta) { // Use weight_delta threshold to decrease "ghost" weights
Hx.weight_diff = Hx.weight;
Hx.weight_changed = true;
if (abs(Hx->weight - Hx->weight_diff) > Hx->weight_delta) { // Use weight_delta threshold to decrease "ghost" weights
Hx->weight_diff = Hx->weight;
Hx->weight_changed = true;
}
else if (Hx.weight_changed && (abs(Hx.weight - Hx.weight_diff) < Hx.weight_delta)) {
else if (Hx->weight_changed && (abs(Hx->weight - Hx->weight_diff) < Hx->weight_delta)) {
ResponseClear();
ResponseAppendTime();
HxShow(true);
ResponseJsonEnd();
MqttPublishTeleSensor();
Hx.weight_changed = false;
Hx->weight_changed = false;
}
}
}
@ -460,7 +474,7 @@ void HxEvery100mSecond(void) {
}
void HxSaveBeforeRestart(void) {
Hx.sample_count = HX_SAMPLES +1; // Stop updating Hx.weight
Hx->sample_count = HX_SAMPLES +1; // Stop updating Hx->weight
}
#ifdef USE_WEBSERVER
@ -477,18 +491,18 @@ void HxShow(bool json) {
uint16_t count = 0;
float weight = 0;
if (Hx.calibrate_step < HX_CAL_FAIL) {
if (Hx->calibrate_step < HX_CAL_FAIL) {
if ((Settings->weight_absconv_a != 0) && (Settings->weight_absconv_b != 0)) {
weight = (float)Settings->weight_absconv_a / 1e9 * Hx.raw_absolute + (float)Settings->weight_absconv_b / 1e6;
weight = (float)Settings->weight_absconv_a / 1e9 * Hx->raw_absolute + (float)Settings->weight_absconv_b / 1e6;
}
else {
if (Hx.weight && Settings->weight_item) {
count = (Hx.weight * 10) / Settings->weight_item;
if (Hx->weight && Settings->weight_item) {
count = (Hx->weight * 10) / Settings->weight_item;
if (count > 1) {
snprintf_P(scount, sizeof(scount), PSTR(",\"" D_JSON_COUNT "\":%d"), count);
}
}
weight = (float)Hx.weight / 1000; // kilograms
weight = (float)Hx->weight / 1000; // kilograms
}
}
char weight_chr[33];
@ -496,16 +510,16 @@ void HxShow(bool json) {
if (json) {
ResponseAppend_P(PSTR(",\"HX711\":{\"" D_JSON_WEIGHT "\":%s%s,\"" D_JSON_WEIGHT_RAW "\":%d,\"" D_JSON_WEIGHT_RAW_ABS "\":%d}"),
weight_chr, scount, Hx.raw, Hx.raw_absolute);
weight_chr, scount, Hx->raw, Hx->raw_absolute);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_HX711_WEIGHT, weight_chr);
if (count > 1) {
WSContentSend_PD(HTTP_HX711_COUNT, count);
}
if (Hx.calibrate_step) {
if (Hx->calibrate_step) {
char cal_text[30];
WSContentSend_PD(HTTP_HX711_CAL, GetTextIndexed(cal_text, sizeof(cal_text), Hx.calibrate_msg, kHxCalibrationStates));
WSContentSend_PD(HTTP_HX711_CAL, GetTextIndexed(cal_text, sizeof(cal_text), Hx->calibrate_msg, kHxCalibrationStates));
}
#endif // USE_WEBSERVER
}
@ -542,13 +556,13 @@ void HandleHxAction(void) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_HTTP D_CONFIGURE_HX711));
char stemp1[20];
char stemp1[32];
if (Webserver->hasArg("save")) {
String cmnd = F("Sensor34 6 ");
WebGetArg("p2", stemp1, sizeof(stemp1));
cmnd += (!strlen(stemp1)) ? 0 : (unsigned long)(CharToFloat(stemp1) * 1000);
ExecuteWebCommand((char*)cmnd.c_str());
unsigned long weight_item = (!strlen(stemp1)) ? 0 : (unsigned long)(CharToFloat(stemp1) * 1000);
snprintf_P(stemp1, sizeof(stemp1), PSTR("Sensor34 6,%d"), weight_item); // WeightItem
ExecuteWebCommand(stemp1);
HandleConfiguration();
return;
@ -563,11 +577,10 @@ void HandleHxAction(void) {
}
if (Webserver->hasArg("calibrate")) {
String cmnd = F(D_CMND_BACKLOG "0 Sensor34 3 ");
WebGetArg("p1", stemp1, sizeof(stemp1));
cmnd += (!strlen(stemp1)) ? 0 : (unsigned long)(CharToFloat(stemp1) * 1000);
cmnd += F(";Sensor34 2"); // Start calibration
ExecuteWebCommand((char*)cmnd.c_str());
unsigned long weight_ref = (!strlen(stemp1)) ? 0 : (unsigned long)(CharToFloat(stemp1) * 1000);
snprintf_P(stemp1, sizeof(stemp1), PSTR("Sensor34 2,%d"), weight_ref); // Start calibration
ExecuteWebCommand(stemp1);
HandleRoot(); // Return to main screen
return;
@ -593,7 +606,10 @@ void HandleHxAction(void) {
bool Xsns34(uint32_t function) {
bool result = false;
if (Hx.type) {
if (FUNC_INIT == function) {
HxInit();
}
else if (Hx) {
switch (function) {
case FUNC_EVERY_100_MSECOND:
HxEvery100mSecond();
@ -627,9 +643,6 @@ bool Xsns34(uint32_t function) {
break;
#endif // USE_HX711_GUI
#endif // USE_WEBSERVER
case FUNC_INIT:
HxInit();
break;
}
}
return result;