mirror of https://github.com/arendst/Tasmota.git
Merge branch 'development' into dev-arendst
This commit is contained in:
commit
dd3d9f3b21
|
@ -56,6 +56,7 @@ default_envs =
|
|||
framework = arduino
|
||||
board = esp01_1m
|
||||
board_build.flash_mode = dout
|
||||
board_build.ldscript = eagle.flash.1m.ld
|
||||
|
||||
platform = ${core_active.platform}
|
||||
platform_packages = ${core_active.platform_packages}
|
||||
|
|
|
@ -135,10 +135,9 @@ build_flags = ${esp82xx_defaults.build_flags}
|
|||
|
||||
[core_2_6_3]
|
||||
; *** Esp8266 core for Arduino version 2.6.3
|
||||
platform = espressif8266@2.3.2
|
||||
platform = espressif8266@2.3.3
|
||||
platform_packages =
|
||||
build_flags = ${esp82xx_defaults.build_flags}
|
||||
-Wl,-Teagle.flash.1m.ld
|
||||
-DBEARSSL_SSL_BASIC
|
||||
; NONOSDK221
|
||||
; -DPIO_FRAMEWORK_ARDUINO_ESPRESSIF_SDK221
|
||||
|
@ -180,12 +179,10 @@ build_flags = ${esp82xx_defaults.build_flags}
|
|||
|
||||
[tasmota_core_stage]
|
||||
; *** Esp8266 core for Arduino version stable beta
|
||||
platform = espressif8266@2.3.2
|
||||
platform = espressif8266@2.3.3
|
||||
platform_packages = framework-arduinoespressif8266 @ https://github.com/esp8266/Arduino.git#6be561617f645f6a2ae82b8211f6af8c43e834cf
|
||||
build_flags = ${esp82xx_defaults.build_flags}
|
||||
-Wl,-Teagle.flash.1m.ld
|
||||
-DBEARSSL_SSL_BASIC
|
||||
-DNOPRINTFLOAT
|
||||
; NONOSDK221
|
||||
; -DPIO_FRAMEWORK_ARDUINO_ESPRESSIF_SDK221
|
||||
; NONOSDK22x_190313
|
||||
|
@ -226,12 +223,10 @@ build_flags = ${esp82xx_defaults.build_flags}
|
|||
|
||||
[core_stage]
|
||||
; *** Esp8266 core for Arduino version latest beta
|
||||
platform = espressif8266@2.3.2
|
||||
platform = espressif8266@2.3.3
|
||||
platform_packages = framework-arduinoespressif8266 @ https://github.com/esp8266/Arduino.git
|
||||
board_build.ldscript = eagle.flash.1m.ld
|
||||
build_flags = ${esp82xx_defaults.build_flags}
|
||||
-DBEARSSL_SSL_BASIC
|
||||
-DNOPRINTFLOAT
|
||||
; NONOSDK221
|
||||
; -DPIO_FRAMEWORK_ARDUINO_ESPRESSIF_SDK221
|
||||
; NONOSDK22x_190313
|
||||
|
|
|
@ -3,6 +3,7 @@ platform = ${common.platform}
|
|||
platform_packages = ${common.platform_packages}
|
||||
framework = ${common.framework}
|
||||
board = ${common.board}
|
||||
board_build.ldscript = ${common.board_build.ldscript}
|
||||
board_build.flash_mode = ${common.board_build.flash_mode}
|
||||
board_build.f_cpu = ${common.board_build.f_cpu}
|
||||
build_unflags = ${common.build_unflags}
|
||||
|
|
|
@ -5,6 +5,8 @@
|
|||
- Revert most wifi connectivity changes introduced in 8.1.0.5 (#7746, #7602, #7621)
|
||||
- Add initial support for Sensors AHT10 and AHT15 by Martin Wagner (#7596)
|
||||
- Add support for Wemos Motor Shield V1 by Denis Sborets (#7764)
|
||||
- Fix Zigbee auto-increment transaction number (#7757)
|
||||
- Add Zigbee enhanced commands decoding, added ``ZbPing``
|
||||
|
||||
### 8.1.0.8 20200212
|
||||
|
||||
|
|
|
@ -489,12 +489,15 @@
|
|||
#define D_CMND_ZIGBEE_FORGET "Forget"
|
||||
#define D_CMND_ZIGBEE_SAVE "Save"
|
||||
#define D_CMND_ZIGBEE_LINKQUALITY "LinkQuality"
|
||||
#define D_CMND_ZIGBEE_ENDPOINT "Endpoint"
|
||||
#define D_CMND_ZIGBEE_READ "Read"
|
||||
#define D_CMND_ZIGBEE_SEND "Send"
|
||||
#define D_JSON_ZIGBEE_ZCL_SENT "ZbZCLSent"
|
||||
#define D_JSON_ZIGBEE_RECEIVED "ZbReceived"
|
||||
#define D_JSON_ZIGBEE_RECEIVED_LEGACY "ZigbeeReceived"
|
||||
#define D_CMND_ZIGBEE_BIND "Bind"
|
||||
#define D_CMND_ZIGBEE_PING "Ping"
|
||||
#define D_JSON_ZIGBEE_PING "ZbPing"
|
||||
|
||||
// Commands xdrv_25_A4988_Stepper.ino
|
||||
#define D_CMND_MOTOR "MOTOR"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Посока на вятъра"
|
||||
#define D_TX20_WIND_DEGREES "Степени на вятъра"
|
||||
#define D_TX20_WIND_SPEED "Скорост на вятъра"
|
||||
#define D_TX20_WIND_SPEED_AVG "Средна скорост на вятъра"
|
||||
#define D_TX20_WIND_SPEED_MIN "Мини. скорост на вятъра"
|
||||
#define D_TX20_WIND_SPEED_MAX "Макс. скорост на вятъра"
|
||||
#define D_TX20_NORTH "С"
|
||||
#define D_TX20_EAST "И"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Směr větru"
|
||||
#define D_TX20_WIND_DEGREES "Úhel větru"
|
||||
#define D_TX20_WIND_SPEED "Rychlost větru"
|
||||
#define D_TX20_WIND_SPEED_AVG "Průměrná rychlost větru"
|
||||
#define D_TX20_WIND_SPEED_MIN "Minimální rychlost větru"
|
||||
#define D_TX20_WIND_SPEED_MAX "Maximální rychlost větru"
|
||||
#define D_TX20_NORTH "S"
|
||||
#define D_TX20_EAST "V"
|
||||
|
|
|
@ -503,10 +503,12 @@
|
|||
#define D_CALIBRATION "Kalibrierung"
|
||||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Wind Richtung"
|
||||
#define D_TX20_WIND_DIRECTION "Windrichtung"
|
||||
#define D_TX20_WIND_DEGREES "Windrichtung Grad"
|
||||
#define D_TX20_WIND_SPEED "Windgeschwindigkeit"
|
||||
#define D_TX20_WIND_SPEED_AVG "Ø Windgeschwindigkeit"
|
||||
#define D_TX20_WIND_SPEED_MAX "max Windgeschwindigkeit"
|
||||
#define D_TX20_WIND_SPEED_AVG "Windgeschwindigkeit Ø"
|
||||
#define D_TX20_WIND_SPEED_MIN "Windgeschwindigkeit Min"
|
||||
#define D_TX20_WIND_SPEED_MAX "Windgeschwindigkeit Max"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "O"
|
||||
#define D_TX20_SOUTH "S"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Κατεύθυνση ανέμου"
|
||||
#define D_TX20_WIND_DEGREES "Βαθμός ανέμου"
|
||||
#define D_TX20_WIND_SPEED "Ταχύτητα ανέμου"
|
||||
#define D_TX20_WIND_SPEED_AVG "Μέση ταχύτητα ανέμου"
|
||||
#define D_TX20_WIND_SPEED_MIN "Ελάχιστη ταχύτητα ανέμου"
|
||||
#define D_TX20_WIND_SPEED_MAX "Μέγιστη ταχύτητα ανέμου"
|
||||
#define D_TX20_NORTH "Β"
|
||||
#define D_TX20_EAST "Α"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Wind Direction"
|
||||
#define D_TX20_WIND_DEGREES "Wind Degrees"
|
||||
#define D_TX20_WIND_SPEED "Wind Speed"
|
||||
#define D_TX20_WIND_SPEED_AVG "Wind Speed Avg"
|
||||
#define D_TX20_WIND_SPEED_MIN "Wind Speed Min"
|
||||
#define D_TX20_WIND_SPEED_MAX "Wind Speed Max"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Dirección del Viento"
|
||||
#define D_TX20_WIND_DEGREES "Ángulo del Viento"
|
||||
#define D_TX20_WIND_SPEED "Vel. del Viento"
|
||||
#define D_TX20_WIND_SPEED_AVG "Vel. Prom. del Viento"
|
||||
#define D_TX20_WIND_SPEED_MIN "Vel. Min. del Viento"
|
||||
#define D_TX20_WIND_SPEED_MAX "Vel. Max. del Viento"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_TX20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Direction du vent"
|
||||
#define D_TX20_WIND_DEGREES "Degré de vent"
|
||||
#define D_TX20_WIND_SPEED "Vitesse du vent"
|
||||
#define D_TX20_WIND_SPEED_AVG "Vitesse Moy."
|
||||
#define D_TX20_WIND_SPEED_MIN "Vitesse Min"
|
||||
#define D_TX20_WIND_SPEED_MAX "Vitesse Max"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "כיוון הרוח"
|
||||
#define D_TX20_WIND_DEGREES "זווית הרוח"
|
||||
#define D_TX20_WIND_SPEED "מהירות הרוח"
|
||||
#define D_TX20_WIND_SPEED_AVG "מהירות הרוח ממוצעת"
|
||||
#define D_TX20_WIND_SPEED_MIN "מהירות הרוח היא מינימלית"
|
||||
#define D_TX20_WIND_SPEED_MAX "מהירות הרוח מקסימלית"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Szélirány"
|
||||
#define D_TX20_WIND_DEGREES "Szél mértéke"
|
||||
#define D_TX20_WIND_SPEED "Szélsebesség"
|
||||
#define D_TX20_WIND_SPEED_AVG "Átlag szélsebesség"
|
||||
#define D_TX20_WIND_SPEED_MIN "Min. szélsebesség"
|
||||
#define D_TX20_WIND_SPEED_MAX "Max. szélsebesség"
|
||||
#define D_TX20_NORTH "É"
|
||||
#define D_TX20_EAST "K"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Direzione Vento"
|
||||
#define D_TX20_WIND_DEGREES "Angolo Vento"
|
||||
#define D_TX20_WIND_SPEED "Velocità Vento"
|
||||
#define D_TX20_WIND_SPEED_AVG "Velocità Media Vento"
|
||||
#define D_TX20_WIND_SPEED_MIN "Velocità Minima Vento"
|
||||
#define D_TX20_WIND_SPEED_MAX "Velocità Massima Vento"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,9 +504,11 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "풍향"
|
||||
#define D_TX20_WIND_DEGREES "바람 정도"
|
||||
#define D_TX20_WIND_SPEED "풍속"
|
||||
#define D_TX20_WIND_SPEED_AVG "평균 풍속"
|
||||
#define D_TX20_WIND_SPEED_MAX "최대 풍속"
|
||||
#define D_TX20_WIND_SPEED_MIN "풍속 최소"
|
||||
#define D_TX20_WIND_SPEED_MAX "풍속 최대"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
#define D_TX20_SOUTH "S"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Windrichting"
|
||||
#define D_TX20_WIND_DEGREES "Wind graad"
|
||||
#define D_TX20_WIND_SPEED "Windsnelheid"
|
||||
#define D_TX20_WIND_SPEED_AVG "Windsnelheid gemiddeld"
|
||||
#define D_TX20_WIND_SPEED_MIN "Windsnelhied minimum"
|
||||
#define D_TX20_WIND_SPEED_MAX "Windsnelhied maximaal"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Kierunek"
|
||||
#define D_TX20_WIND_DEGREES "Grad"
|
||||
#define D_TX20_WIND_SPEED "Prędkość"
|
||||
#define D_TX20_WIND_SPEED_AVG "Średnia prędkość"
|
||||
#define D_TX20_WIND_SPEED_MIN "Minimalna prędkość"
|
||||
#define D_TX20_WIND_SPEED_MAX "Maksymalna prędkość"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Direção do vento"
|
||||
#define D_TX20_WIND_DEGREES "Ângulo do vento"
|
||||
#define D_TX20_WIND_SPEED "Velocidade do vento"
|
||||
#define D_TX20_WIND_SPEED_AVG "Velocidade média do vento"
|
||||
#define D_TX20_WIND_SPEED_MIN "Velocidade do vento Mínima"
|
||||
#define D_TX20_WIND_SPEED_MAX "Velocidade do vento Máxima"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "L"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Direção do vento"
|
||||
#define D_TX20_WIND_DEGREES "Ângulo do vento"
|
||||
#define D_TX20_WIND_SPEED "Velocidade do vento"
|
||||
#define D_TX20_WIND_SPEED_AVG "Velocidade média do vento"
|
||||
#define D_TX20_WIND_SPEED_MIN "Velocidade mínima do vento"
|
||||
#define D_TX20_WIND_SPEED_MAX "Velocidade máxima do vento"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Wind Direction"
|
||||
#define D_TX20_WIND_DEGREES "Wind Degrees"
|
||||
#define D_TX20_WIND_SPEED "Wind Speed"
|
||||
#define D_TX20_WIND_SPEED_AVG "Wind Speed Avg"
|
||||
#define D_TX20_WIND_SPEED_MIN "Wind Speed Min"
|
||||
#define D_TX20_WIND_SPEED_MAX "Wind Speed Max"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Smer vetra"
|
||||
#define D_TX20_WIND_DEGREES "Uhol vetra"
|
||||
#define D_TX20_WIND_SPEED "Rýchlosť vetra"
|
||||
#define D_TX20_WIND_SPEED_AVG "Priemerná rýchlosť vetra"
|
||||
#define D_TX20_WIND_SPEED_MIN "Minimálna rýchlosť vetra"
|
||||
#define D_TX20_WIND_SPEED_MAX "Maximálna rýchlosť vetra"
|
||||
#define D_TX20_NORTH "S"
|
||||
#define D_TX20_EAST "V"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Vindriktning"
|
||||
#define D_TX20_WIND_DEGREES "Vindvinkel"
|
||||
#define D_TX20_WIND_SPEED "Vindstyrka"
|
||||
#define D_TX20_WIND_SPEED_AVG "Vindstyrka medel"
|
||||
#define D_TX20_WIND_SPEED_MIN "Vindstyrka min"
|
||||
#define D_TX20_WIND_SPEED_MAX "Vindstyrka max"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "Ö"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Wind Direction"
|
||||
#define D_TX20_WIND_DEGREES "Wind Degrees"
|
||||
#define D_TX20_WIND_SPEED "Wind Speed"
|
||||
#define D_TX20_WIND_SPEED_AVG "Wind Speed Avg"
|
||||
#define D_TX20_WIND_SPEED_MIN "Wind Speed Min"
|
||||
#define D_TX20_WIND_SPEED_MAX "Wind Speed Max"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Напрям вітру"
|
||||
#define D_TX20_WIND_DEGREES "Кут вітру"
|
||||
#define D_TX20_WIND_SPEED "Швидкість вітру"
|
||||
#define D_TX20_WIND_SPEED_AVG "Середня швидкість вітру"
|
||||
#define D_TX20_WIND_SPEED_MIN "Мінімальна швидкість вітру"
|
||||
#define D_TX20_WIND_SPEED_MAX "Максимальна швидкість вітру"
|
||||
#define D_TX20_NORTH "Пн"
|
||||
#define D_TX20_EAST "Сх"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "风向"
|
||||
#define D_TX20_WIND_DEGREES "风度"
|
||||
#define D_TX20_WIND_SPEED "风速"
|
||||
#define D_TX20_WIND_SPEED_AVG "平均风速"
|
||||
#define D_TX20_WIND_SPEED_MIN "最低风速"
|
||||
#define D_TX20_WIND_SPEED_MAX "最高风速"
|
||||
#define D_TX20_NORTH "北"
|
||||
#define D_TX20_EAST "东"
|
||||
|
|
|
@ -504,8 +504,10 @@
|
|||
|
||||
//xsns_35_tx20.ino
|
||||
#define D_TX20_WIND_DIRECTION "Wind Direction"
|
||||
#define D_TX20_WIND_DEGREES "Wind Degrees"
|
||||
#define D_TX20_WIND_SPEED "Wind Speed"
|
||||
#define D_TX20_WIND_SPEED_AVG "Wind Speed Avg"
|
||||
#define D_TX20_WIND_SPEED_MIN "Wind Speed Min"
|
||||
#define D_TX20_WIND_SPEED_MAX "Wind Speed Max"
|
||||
#define D_TX20_NORTH "N"
|
||||
#define D_TX20_EAST "E"
|
||||
|
|
|
@ -104,7 +104,7 @@ typedef union { // Restricted by MISRA-C Rule 18.4 bu
|
|||
uint32_t alexa_ct_range : 1; // bit 0 (v8.1.0.2) - SetOption82 - Reduced CT range for Alexa
|
||||
uint32_t zigbee_use_names : 1; // bit 1 (v8.1.0.4) - SetOption83 - Use FriendlyNames instead of ShortAddresses when possible
|
||||
uint32_t awsiot_shadow : 1; // bit 2 (v8.1.0.5) - SetOption84 - (AWS IoT) publish MQTT state to a device shadow
|
||||
uint32_t spare03 : 1;
|
||||
uint32_t device_groups_enabled : 1; // bit 3 (v8.1.0.9) - SetOption85 - Enable Device Groups
|
||||
uint32_t spare04 : 1;
|
||||
uint32_t spare05 : 1;
|
||||
uint32_t spare06 : 1;
|
||||
|
@ -466,13 +466,14 @@ struct SYSCFG {
|
|||
uint8_t sps30_inuse_hours; // F02
|
||||
uint8_t hotplug_scan; // F03
|
||||
uint8_t reserved1; // F04 - reserved for s-hadinger
|
||||
uint8_t free_f05[191]; // F05
|
||||
|
||||
uint32_t keeloq_master_msb; // FC4
|
||||
uint32_t keeloq_master_lsb; // FC8
|
||||
uint32_t keeloq_serial; // FCD
|
||||
uint32_t keeloq_count; // FD0
|
||||
uint8_t free_f05[183]; // F05
|
||||
|
||||
uint32_t keeloq_master_msb; // FBC
|
||||
uint32_t keeloq_master_lsb; // FC0
|
||||
uint32_t keeloq_serial; // FC4
|
||||
uint32_t keeloq_count; // FC8
|
||||
uint32_t device_group_share_in; // FCC - Bitmask of device group items imported
|
||||
uint32_t device_group_share_out; // FD0 - Bitmask of device group items exported
|
||||
uint32_t bootcount_reset_time; // FD4
|
||||
int adc_param4; // FD8
|
||||
uint32_t shutter_button[MAX_KEYS]; // FDC
|
||||
|
|
|
@ -277,6 +277,23 @@ bool RtcRebootValid(void)
|
|||
|
||||
/*********************************************************************************************\
|
||||
* Config - Flash
|
||||
*
|
||||
* Tasmota 1M flash usage
|
||||
* 0x00000000 - Unzipped binary bootloader
|
||||
* 0x00001000 - Unzipped binary code start
|
||||
* ::::
|
||||
* 0x000xxxxx - Unzipped binary code end
|
||||
* 0x000x1000 - First page used by Core OTA
|
||||
* ::::
|
||||
* 0x000F3000 - Tasmota Quick Power Cycle counter (SETTINGS_LOCATION - CFG_ROTATES) - First four bytes only
|
||||
* 0x000F4000 - First Tasmota rotating settings page
|
||||
* ::::
|
||||
* 0x000FA000 - Last Tasmota rotating settings page = Last page used by Core OTA
|
||||
* 0x000FB000 - Core SPIFFS end = Core EEPROM = Tasmota settings page during OTA and when no flash rotation is active (SETTINGS_LOCATION)
|
||||
* 0x000FC000 - SDK - Uses first 128 bytes for phy init data mirrored by Core in RAM. See core_esp8266_phy.cpp phy_init_data[128] = Core user_rf_cal_sector
|
||||
* 0x000FD000 - SDK - Uses scattered bytes from 0x340 (iTead use as settings storage from 0x000FD000)
|
||||
* 0x000FE000 - SDK - Uses scattered bytes from 0x340 (iTead use as mirrored settings storage from 0x000FE000)
|
||||
* 0x000FF000 - SDK - Uses at least first 32 bytes of this page - Tasmota Zigbee persistence from 0x000FF800 to 0x000FFFFF
|
||||
\*********************************************************************************************/
|
||||
|
||||
extern "C" {
|
||||
|
@ -745,8 +762,17 @@ void SettingsErase(uint8_t type)
|
|||
_sectorStart = SETTINGS_LOCATION - CFG_ROTATES; // Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF)
|
||||
_sectorEnd = ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE; // Flash size as seen by SDK
|
||||
}
|
||||
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " %d " D_UNIT_SECTORS), _sectorEnd - _sectorStart);
|
||||
#ifdef USE_WIFI_SDK_ERASE
|
||||
else if (4 == type) {
|
||||
_sectorStart = SETTINGS_LOCATION +1; // SDK phy area and Core calibration sector (0x0FC000)
|
||||
_sectorEnd = _sectorStart +1; // SDK end of phy area and Core calibration sector (0x0FCFFF)
|
||||
}
|
||||
else if (5 == type) {
|
||||
_sectorStart = (ESP.getFlashChipRealSize() / SPI_FLASH_SEC_SIZE) -4; // SDK phy area and Core calibration sector (0xxFC000)
|
||||
_sectorEnd = _sectorStart +1; // SDK end of phy area and Core calibration sector (0xxFCFFF)
|
||||
}
|
||||
#endif // USE_WIFI_SDK_ERASE
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " from 0x%08X to 0x%08X"), _sectorStart * SPI_FLASH_SEC_SIZE, (_sectorEnd * SPI_FLASH_SEC_SIZE) -1);
|
||||
|
||||
// EspErase(_sectorStart, _sectorEnd); // Arduino core and SDK - erases flash as seen by SDK
|
||||
EsptoolErase(_sectorStart, _sectorEnd); // Esptool - erases flash completely
|
||||
|
@ -755,11 +781,21 @@ void SettingsErase(uint8_t type)
|
|||
|
||||
void SettingsSdkErase(void)
|
||||
{
|
||||
WiFi.disconnect(true); // Delete SDK wifi config
|
||||
WiFi.disconnect(false); // Delete SDK wifi config
|
||||
SettingsErase(1);
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
#ifdef USE_WIFI_SDK_ERASE
|
||||
void SettingsSdkWifiErase(void)
|
||||
{
|
||||
WiFi.disconnect(false); // Delete SDK wifi config
|
||||
SettingsErase(4);
|
||||
SettingsErase(5);
|
||||
delay(200);
|
||||
}
|
||||
#endif // USE_WIFI_SDK_ERASE
|
||||
|
||||
/********************************************************************************************/
|
||||
|
||||
void SettingsDefault(void)
|
||||
|
|
|
@ -620,12 +620,17 @@ void WifiConnect(void)
|
|||
// Re-enabled from 6.3.0.7 with ESP.restart replaced by ESP.reset
|
||||
void WifiDisconnect(void)
|
||||
{
|
||||
#ifdef USE_WIFI_SDK_ERASE // Do not enable with DeepSleep as it will wear out flash
|
||||
SettingsSdkWifiErase();
|
||||
#else
|
||||
// Courtesy of EspEasy
|
||||
WiFi.persistent(true); // use SDK storage of SSID/WPA parameters
|
||||
ETS_UART_INTR_DISABLE();
|
||||
wifi_station_disconnect(); // this will store empty ssid/wpa into sdk storage
|
||||
ETS_UART_INTR_ENABLE();
|
||||
WiFi.persistent(false); // Do not use SDK storage of SSID/WPA parameters
|
||||
delay(100); // Flush anything in the network buffers.
|
||||
#endif // USE_WIFI_SDK_ERASE
|
||||
}
|
||||
|
||||
void WifiShutdown(void)
|
||||
|
|
|
@ -398,7 +398,7 @@ void MqttPublishPrefixTopic_P(uint32_t prefix, const char* subtopic, bool retain
|
|||
free(mqtt_save);
|
||||
|
||||
bool result = MqttClient.publish(romram, mqtt_data, false);
|
||||
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MQTT "Updated shadow: %s"), romram);
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_MQTT "Updated shadow: %s"), romram);
|
||||
yield(); // #3313
|
||||
}
|
||||
#endif // USE_MQTT_AWS_IOT
|
||||
|
|
|
@ -296,6 +296,7 @@ bool DomoticzMqttData(void)
|
|||
found = true;
|
||||
} else
|
||||
#endif // USE_SHUTTER
|
||||
#ifdef USE_LIGHT
|
||||
if (iscolordimmer && 10 == nvalue) { // Color_SetColor
|
||||
// https://www.domoticz.com/wiki/Domoticz_API/JSON_URL%27s#Set_a_light_to_a_certain_color_or_color_temperature
|
||||
JsonObject& color = domoticz["Color"];
|
||||
|
@ -333,8 +334,9 @@ bool DomoticzMqttData(void)
|
|||
snprintf_P(XdrvMailbox.topic, XdrvMailbox.index, PSTR("/" D_CMND_DIMMER));
|
||||
snprintf_P(XdrvMailbox.data, XdrvMailbox.data_len, PSTR("%d"), nvalue);
|
||||
found = true;
|
||||
}
|
||||
else if (1 == nvalue || 0 == nvalue) {
|
||||
} else
|
||||
#endif // USE_LIGHT
|
||||
if (1 == nvalue || 0 == nvalue) {
|
||||
if (((power >> i) &1) == (power_t)nvalue) {
|
||||
return true; // Stop loop
|
||||
}
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
|
||||
// contains some definitions for functions used before their declarations
|
||||
|
||||
void ZigbeeZCLSend(uint16_t dtsAddr, uint16_t clusterId, uint8_t endpoint, uint8_t cmdId, bool clusterSpecific, const uint8_t *msg, size_t len, bool disableDefResp = true, uint8_t transacId = 1);
|
||||
void ZigbeeZCLSend(uint16_t dtsAddr, uint16_t clusterId, uint8_t endpoint, uint8_t cmdId, bool clusterSpecific, const uint8_t *msg, size_t len, bool needResponse, uint8_t transacId);
|
||||
|
||||
|
||||
// Get an JSON attribute, with case insensitive key search
|
||||
|
|
|
@ -19,6 +19,10 @@
|
|||
|
||||
#ifdef USE_ZIGBEE
|
||||
|
||||
#ifndef ZIGBEERECEIVED
|
||||
#define ZIGBEERECEIVED 1
|
||||
#endif
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
|
@ -49,6 +53,8 @@ typedef struct Z_Device {
|
|||
// json buffer used for attribute reporting
|
||||
DynamicJsonBuffer *json_buffer;
|
||||
JsonObject *json;
|
||||
// sequence number for Zigbee frames
|
||||
uint8_t seqNumber;
|
||||
} Z_Device;
|
||||
|
||||
// All devices are stored in a Vector
|
||||
|
@ -96,6 +102,9 @@ public:
|
|||
// device just seen on the network, update the lastSeen field
|
||||
void updateLastSeen(uint16_t shortaddr);
|
||||
|
||||
// get next sequence number for (increment at each all)
|
||||
uint8_t getNextSeqNumber(uint16_t shortaddr);
|
||||
|
||||
// Dump json
|
||||
String dump(uint32_t dump_mode, uint16_t status_shortaddr = 0) const;
|
||||
|
||||
|
@ -133,6 +142,7 @@ public:
|
|||
private:
|
||||
std::vector<Z_Device> _devices = {};
|
||||
uint32_t _saveTimer = 0;
|
||||
uint8_t _seqNumber = 0; // global seqNumber if device is unknown
|
||||
|
||||
template < typename T>
|
||||
static bool findInVector(const std::vector<T> & vecOfElements, const T & element);
|
||||
|
@ -226,7 +236,9 @@ Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
|
|||
std::vector<uint32_t>(),
|
||||
0,0,0,0,
|
||||
nullptr,
|
||||
nullptr, nullptr };
|
||||
nullptr, nullptr,
|
||||
0, // seqNumber
|
||||
};
|
||||
device.json_buffer = new DynamicJsonBuffer();
|
||||
_devices.push_back(device);
|
||||
dirty();
|
||||
|
@ -532,6 +544,19 @@ void Z_Devices::updateLastSeen(uint16_t shortaddr) {
|
|||
_updateLastSeen(device);
|
||||
}
|
||||
|
||||
// get the next sequance number for the device, or use the global seq number if device is unknown
|
||||
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
|
||||
int32_t short_found = findShortAddr(shortaddr);
|
||||
if (short_found >= 0) {
|
||||
Z_Device &device = getShortAddr(shortaddr);
|
||||
device.seqNumber += 1;
|
||||
return device.seqNumber;
|
||||
} else {
|
||||
_seqNumber += 1;
|
||||
return _seqNumber;
|
||||
}
|
||||
}
|
||||
|
||||
// Per device timers
|
||||
//
|
||||
// Reset the timer for a specific device
|
||||
|
@ -704,18 +729,22 @@ void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
|
|||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"%s\":%s}}"), fname->c_str(), msg.c_str());
|
||||
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
|
||||
XdrvRulesProcess();
|
||||
#if ZIGBEERECEIVED
|
||||
// DEPRECATED TODO
|
||||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED_LEGACY "\":{\"%s\":%s}}"), fname->c_str(), msg.c_str());
|
||||
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
|
||||
XdrvRulesProcess();
|
||||
#endif
|
||||
} else {
|
||||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"0x%04X\":%s}}"), shortaddr, msg.c_str());
|
||||
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
|
||||
XdrvRulesProcess();
|
||||
#if ZIGBEERECEIVED
|
||||
// DEPRECATED TODO
|
||||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED_LEGACY "\":{\"0x%04X\":%s}}"), shortaddr, msg.c_str());
|
||||
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
|
||||
XdrvRulesProcess();
|
||||
#endif
|
||||
}
|
||||
// MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
|
||||
// XdrvRulesProcess();
|
||||
|
|
|
@ -486,18 +486,8 @@ void ZCLFrame::parseReadAttributes(JsonObject& json, uint8_t offset) {
|
|||
|
||||
|
||||
// Parse non-normalized attributes
|
||||
// The key is "s_" followed by 16 bits clusterId, "_" followed by 8 bits command id
|
||||
void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) {
|
||||
uint32_t i = offset;
|
||||
uint32_t len = _payload.len();
|
||||
|
||||
char attrid_str[12];
|
||||
snprintf_P(attrid_str, sizeof(attrid_str), PSTR("%04X!%02X"), _cluster_id, _cmd_id);
|
||||
|
||||
char hex_char[_payload.len()*2+2];
|
||||
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
|
||||
|
||||
json[attrid_str] = hex_char;
|
||||
convertClusterSpecific(json, _cluster_id, _cmd_id, _frame_control.b.direction, _payload);
|
||||
}
|
||||
|
||||
// return value:
|
||||
|
|
|
@ -19,34 +19,81 @@
|
|||
|
||||
#ifdef USE_ZIGBEE
|
||||
|
||||
//typedef int32_t (*Z_AttrConverter)(uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param);
|
||||
typedef struct Z_CommandConverter {
|
||||
const char * tasmota_cmd;
|
||||
const char * zcl_cmd;
|
||||
uint16_t cluster;
|
||||
uint8_t cmd; // normally 8 bits, 0xFF means it's a parameter
|
||||
uint8_t direction; // direction of the command. 0x01 client->server, 0x02 server->client, 0x03 both
|
||||
const char * param;
|
||||
} Z_CommandConverter;
|
||||
|
||||
typedef struct Z_XYZ_Var { // Holds values for vairables X, Y and Z
|
||||
uint32_t x = 0;
|
||||
uint32_t y = 0;
|
||||
uint32_t z = 0;
|
||||
uint8_t x_type = 0; // 0 = no value, 1 = 1 bytes, 2 = 2 bytes
|
||||
uint8_t y_type = 0;
|
||||
uint8_t z_type = 0;
|
||||
} Z_XYZ_Var;
|
||||
|
||||
// list of post-processing directives
|
||||
const Z_CommandConverter Z_Commands[] = {
|
||||
{ "Power", "0006!xx" }, // 0=Off, 1=On, 2=Toggle
|
||||
{ "Dimmer", "0008!04/xx0A00" }, // Move to Level with On/Off, xx=0..254 (255 is invalid)
|
||||
{ "Dimmer+", "0008!06/001902" }, // Step up by 10%, 0.2 secs
|
||||
{ "Dimmer-", "0008!06/011902" }, // Step down by 10%, 0.2 secs
|
||||
{ "DimmerStop", "0008!03" }, // Stop any Dimmer animation
|
||||
{ "ResetAlarm", "0009!00/xxyyyy" }, // Reset alarm (alarm code + cluster identifier)
|
||||
{ "ResetAllAlarms","0009!01" }, // Reset all alarms
|
||||
{ "Hue", "0300!00/xx000A00" }, // Move to Hue, shortest time, 1s
|
||||
{ "Sat", "0300!03/xx0A00" }, // Move to Sat
|
||||
{ "HueSat", "0300!06/xxyy0A00" }, // Hue, Sat
|
||||
{ "Color", "0300!07/xxxxyyyy0A00" }, // x, y (uint16)
|
||||
{ "CT", "0300!0A/xxxx0A00" }, // Color Temperature Mireds (uint16)
|
||||
{ "Shutter", "0102!xx" },
|
||||
{ "ShutterOpen", "0102!00" },
|
||||
{ "ShutterClose", "0102!01" },
|
||||
{ "ShutterStop", "0102!02" },
|
||||
{ "ShutterLift", "0102!05xx" }, // Lift percentage, 0%=open, 100%=closed
|
||||
{ "ShutterTilt", "0102!08xx" }, // Tilt percentage
|
||||
// Group adress commands
|
||||
{ "AddGroup", 0x0004, 0x00, 0x01, "xxxx00" }, // Add group id, group name is not supported
|
||||
{ "ViewGroup", 0x0004, 0x01, 0x01, "xxxx" }, // Ask for the group name
|
||||
{ "GetGroup", 0x0004, 0x02, 0x01, "01xxxx" }, // Get one group membership
|
||||
{ "GetAllGroups", 0x0004, 0x02, 0x01, "00" }, // Get all groups membership
|
||||
{ "RemoveGroup", 0x0004, 0x03, 0x01, "xxxx" }, // Remove one group
|
||||
{ "RemoveAllGroups",0x0004, 0x04, 0x01, "" }, // Remove all groups
|
||||
// Light & Shutter commands
|
||||
{ "Power", 0x0006, 0xFF, 0x01, "" }, // 0=Off, 1=On, 2=Toggle
|
||||
{ "Dimmer", 0x0008, 0x04, 0x01, "xx0A00" }, // Move to Level with On/Off, xx=0..254 (255 is invalid)
|
||||
{ "Dimmer+", 0x0008, 0x06, 0x01, "001902" }, // Step up by 10%, 0.2 secs
|
||||
{ "Dimmer-", 0x0008, 0x06, 0x01, "011902" }, // Step down by 10%, 0.2 secs
|
||||
{ "DimmerStop", 0x0008, 0x03, 0x01, "" }, // Stop any Dimmer animation
|
||||
{ "ResetAlarm", 0x0009, 0x00, 0x01, "xxyyyy" }, // Reset alarm (alarm code + cluster identifier)
|
||||
{ "ResetAllAlarms", 0x0009, 0x01, 0x01, "" }, // Reset all alarms
|
||||
{ "Hue", 0x0300, 0x00, 0x01, "xx000A00" }, // Move to Hue, shortest time, 1s
|
||||
{ "Sat", 0x0300, 0x03, 0x01, "xx0A00" }, // Move to Sat
|
||||
{ "HueSat", 0x0300, 0x06, 0x01, "xxyy0A00" }, // Hue, Sat
|
||||
{ "Color", 0x0300, 0x07, 0x01, "xxxxyyyy0A00" }, // x, y (uint16)
|
||||
{ "CT", 0x0300, 0x0A, 0x01, "xxxx0A00" }, // Color Temperature Mireds (uint16)
|
||||
{ "ShutterOpen", 0x0102, 0x00, 0x01, "" },
|
||||
{ "ShutterClose", 0x0102, 0x01, 0x01, "" },
|
||||
{ "ShutterStop", 0x0102, 0x02, 0x01, "" },
|
||||
{ "ShutterLift", 0x0102, 0x05, 0x01, "xx" }, // Lift percentage, 0%=open, 100%=closed
|
||||
{ "ShutterTilt", 0x0102, 0x08, 0x01, "xx" }, // Tilt percentage
|
||||
{ "Shutter", 0x0102, 0xFF, 0x01, "" },
|
||||
// Blitzwolf PIR
|
||||
{ "Occupancy", 0xEF00, 0x01, 0x01, "xx"}, // Specific decoder for Blitzwolf PIR, empty name means special treatment
|
||||
// Decoders only - normally not used to send, and names may be masked by previous definitions
|
||||
{ "Dimmer", 0x0008, 0x00, 0x01, "xx" },
|
||||
{ "DimmerMove", 0x0008, 0x01, 0x01, "xx0A" },
|
||||
{ "DimmerStep", 0x0008, 0x02, 0x01, "xx190A00" },
|
||||
{ "DimmerMove", 0x0008, 0x05, 0x01, "xx0A" },
|
||||
{ "Dimmer+", 0x0008, 0x06, 0x01, "00" },
|
||||
{ "Dimmer-", 0x0008, 0x06, 0x01, "01" },
|
||||
{ "DimmerStop", 0x0008, 0x07, 0x01, "" },
|
||||
{ "HueMove", 0x0300, 0x01, 0x01, "xx19" },
|
||||
{ "HueStep", 0x0300, 0x02, 0x01, "xx190A00" },
|
||||
{ "SatMove", 0x0300, 0x04, 0x01, "xx19" },
|
||||
{ "SatStep", 0x0300, 0x05, 0x01, "xx190A" },
|
||||
{ "ColorMove", 0x0300, 0x08, 0x01, "xxxxyyyy" },
|
||||
{ "ColorStep", 0x0300, 0x09, 0x01, "xxxxyyyy0A00" },
|
||||
// Tradfri
|
||||
{ "ArrowClick", 0x0005, 0x07, 0x01, "xx" }, // xx == 0x01 = left, 0x00 = right
|
||||
{ "ArrowHold", 0x0005, 0x08, 0x01, "xx" }, // xx == 0x01 = left, 0x00 = right
|
||||
{ "ArrowRelease", 0x0005, 0x09, 0x01, "" },
|
||||
// IAS - Intruder Alarm System + leak/fire detection
|
||||
{ "ZoneStatusChange",0x0500, 0x00, 0x02, "xxxxyyzz" }, // xxxx = zone status, yy = extended status, zz = zone id, Delay is ignored
|
||||
// responses for Group cluster commands
|
||||
{ "AddGroupResp", 0x0004, 0x00, 0x02, "xxyyyy" }, // xx = status, yy = group id
|
||||
{ "ViewGroupResp", 0x0004, 0x01, 0x02, "xxyyyy" }, // xx = status, yy = group id, name ignored
|
||||
{ "GetGroupResp", 0x0004, 0x02, 0x02, "xxyyzzzz" }, // xx = capacity, yy = count, zzzz = first group id, following groups ignored
|
||||
{ "RemoveGroup", 0x0004, 0x03, 0x02, "xxyyyy" }, // xx = status, yy = group id
|
||||
};
|
||||
|
||||
|
||||
#define ZLE(x) ((x) & 0xFF), ((x) >> 8) // Little Endian
|
||||
|
||||
// Below are the attributes we wand to read from each cluster
|
||||
|
@ -55,6 +102,7 @@ const uint8_t CLUSTER_0008[] = { ZLE(0x0000) }; // CurrentLevel
|
|||
const uint8_t CLUSTER_0009[] = { ZLE(0x0000) }; // AlarmCount
|
||||
const uint8_t CLUSTER_0300[] = { ZLE(0x0000), ZLE(0x0001), ZLE(0x0003), ZLE(0x0004), ZLE(0x0007) }; // Hue, Sat, X, Y, CT
|
||||
|
||||
// This callback is registered after a cluster specific command and sends a read command for the same cluster
|
||||
int32_t Z_ReadAttrCallback(uint16_t shortaddr, uint16_t cluster, uint16_t endpoint, uint32_t value) {
|
||||
size_t attrs_len = 0;
|
||||
const uint8_t* attrs = nullptr;
|
||||
|
@ -78,11 +126,10 @@ int32_t Z_ReadAttrCallback(uint16_t shortaddr, uint16_t cluster, uint16_t endpoi
|
|||
break;
|
||||
}
|
||||
if (attrs) {
|
||||
ZigbeeZCLSend(shortaddr, cluster, endpoint, ZCL_READ_ATTRIBUTES, false, attrs, attrs_len, false /* we do want a response */);
|
||||
ZigbeeZCLSend(shortaddr, cluster, endpoint, ZCL_READ_ATTRIBUTES, false, attrs, attrs_len, true /* we do want a response */, zigbee_devices.getNextSeqNumber(shortaddr));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// set a timer to read back the value in the future
|
||||
void zigbeeSetCommandTimer(uint16_t shortaddr, uint16_t cluster, uint16_t endpoint) {
|
||||
uint32_t wait_ms = 0;
|
||||
|
@ -105,22 +152,182 @@ void zigbeeSetCommandTimer(uint16_t shortaddr, uint16_t cluster, uint16_t endpoi
|
|||
}
|
||||
}
|
||||
|
||||
const __FlashStringHelper* zigbeeFindCommand(const char *command) {
|
||||
char parm_uc[16]; // used to convert JSON keys to uppercase
|
||||
// returns true if char is 'x', 'y' or 'z'
|
||||
inline bool isXYZ(char c) {
|
||||
return (c >= 'x') && (c <= 'z');
|
||||
}
|
||||
|
||||
// returns the Hex value of a digit [0-9A-Fa-f]
|
||||
// return: 0x00-0x0F
|
||||
// or -1 if cannot be parsed
|
||||
inline int8_t hexValue(char c) {
|
||||
if ((c >= '0') && (c <= '9')) {
|
||||
return c - '0';
|
||||
}
|
||||
if ((c >= 'A') && (c <= 'F')) {
|
||||
return 10 + c - 'A';
|
||||
}
|
||||
if ((c >= 'a') && (c <= 'f')) {
|
||||
return 10 + c - 'a';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Parse a Big Endian suite of max_len digits, or stops when a non-hex digit is found
|
||||
uint32_t parseHex_P(const char **data, size_t max_len = 8) {
|
||||
uint32_t ret = 0;
|
||||
for (uint32_t i = 0; i < max_len; i++) {
|
||||
int8_t v = hexValue(pgm_read_byte(*data));
|
||||
if (v < 0) { break; } // non hex digit, we stop parsing
|
||||
ret = (ret << 4) | v;
|
||||
*data += 1;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Parse a model like "xxyy00"
|
||||
// and fill x, y and z values
|
||||
// Little Endian encoding
|
||||
// On exit, xyz is updated, and x_type, y_type, z_type contain the number of bytes read for each
|
||||
void parseXYZ(const char *model, const SBuffer &payload, struct Z_XYZ_Var *xyz) {
|
||||
const char *p = model; // pointer to the model character
|
||||
uint32_t v = 0; // index in the payload bytes buffer
|
||||
char c = pgm_read_byte(p); // cur char
|
||||
while (c) {
|
||||
char c1 = pgm_read_byte(p+1); // next char
|
||||
if (!c1) { break; } // unexpected end of model
|
||||
if (isXYZ(c) && (c == c1) && (v < payload.len())) { // if char is [x-z] and followed by same char
|
||||
uint8_t val = payload.get8(v);
|
||||
switch (c) {
|
||||
case 'x':
|
||||
xyz->x = xyz->x | (val << (xyz->x_type * 8));
|
||||
xyz->x_type++;
|
||||
break;
|
||||
case 'y':
|
||||
xyz->y = xyz->y | (val << (xyz->y_type * 8));
|
||||
xyz->y_type++;
|
||||
break;
|
||||
case 'z':
|
||||
xyz->z = xyz->z | (val << (xyz->z_type * 8));
|
||||
xyz->z_type++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
p += 2;
|
||||
v++;
|
||||
c = pgm_read_byte(p);
|
||||
}
|
||||
}
|
||||
|
||||
// works on big endiand hex only
|
||||
// Returns if found:
|
||||
// - cluster number
|
||||
// - command number or 0xFF if command is part of the variable part
|
||||
// - the payload in the form of a HEX string with x/y/z variables
|
||||
|
||||
|
||||
|
||||
// Parse a cluster specific command, and try to convert into human readable
|
||||
void convertClusterSpecific(JsonObject& json, uint16_t cluster, uint8_t cmd, bool direction, const SBuffer &payload) {
|
||||
size_t hex_char_len = payload.len()*2+2;
|
||||
char *hex_char = (char*) malloc(hex_char_len);
|
||||
if (!hex_char) { return; }
|
||||
ToHex_P((unsigned char*)payload.getBuffer(), payload.len(), hex_char, hex_char_len);
|
||||
|
||||
const __FlashStringHelper* command_name = nullptr;
|
||||
Z_XYZ_Var xyz;
|
||||
|
||||
//AddLog_P2(LOG_LEVEL_INFO, PSTR(">>> len = %d - %02X%02X%02X"), payload.len(), payload.get8(0), payload.get8(1), payload.get8(2));
|
||||
for (uint32_t i = 0; i < sizeof(Z_Commands) / sizeof(Z_Commands[0]); i++) {
|
||||
const Z_CommandConverter *conv = &Z_Commands[i];
|
||||
if (conv->cluster == cluster) {
|
||||
// cluster match
|
||||
if ((0xFF == conv->cmd) || (cmd == conv->cmd)) {
|
||||
// cmd match
|
||||
if ((direction && (conv->direction & 0x02)) || (!direction && (conv->direction & 0x01))) {
|
||||
// check if we have a match for params too
|
||||
// Match if:
|
||||
// - payload exactly matches conv->param (conv->param may be longer)
|
||||
// - payload matches conv->param until 'x', 'y' or 'z'
|
||||
const char * p = conv->param;
|
||||
//AddLog_P2(LOG_LEVEL_INFO, PSTR(">>>++1 param = %s"), p);
|
||||
bool match = true;
|
||||
for (uint8_t i = 0; i < payload.len(); i++) {
|
||||
const char c1 = pgm_read_byte(p);
|
||||
const char c2 = pgm_read_byte(p+1);
|
||||
//AddLog_P2(LOG_LEVEL_INFO, PSTR(">>>++2 c1 = %c, c2 = %c"), c1, c2);
|
||||
if ((0x00 == c1) || isXYZ(c1)) {
|
||||
break;
|
||||
}
|
||||
const char * p2 = p;
|
||||
uint32_t nextbyte = parseHex_P(&p2, 2);
|
||||
//AddLog_P2(LOG_LEVEL_INFO, PSTR(">>>++3 parseHex_P = %02X"), nextbyte);
|
||||
if (nextbyte != payload.get8(i)) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
p += 2;
|
||||
}
|
||||
if (match) {
|
||||
command_name = (const __FlashStringHelper*) conv->tasmota_cmd;
|
||||
parseXYZ(conv->param, payload, &xyz);
|
||||
if (0xFF == conv->cmd) {
|
||||
// shift all values
|
||||
xyz.z = xyz.y;
|
||||
xyz.z_type = xyz.y_type;
|
||||
xyz.y = xyz.x;
|
||||
xyz.y_type = xyz.x_type;
|
||||
xyz.x = cmd;
|
||||
xyz.x_type = 1; // 1 byte
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// always report attribute in raw format
|
||||
// Format: "0001!06": "00" = "<cluster>!<cmd>": "<payload>" for commands to devices
|
||||
// Format: "0004<00": "00" = "<cluster><<cmd>": "<payload>" for commands to devices
|
||||
char attrid_str[12];
|
||||
snprintf_P(attrid_str, sizeof(attrid_str), PSTR("%04X%c%02X"), cluster, direction ? '<' : '!', cmd);
|
||||
json[attrid_str] = hex_char;
|
||||
free(hex_char);
|
||||
|
||||
if (command_name) {
|
||||
if (0 == xyz.x_type) {
|
||||
json[command_name] = true; // no parameter
|
||||
} else if (0 == xyz.y_type) {
|
||||
json[command_name] = xyz.x; // 1 parameter
|
||||
} else {
|
||||
// multiple answers, create an array
|
||||
JsonArray &arr = json.createNestedArray(command_name);
|
||||
arr.add(xyz.x);
|
||||
arr.add(xyz.y);
|
||||
if (xyz.z_type) {
|
||||
arr.add(xyz.z);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find the command details by command name
|
||||
// If not found:
|
||||
// - returns nullptr
|
||||
const __FlashStringHelper* zigbeeFindCommand(const char *command, uint16_t *cluster, uint16_t *cmd) {
|
||||
for (uint32_t i = 0; i < sizeof(Z_Commands) / sizeof(Z_Commands[0]); i++) {
|
||||
const Z_CommandConverter *conv = &Z_Commands[i];
|
||||
if (0 == strcasecmp_P(command, conv->tasmota_cmd)) {
|
||||
return (const __FlashStringHelper*) conv->zcl_cmd;
|
||||
*cluster = conv->cluster;
|
||||
*cmd = conv->cmd;
|
||||
return (const __FlashStringHelper*) conv->param;
|
||||
}
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
inline bool isXYZ(char c) {
|
||||
return (c >= 'x') && (c <= 'z');
|
||||
}
|
||||
|
||||
// take the lower 4 bits and turn it to an hex char
|
||||
inline char hexDigit(uint32_t h) {
|
||||
uint32_t nybble = h & 0x0F;
|
||||
|
|
|
@ -33,6 +33,7 @@ const uint8_t ZIGBEE_STATUS_NODE_DESC = 31; // Node descriptor
|
|||
const uint8_t ZIGBEE_STATUS_ACTIVE_EP = 32; // Endpoints descriptor
|
||||
const uint8_t ZIGBEE_STATUS_SIMPLE_DESC = 33; // Simple Descriptor (clusters)
|
||||
const uint8_t ZIGBEE_STATUS_DEVICE_INDICATION = 34; // Device announces its address
|
||||
const uint8_t ZIGBEE_STATUS_DEVICE_IEEE = 35; // Request of device address
|
||||
const uint8_t ZIGBEE_STATUS_CC_VERSION = 50; // Status: CC2530 ZNP Version
|
||||
const uint8_t ZIGBEE_STATUS_CC_INFO = 51; // Status: CC2530 Device Configuration
|
||||
const uint8_t ZIGBEE_STATUS_UNSUPPORTED_VERSION = 98; // Unsupported ZNP version
|
||||
|
|
|
@ -176,15 +176,24 @@ int32_t Z_ReceivePermitJoinStatus(int32_t res, const class SBuffer &buf) {
|
|||
return -1;
|
||||
}
|
||||
|
||||
// Send ZDO_IEEE_ADDR_REQ request to get IEEE long address
|
||||
void Z_SendIEEEAddrReq(uint16_t shortaddr) {
|
||||
uint8_t IEEEAddrReq[] = { Z_SREQ | Z_ZDO, ZDO_IEEE_ADDR_REQ,
|
||||
Z_B0(shortaddr), Z_B1(shortaddr), 0x00, 0x00 };
|
||||
|
||||
ZigbeeZNPSend(IEEEAddrReq, sizeof(IEEEAddrReq));
|
||||
}
|
||||
|
||||
// Send ACTIVE_EP_REQ to collect active endpoints for this address
|
||||
void Z_SendActiveEpReq(uint16_t shortaddr) {
|
||||
uint8_t ActiveEpReq[] = { Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ,
|
||||
Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) };
|
||||
|
||||
uint8_t NodeDescReq[] = { Z_SREQ | Z_ZDO, ZDO_NODE_DESC_REQ,
|
||||
Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) };
|
||||
|
||||
ZigbeeZNPSend(ActiveEpReq, sizeof(ActiveEpReq));
|
||||
|
||||
// uint8_t NodeDescReq[] = { Z_SREQ | Z_ZDO, ZDO_NODE_DESC_REQ,
|
||||
// Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) };
|
||||
|
||||
//ZigbeeZNPSend(NodeDescReq, sizeof(NodeDescReq)); Not sure this is useful
|
||||
}
|
||||
|
||||
|
@ -335,6 +344,40 @@ int32_t Z_ReceiveSimpleDesc(int32_t res, const class SBuffer &buf) {
|
|||
return -1;
|
||||
}
|
||||
|
||||
int32_t Z_ReceiveIEEEAddr(int32_t res, const class SBuffer &buf) {
|
||||
uint8_t status = buf.get8(2);
|
||||
Z_IEEEAddress ieeeAddr = buf.get64(3);
|
||||
Z_ShortAddress nwkAddr = buf.get16(11);
|
||||
// uint8_t startIndex = buf.get8(13);
|
||||
// uint8_t numAssocDev = buf.get8(14);
|
||||
|
||||
if (0 == status) { // SUCCESS
|
||||
zigbee_devices.updateDevice(nwkAddr, ieeeAddr);
|
||||
char hex[20];
|
||||
Uint64toHex(ieeeAddr, hex, 64);
|
||||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
|
||||
"\"Status\":%d,\"IEEEAddr\":\"%s\",\"ShortAddr\":\"0x%04X\""
|
||||
"}}"),
|
||||
ZIGBEE_STATUS_DEVICE_IEEE, hex, nwkAddr
|
||||
);
|
||||
|
||||
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
|
||||
XdrvRulesProcess();
|
||||
// Ping response
|
||||
const String * friendlyName = zigbee_devices.getFriendlyName(nwkAddr);
|
||||
if (friendlyName) {
|
||||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_PING "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""
|
||||
",\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), nwkAddr, friendlyName->c_str());
|
||||
} else {
|
||||
Response_P(PSTR("{\"" D_JSON_ZIGBEE_PING "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"}}"), nwkAddr);
|
||||
}
|
||||
|
||||
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
|
||||
XdrvRulesProcess();
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
int32_t Z_ReceiveEndDeviceAnnonce(int32_t res, const class SBuffer &buf) {
|
||||
Z_ShortAddress srcAddr = buf.get16(2);
|
||||
Z_ShortAddress nwkAddr = buf.get16(4);
|
||||
|
@ -451,6 +494,8 @@ int32_t Z_ReceiveAfIncomingMessage(int32_t res, const class SBuffer &buf) {
|
|||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZCL_RAW_RECEIVED ": {\"0x%04X\":%s}"), srcaddr, msg.c_str());
|
||||
|
||||
zcl_received.postProcessAttributes(srcaddr, json);
|
||||
// Add Endpoint
|
||||
json[F(D_CMND_ZIGBEE_ENDPOINT)] = srcendpoint;
|
||||
// Add linkquality
|
||||
json[F(D_CMND_ZIGBEE_LINKQUALITY)] = linkquality;
|
||||
|
||||
|
@ -482,6 +527,7 @@ ZBM(AREQ_END_DEVICE_TC_DEV_IND, Z_AREQ | Z_ZDO, ZDO_TC_DEV_IND) // 45CA
|
|||
ZBM(AREQ_PERMITJOIN_OPEN_XX, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND ) // 45CB
|
||||
ZBM(AREQ_ZDO_ACTIVEEPRSP, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP) // 4585
|
||||
ZBM(AREQ_ZDO_SIMPLEDESCRSP, Z_AREQ | Z_ZDO, ZDO_SIMPLE_DESC_RSP) // 4584
|
||||
ZBM(AREQ_ZDO_IEEE_ADDR_RSP, Z_AREQ | Z_ZDO, ZDO_IEEE_ADDR_RSP) // 4581
|
||||
|
||||
const Z_Dispatcher Z_DispatchTable[] PROGMEM = {
|
||||
{ AREQ_AF_INCOMING_MESSAGE, &Z_ReceiveAfIncomingMessage },
|
||||
|
@ -491,6 +537,7 @@ const Z_Dispatcher Z_DispatchTable[] PROGMEM = {
|
|||
{ AREQ_ZDO_NODEDESCRSP, &Z_ReceiveNodeDesc },
|
||||
{ AREQ_ZDO_ACTIVEEPRSP, &Z_ReceiveActiveEp },
|
||||
{ AREQ_ZDO_SIMPLEDESCRSP, &Z_ReceiveSimpleDesc },
|
||||
{ AREQ_ZDO_IEEE_ADDR_RSP, &Z_ReceiveIEEEAddr },
|
||||
};
|
||||
|
||||
int32_t Z_Recv_Default(int32_t res, const class SBuffer &buf) {
|
||||
|
|
|
@ -33,19 +33,22 @@ const char kZbCommands[] PROGMEM = D_PRFX_ZB "|" // prefix
|
|||
D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEE_PERMITJOIN "|"
|
||||
D_CMND_ZIGBEE_STATUS "|" D_CMND_ZIGBEE_RESET "|" D_CMND_ZIGBEE_SEND "|"
|
||||
D_CMND_ZIGBEE_PROBE "|" D_CMND_ZIGBEE_READ "|" D_CMND_ZIGBEEZNPRECEIVE "|"
|
||||
D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|" D_CMND_ZIGBEE_BIND ;
|
||||
D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|" D_CMND_ZIGBEE_BIND "|"
|
||||
D_CMND_ZIGBEE_PING ;
|
||||
|
||||
const char kZigbeeCommands[] PROGMEM = D_PRFX_ZIGBEE "|" // legacy prefix -- deprecated
|
||||
D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEE_PERMITJOIN "|"
|
||||
D_CMND_ZIGBEE_STATUS "|" D_CMND_ZIGBEE_RESET "|" D_CMND_ZIGBEE_SEND "|"
|
||||
D_CMND_ZIGBEE_PROBE "|" D_CMND_ZIGBEE_READ "|" D_CMND_ZIGBEEZNPRECEIVE "|"
|
||||
D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|" D_CMND_ZIGBEE_BIND ;
|
||||
D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|" D_CMND_ZIGBEE_BIND "|"
|
||||
D_CMND_ZIGBEE_PING ;
|
||||
|
||||
void (* const ZigbeeCommand[])(void) PROGMEM = {
|
||||
&CmndZbZNPSend, &CmndZbPermitJoin,
|
||||
&CmndZbStatus, &CmndZbReset, &CmndZbSend,
|
||||
&CmndZbProbe, &CmndZbRead, &CmndZbZNPReceive,
|
||||
&CmndZbForget, &CmndZbSave, &CmndZbName, &CmndZbBind
|
||||
&CmndZbForget, &CmndZbSave, &CmndZbName, &CmndZbBind,
|
||||
&CmndZbPing,
|
||||
};
|
||||
|
||||
int32_t ZigbeeProcessInput(class SBuffer &buf) {
|
||||
|
@ -344,7 +347,7 @@ void ZigbeeZNPSend(const uint8_t *msg, size_t len) {
|
|||
ToHex_P(msg, len, hex_char, sizeof(hex_char)));
|
||||
}
|
||||
|
||||
void ZigbeeZCLSend(uint16_t dtsAddr, uint16_t clusterId, uint8_t endpoint, uint8_t cmdId, bool clusterSpecific, const uint8_t *msg, size_t len, bool disableDefResp, uint8_t transacId) {
|
||||
void ZigbeeZCLSend(uint16_t dtsAddr, uint16_t clusterId, uint8_t endpoint, uint8_t cmdId, bool clusterSpecific, const uint8_t *msg, size_t len, bool needResponse, uint8_t transacId) {
|
||||
SBuffer buf(25+len);
|
||||
buf.add8(Z_SREQ | Z_AF); // 24
|
||||
buf.add8(AF_DATA_REQUEST); // 01
|
||||
|
@ -357,7 +360,7 @@ void ZigbeeZCLSend(uint16_t dtsAddr, uint16_t clusterId, uint8_t endpoint, uint8
|
|||
buf.add8(0x1E); // 1E radius
|
||||
|
||||
buf.add8(3 + len);
|
||||
buf.add8((disableDefResp ? 0x10 : 0x00) | (clusterSpecific ? 0x01 : 0x00)); // Frame Control Field
|
||||
buf.add8((needResponse ? 0x00 : 0x10) | (clusterSpecific ? 0x01 : 0x00)); // Frame Control Field
|
||||
buf.add8(transacId); // Transaction Sequance Number
|
||||
buf.add8(cmdId);
|
||||
if (len > 0) {
|
||||
|
@ -367,61 +370,16 @@ void ZigbeeZCLSend(uint16_t dtsAddr, uint16_t clusterId, uint8_t endpoint, uint8
|
|||
ZigbeeZNPSend(buf.getBuffer(), buf.len());
|
||||
}
|
||||
|
||||
inline int8_t hexValue(char c) {
|
||||
if ((c >= '0') && (c <= '9')) {
|
||||
return c - '0';
|
||||
}
|
||||
if ((c >= 'A') && (c <= 'F')) {
|
||||
return 10 + c - 'A';
|
||||
}
|
||||
if ((c >= 'a') && (c <= 'f')) {
|
||||
return 10 + c - 'a';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
uint32_t parseHex(const char **data, size_t max_len = 8) {
|
||||
uint32_t ret = 0;
|
||||
for (uint32_t i = 0; i < max_len; i++) {
|
||||
int8_t v = hexValue(**data);
|
||||
if (v < 0) { break; } // non hex digit, we stop parsing
|
||||
ret = (ret << 4) | v;
|
||||
*data += 1;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void zigbeeZCLSendStr(uint16_t dstAddr, uint8_t endpoint, const char *data) {
|
||||
|
||||
uint16_t cluster = 0x0000; // 0x0000 is a valid default value
|
||||
uint8_t cmd = ZCL_READ_ATTRIBUTES; // default command is READ_ATTRIBUTES
|
||||
bool clusterSpecific = false;
|
||||
// Parse 'cmd' in the form "AAAA_BB/CCCCCCCC" or "AAAA!BB/CCCCCCCC"
|
||||
// where AA is the cluster number, BBBB the command number, CCCC... the payload
|
||||
// First delimiter is '_' for a global command, or '!' for a cluster specific commanc
|
||||
cluster = parseHex(&data, 4);
|
||||
|
||||
// delimiter
|
||||
if (('_' == *data) || ('!' == *data)) {
|
||||
if ('!' == *data) { clusterSpecific = true; }
|
||||
data++;
|
||||
} else {
|
||||
ResponseCmndChar("Wrong delimiter for payload");
|
||||
return;
|
||||
}
|
||||
// parse cmd number
|
||||
cmd = parseHex(&data, 2);
|
||||
|
||||
// move to end of payload
|
||||
// delimiter is optional
|
||||
if ('/' == *data) { data++; } // skip delimiter
|
||||
|
||||
size_t size = strlen(data);
|
||||
void zigbeeZCLSendStr(uint16_t dstAddr, uint8_t endpoint, bool clusterSpecific,
|
||||
uint16_t cluster, uint8_t cmd, const char *param) {
|
||||
size_t size = param ? strlen(param) : 0;
|
||||
SBuffer buf((size+2)/2); // actual bytes buffer for data
|
||||
|
||||
while (*data) {
|
||||
uint8_t code = parseHex(&data, 2);
|
||||
buf.add8(code);
|
||||
if (param) {
|
||||
while (*param) {
|
||||
uint8_t code = parseHex_P(¶m, 2);
|
||||
buf.add8(code);
|
||||
}
|
||||
}
|
||||
|
||||
if (0 == endpoint) {
|
||||
|
@ -430,7 +388,7 @@ void zigbeeZCLSendStr(uint16_t dstAddr, uint8_t endpoint, const char *data) {
|
|||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: guessing endpoint 0x%02X"), endpoint);
|
||||
}
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: dstAddr 0x%04X, cluster 0x%04X, endpoint 0x%02X, cmd 0x%02X, data %s"),
|
||||
dstAddr, cluster, endpoint, cmd, data);
|
||||
dstAddr, cluster, endpoint, cmd, param);
|
||||
|
||||
if (0 == endpoint) {
|
||||
AddLog_P2(LOG_LEVEL_INFO, PSTR("ZbSend: unspecified endpoint"));
|
||||
|
@ -438,7 +396,7 @@ void zigbeeZCLSendStr(uint16_t dstAddr, uint8_t endpoint, const char *data) {
|
|||
}
|
||||
|
||||
// everything is good, we can send the command
|
||||
ZigbeeZCLSend(dstAddr, cluster, endpoint, cmd, clusterSpecific, buf.getBuffer(), buf.len());
|
||||
ZigbeeZCLSend(dstAddr, cluster, endpoint, cmd, clusterSpecific, buf.getBuffer(), buf.len(), false, zigbee_devices.getNextSeqNumber(dstAddr));
|
||||
// now set the timer, if any, to read back the state later
|
||||
if (clusterSpecific) {
|
||||
zigbeeSetCommandTimer(dstAddr, cluster, endpoint);
|
||||
|
@ -467,8 +425,12 @@ void CmndZbSend(void) {
|
|||
static char delim[] = ", "; // delimiters for parameters
|
||||
uint16_t device = 0xFFFF; // 0xFFFF is broadcast, so considered valid
|
||||
uint8_t endpoint = 0x00; // 0x00 is invalid for the dst endpoint
|
||||
// Command elements
|
||||
uint16_t cluster = 0;
|
||||
uint8_t cmd = 0;
|
||||
String cmd_str = ""; // the actual low-level command, either specified or computed
|
||||
|
||||
// parse JSON
|
||||
const JsonVariant &val_device = getCaseInsensitive(json, PSTR("Device"));
|
||||
if (nullptr != &val_device) {
|
||||
device = zigbee_devices.parseDeviceParam(val_device.as<char*>());
|
||||
|
@ -496,8 +458,9 @@ void CmndZbSend(void) {
|
|||
String key = it->key;
|
||||
JsonVariant& value = it->value;
|
||||
uint32_t x = 0, y = 0, z = 0;
|
||||
uint16_t cmd_var;
|
||||
|
||||
const __FlashStringHelper* tasmota_cmd = zigbeeFindCommand(key.c_str());
|
||||
const __FlashStringHelper* tasmota_cmd = zigbeeFindCommand(key.c_str(), &cluster, &cmd_var);
|
||||
if (tasmota_cmd) {
|
||||
cmd_str = tasmota_cmd;
|
||||
} else {
|
||||
|
@ -533,9 +496,16 @@ void CmndZbSend(void) {
|
|||
}
|
||||
}
|
||||
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_template = %s"), cmd_str.c_str());
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_template = %s"), cmd_str.c_str());
|
||||
if (0xFF == cmd_var) { // if command number is a variable, replace it with x
|
||||
cmd = x;
|
||||
x = y; // and shift other variables
|
||||
y = z;
|
||||
} else {
|
||||
cmd = cmd_var; // or simply copy the cmd number
|
||||
}
|
||||
cmd_str = zigbeeCmdAddParams(cmd_str.c_str(), x, y, z); // fill in parameters
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_final = %s"), cmd_str.c_str());
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_final = %s"), cmd_str.c_str());
|
||||
} else {
|
||||
// we have zero command, pass through until last error for missing command
|
||||
}
|
||||
|
@ -546,9 +516,9 @@ void CmndZbSend(void) {
|
|||
// we have an unsupported command type, just ignore it and fallback to missing command
|
||||
}
|
||||
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbCmd_actual: ZigbeeZCLSend {\"device\":\"0x%04X\",\"endpoint\":%d,\"send\":\"%s\"}"),
|
||||
device, endpoint, cmd_str.c_str());
|
||||
zigbeeZCLSendStr(device, endpoint, cmd_str.c_str());
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbCmd_actual: ZigbeeZCLSend {\"device\":\"0x%04X\",\"endpoint\":%d,\"send\":\"%04X!%02X/%s\"}"),
|
||||
device, endpoint, cluster, cmd, cmd_str.c_str());
|
||||
zigbeeZCLSendStr(device, endpoint, true, cluster, cmd, cmd_str.c_str());
|
||||
} else {
|
||||
Response_P(PSTR("Missing zigbee 'Send'"));
|
||||
return;
|
||||
|
@ -614,16 +584,28 @@ void CmndZbBind(void) {
|
|||
|
||||
// Probe a specific device to get its endpoints and supported clusters
|
||||
void CmndZbProbe(void) {
|
||||
CmndZbProbeOrPing(true);
|
||||
}
|
||||
|
||||
void CmndZbProbeOrPing(boolean probe) {
|
||||
if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; }
|
||||
uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data);
|
||||
if (0x0000 == shortaddr) { ResponseCmndChar("Unknown device"); return; }
|
||||
if (0xFFFF == shortaddr) { ResponseCmndChar("Invalid parameter"); return; }
|
||||
|
||||
// everything is good, we can send the command
|
||||
Z_SendActiveEpReq(shortaddr);
|
||||
Z_SendIEEEAddrReq(shortaddr);
|
||||
if (probe) {
|
||||
Z_SendActiveEpReq(shortaddr);
|
||||
}
|
||||
ResponseCmndDone();
|
||||
}
|
||||
|
||||
// Ping a device, actually a simplified version of ZbProbe
|
||||
void CmndZbPing(void) {
|
||||
CmndZbProbeOrPing(false);
|
||||
}
|
||||
|
||||
// Specify, read or erase a Friendly Name
|
||||
void CmndZbName(void) {
|
||||
// Syntax is:
|
||||
|
@ -728,8 +710,13 @@ void CmndZbRead(void) {
|
|||
}
|
||||
}
|
||||
|
||||
if (0 == endpoint) { // try to compute the endpoint
|
||||
endpoint = zigbee_devices.findClusterEndpointIn(device, cluster);
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: guessing endpoint 0x%02X"), endpoint);
|
||||
}
|
||||
|
||||
if ((0 != endpoint) && (attrs_len > 0)) {
|
||||
ZigbeeZCLSend(device, cluster, endpoint, ZCL_READ_ATTRIBUTES, false, attrs, attrs_len, false /* we do want a response */);
|
||||
ZigbeeZCLSend(device, cluster, endpoint, ZCL_READ_ATTRIBUTES, false, attrs, attrs_len, true /* we do want a response */, zigbee_devices.getNextSeqNumber(device));
|
||||
ResponseCmndDone();
|
||||
} else {
|
||||
ResponseCmndChar("Missing parameters");
|
||||
|
|
|
@ -48,7 +48,7 @@ void (* const ShutterCommand[])(void) PROGMEM = {
|
|||
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay,
|
||||
&CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime};
|
||||
|
||||
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"Direction\":%d}";
|
||||
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"Direction\":%d,\"Target\":%d}";
|
||||
const char JSON_SHUTTER_BUTTON[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Button%d\":%d}";
|
||||
|
||||
#include <Ticker.h>
|
||||
|
@ -70,7 +70,7 @@ struct SHUTTER {
|
|||
int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down
|
||||
uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE
|
||||
int16_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec.
|
||||
int16_t pwm_frequency; // frequency of PWN for stepper motors
|
||||
int16_t pwm_frequency[MAX_SHUTTERS]; // frequency of PWN for stepper motors
|
||||
uint16_t max_pwm_frequency = 1000; // maximum of PWM frequency for openig the shutter. depend on the motor and drivers
|
||||
uint16_t max_close_pwm_frequency[MAX_SHUTTERS];// maximum of PWM frequency for closeing the shutter. depend on the motor and drivers
|
||||
uint8_t skip_relay_change; // avoid overrun at endstops
|
||||
|
@ -82,17 +82,18 @@ void ShutterLogPos(uint32_t i)
|
|||
char stemp2[10];
|
||||
dtostrfd((float)Shutter.time[i] / steps_per_second, 2, stemp2);
|
||||
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d"),
|
||||
i+1, Shutter.real_position[i], Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2, Shutter.pwm_frequency);
|
||||
i+1, Shutter.real_position[i], Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2, Shutter.pwm_frequency[i]);
|
||||
}
|
||||
|
||||
void ShutterRtc50mS(void)
|
||||
{
|
||||
for (uint32_t i = 0; i < shutters_present; i++) {
|
||||
for (uint8_t i = 0; i < shutters_present; i++) {
|
||||
Shutter.time[i]++;
|
||||
if (Shutter.accelerator[i]) {
|
||||
Shutter.pwm_frequency += Shutter.accelerator[i];
|
||||
Shutter.pwm_frequency = tmax(0,tmin(Shutter.direction[i]==1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i],Shutter.pwm_frequency));
|
||||
analogWriteFreq(Shutter.pwm_frequency);
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: accelerator i=%d -> %d"),i, Shutter.accelerator[i]);
|
||||
Shutter.pwm_frequency[i] += Shutter.accelerator[i];
|
||||
Shutter.pwm_frequency[i] = tmax(0,tmin(Shutter.direction[i]==1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i],Shutter.pwm_frequency[i]));
|
||||
analogWriteFreq(Shutter.pwm_frequency[i]);
|
||||
analogWrite(pin[GPIO_PWM1+i], 50);
|
||||
}
|
||||
}
|
||||
|
@ -102,8 +103,6 @@ void ShutterRtc50mS(void)
|
|||
|
||||
int32_t ShutterPercentToRealPosition(uint32_t percent, uint32_t index)
|
||||
{
|
||||
if (0 == percent) return 0;
|
||||
if (100 == percent) return Shutter.open_max[index];
|
||||
if (Settings.shutter_set50percent[index] != 50) {
|
||||
return (percent <= 5) ? Settings.shuttercoeff[2][index] * percent : Settings.shuttercoeff[1][index] * percent + Settings.shuttercoeff[0][index];
|
||||
} else {
|
||||
|
@ -138,8 +137,6 @@ int32_t ShutterPercentToRealPosition(uint32_t percent, uint32_t index)
|
|||
|
||||
uint8_t ShutterRealToPercentPosition(int32_t realpos, uint32_t index)
|
||||
{
|
||||
if (0 >= realpos) return 0;
|
||||
if (Shutter.open_max[index] <= realpos) return 100;
|
||||
if (Settings.shutter_set50percent[index] != 50) {
|
||||
return (Settings.shuttercoeff[2][index] * 5 > realpos) ? SHT_DIV_ROUND(realpos, Settings.shuttercoeff[2][index]) : SHT_DIV_ROUND(realpos-Settings.shuttercoeff[0][index], Settings.shuttercoeff[1][index]);
|
||||
} else {
|
||||
|
@ -203,8 +200,9 @@ void ShutterInit(void)
|
|||
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE;
|
||||
if ((pin[GPIO_PWM1+i] < 99) && (pin[GPIO_CNTR1+i] < 99)) {
|
||||
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE_STEPPER;
|
||||
Shutter.pwm_frequency = 0;
|
||||
analogWriteFreq(Shutter.pwm_frequency);
|
||||
Shutter.pwm_frequency[i] = 0;
|
||||
Shutter.accelerator[i] = 0;
|
||||
analogWriteFreq(Shutter.pwm_frequency[i]);
|
||||
analogWrite(pin[GPIO_PWM1+i], 50);
|
||||
}
|
||||
}
|
||||
|
@ -256,29 +254,24 @@ void ShutterInit(void)
|
|||
|
||||
void ShutterReportPosition(bool always)
|
||||
{
|
||||
uint32_t shutter_moving = 0;
|
||||
Response_P(PSTR("{"));
|
||||
for (uint32_t i = 0; i < shutters_present; i++) {
|
||||
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d"), i+1,Shutter.real_position[i]);
|
||||
uint32_t position = ShutterRealToPercentPosition(Shutter.real_position[i], i);
|
||||
if (Shutter.direction[i] != 0) {
|
||||
shutter_moving = 1;
|
||||
rules_flag.shutter_moving = 1;
|
||||
ShutterLogPos(i);
|
||||
}
|
||||
if (i) { ResponseAppend_P(PSTR(",")); }
|
||||
ResponseAppend_P(JSON_SHUTTER_POS, i+1, (Settings.shutter_options[i] & 1) ? 100-position : position, Shutter.direction[i]);
|
||||
ResponseAppend_P(JSON_SHUTTER_POS, i+1, (Settings.shutter_options[i] & 1) ? 100-position : position, Shutter.direction[i], ShutterRealToPercentPosition(Shutter.target_position[i], i));
|
||||
}
|
||||
ResponseJsonEnd();
|
||||
if (always || (1 == shutter_moving)) {
|
||||
if (always || (rules_flag.shutter_moving)) {
|
||||
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_PRFX_SHUTTER));
|
||||
XdrvRulesProcess();
|
||||
}
|
||||
if (rules_flag.shutter_moving > shutter_moving) {
|
||||
rules_flag.shutter_moved = 1;
|
||||
} else {
|
||||
rules_flag.shutter_moved = 0;
|
||||
}
|
||||
rules_flag.shutter_moving = shutter_moving;
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), rules_flag.shutter_moving, rules_flag.shutter_moved);
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), rules_flag.shutter_moving, rules_flag.shutter_moved);
|
||||
|
||||
}
|
||||
|
||||
void ShutterLimitRealAndTargetPositions(uint32_t i) {
|
||||
|
@ -304,22 +297,22 @@ void ShutterUpdatePosition(void)
|
|||
|
||||
int32_t max_frequency = Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i];
|
||||
int32_t max_freq_change_per_sec = Shutter.max_pwm_frequency*steps_per_second / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1);
|
||||
int32_t min_runtime_ms = Shutter.pwm_frequency*1000 / max_freq_change_per_sec;
|
||||
int32_t min_runtime_ms = Shutter.pwm_frequency[i]*1000 / max_freq_change_per_sec;
|
||||
int32_t velocity = Shutter.direction[i] == 1 ? 100 : Shutter.close_velocity[i];
|
||||
int32_t minstopway = min_runtime_ms * velocity / 100 * Shutter.pwm_frequency / max_frequency * Shutter.direction[i] ;
|
||||
int32_t minstopway = min_runtime_ms * velocity / 100 * Shutter.pwm_frequency[i] / max_frequency * Shutter.direction[i] ;
|
||||
|
||||
int32_t next_possible_stop = Shutter.real_position[i] + minstopway ;
|
||||
stop_position_delta =200 * Shutter.pwm_frequency/max_frequency + Shutter.direction[i] * (next_possible_stop - Shutter.target_position[i]);
|
||||
stop_position_delta =200 * Shutter.pwm_frequency[i]/max_frequency + Shutter.direction[i] * (next_possible_stop - Shutter.target_position[i]);
|
||||
//Shutter.accelerator[i] = tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200);
|
||||
//int32_t act_freq_change = max_freq_change_per_sec/20;
|
||||
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: time: %d, velocity %d, minstopway %d,cur_freq %d, max_frequency %d, act_freq_change %d, min_runtime_ms %d, act.pos %d, next_stop %d, target: %d"),Shutter.time[i],velocity,minstopway,
|
||||
Shutter.pwm_frequency,max_frequency, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop,Shutter.target_position[i]);
|
||||
Shutter.pwm_frequency[i],max_frequency, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop,Shutter.target_position[i]);
|
||||
|
||||
if (Shutter.accelerator[i] < 0 || next_possible_stop * Shutter.direction[i] > Shutter.target_position[i] * Shutter.direction[i] ) {
|
||||
|
||||
Shutter.accelerator[i] = - tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*12/200);
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Ramp down: acc: %d"), Shutter.accelerator[i]);
|
||||
} else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_frequency == max_frequency) {
|
||||
} else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_frequency[i] == max_frequency) {
|
||||
Shutter.accelerator[i] = 0;
|
||||
}
|
||||
} else {
|
||||
|
@ -343,13 +336,13 @@ void ShutterUpdatePosition(void)
|
|||
case SHT_OFF_ON__OPEN_CLOSE_STEPPER:
|
||||
missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) - RtcSettings.pulse_counter[i];
|
||||
//prepare for stop PWM
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_frequency);
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_frequency[i]);
|
||||
Shutter.accelerator[i] = 0;
|
||||
Shutter.pwm_frequency = Shutter.pwm_frequency > 250 ? 250 : Shutter.pwm_frequency;
|
||||
analogWriteFreq(Shutter.pwm_frequency);
|
||||
Shutter.pwm_frequency[i] = Shutter.pwm_frequency[i] > 250 ? 250 : Shutter.pwm_frequency[i];
|
||||
analogWriteFreq(Shutter.pwm_frequency[i]);
|
||||
analogWrite(pin[GPIO_PWM1+i], 50);
|
||||
Shutter.pwm_frequency = 0;
|
||||
analogWriteFreq(Shutter.pwm_frequency);
|
||||
Shutter.pwm_frequency[i] = 0;
|
||||
analogWriteFreq(Shutter.pwm_frequency[i]);
|
||||
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) {
|
||||
delay(1);
|
||||
}
|
||||
|
@ -391,6 +384,7 @@ void ShutterUpdatePosition(void)
|
|||
|
||||
Shutter.direction[i] = 0;
|
||||
ShutterReportPosition(true);
|
||||
rules_flag.shutter_moved = 1;
|
||||
XdrvRulesProcess();
|
||||
}
|
||||
}
|
||||
|
@ -413,8 +407,8 @@ void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
|
|||
Shutter.skip_relay_change = 1;
|
||||
} else {
|
||||
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) {
|
||||
Shutter.pwm_frequency = 0;
|
||||
analogWriteFreq(Shutter.pwm_frequency);
|
||||
Shutter.pwm_frequency[i] = 0;
|
||||
analogWriteFreq(Shutter.pwm_frequency[i]);
|
||||
analogWrite(pin[GPIO_PWM1+i], 0);
|
||||
// can be operated without counter, but then not that acurate.
|
||||
if (pin[GPIO_CNTR1+i] < 99) {
|
||||
|
@ -439,10 +433,11 @@ void ShutterWaitForMotorStop(uint32_t i)
|
|||
if ((SHT_OFF_ON__OPEN_CLOSE == Shutter.mode) || (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode)) {
|
||||
if (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode) {
|
||||
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Frequency change %d"), Shutter.pwm_frequency);
|
||||
while (Shutter.pwm_frequency > 0) {
|
||||
Shutter.accelerator[i] = 0;
|
||||
Shutter.pwm_frequency = tmax(Shutter.pwm_frequency-((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) , 0);
|
||||
analogWriteFreq(Shutter.pwm_frequency);
|
||||
while (Shutter.pwm_frequency[i] > 0) {
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Frequency: %ld, delta: %d"), Shutter.pwm_frequency[i], (int32_t)((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) );
|
||||
Shutter.pwm_frequency[i] = tmax(Shutter.pwm_frequency[i]-((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) , 0);
|
||||
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Frequency: %ld"), Shutter.pwm_frequency[i]);
|
||||
analogWriteFreq(Shutter.pwm_frequency[i]);
|
||||
analogWrite(pin[GPIO_PWM1+i], 50);
|
||||
delay(50);
|
||||
}
|
||||
|
@ -532,7 +527,6 @@ void ShutterButtonHandler(void)
|
|||
uint8_t shutter_index = Settings.shutter_button[button_index] & 0x03;
|
||||
|
||||
uint16_t loops_per_second = 1000 / Settings.button_debounce; // ButtonDebounce (50)
|
||||
|
||||
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
|
||||
if (Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
|
||||
buttonState = SHT_PRESSED_MULTI;
|
||||
|
@ -542,9 +536,9 @@ void ShutterButtonHandler(void)
|
|||
buttonState = SHT_PRESSED_IMMEDIATE;
|
||||
press_index = 1;
|
||||
Button.press_counter[button_index] = 99; // Remember to discard further action for press & hold within button timings
|
||||
} else
|
||||
} else {
|
||||
Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1;
|
||||
Button.window_timer[button_index] = loops_per_second / 2; // 0.5 second multi press window
|
||||
}
|
||||
}
|
||||
blinks = 201;
|
||||
}
|
||||
|
@ -596,14 +590,18 @@ void ShutterButtonHandler(void)
|
|||
// check for simultaneous shutter button press
|
||||
uint32 min_shutterbutton_press_counter = -1;
|
||||
for (uint32_t i = 0; i < MAX_KEYS; i++) {
|
||||
if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (Button.press_counter[i] < min_shutterbutton_press_counter))
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Settings.shutter_button[i] %ld, shutter_index %d, Button.press_counter[i] %d, min_shutterbutton_press_counter %d"), Settings.shutter_button[i], shutter_index, Button.press_counter[i] , min_shutterbutton_press_counter);
|
||||
if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (Button.press_counter[i] < min_shutterbutton_press_counter)) {
|
||||
min_shutterbutton_press_counter = Button.press_counter[i];
|
||||
}
|
||||
|
||||
}
|
||||
if (min_shutterbutton_press_counter == Button.press_counter[button_index]) {
|
||||
// simultaneous shutter button press detected
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT:simultanous presss deteced"));
|
||||
press_index = Button.press_counter[button_index];
|
||||
for (uint32_t i = 0; i < MAX_KEYS; i++)
|
||||
if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index))
|
||||
if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) != shutter_index))
|
||||
Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings
|
||||
buttonState = SHT_PRESSED_MULTI_SIMULTANEOUS;
|
||||
}
|
||||
|
@ -628,7 +626,6 @@ void ShutterButtonHandler(void)
|
|||
return;
|
||||
}
|
||||
} else if (buttonState == SHT_PRESSED_EXT_HOLD_SIMULTANEOUS) {
|
||||
// simultaneous shutter button extend hold detected
|
||||
if (!Settings.flag.button_restrict) { // no SetOption1 (0)
|
||||
char scmnd[20];
|
||||
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
|
||||
|
@ -649,8 +646,7 @@ void ShutterButtonHandler(void)
|
|||
if (buttonState == SHT_PRESSED_IMMEDIATE) {
|
||||
XdrvMailbox.payload = XdrvMailbox.index;
|
||||
CmndShutterStop();
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
uint8_t position = (Settings.shutter_button[button_index]>>(6*pos_press_index + 2)) & 0x03f;
|
||||
if (position) {
|
||||
if (Shutter.direction[shutter_index]) {
|
||||
|
@ -670,12 +666,12 @@ void ShutterButtonHandler(void)
|
|||
Response_P("%d", position);
|
||||
MqttPublish(stopic, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} // for (uint32_t)
|
||||
} // if (Settings.shutter)
|
||||
} // ende else
|
||||
} // if (position)
|
||||
} // end else
|
||||
} // if if (Settings.shutter_startrelay[shutter_index]
|
||||
}
|
||||
Response_P(PSTR("{"));
|
||||
ResponseAppend_P(JSON_SHUTTER_BUTTON, shutter_index+1, (buttonState <= SHT_PRESSED_IMMEDIATE) ? (button_index+1) : 0, press_index);
|
||||
|
@ -756,6 +752,7 @@ void CmndShutterPosition(void)
|
|||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Pos. in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, last_source );
|
||||
|
||||
// value 0 with data_len > 0 can mean Open
|
||||
// special handling fo UP,DOWN,TOGGLE,STOP command comming with payload -99
|
||||
if ((XdrvMailbox.data_len > 1) && (XdrvMailbox.payload <= 0)) {
|
||||
//UpperCase(XdrvMailbox.data, XdrvMailbox.data);
|
||||
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_UP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_OPEN) || ((Shutter.direction[index]==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEUP))) {
|
||||
|
@ -773,13 +770,13 @@ void CmndShutterPosition(void)
|
|||
}
|
||||
}
|
||||
|
||||
int8_t target_pos_percent = (XdrvMailbox.payload < 0) ? 0 : ((XdrvMailbox.payload > 100) ? 100 : XdrvMailbox.payload);
|
||||
int8_t target_pos_percent = (XdrvMailbox.payload < 0) ? (XdrvMailbox.payload == -99 ? ShutterRealToPercentPosition(Shutter.real_position[index], index) : 0) : ((XdrvMailbox.payload > 100) ? 100 : XdrvMailbox.payload);
|
||||
// webgui still send also on inverted shutter the native position.
|
||||
target_pos_percent = ((Settings.shutter_options[index] & 1) && (SRC_WEBGUI != last_source)) ? 100 - target_pos_percent : target_pos_percent;
|
||||
if (XdrvMailbox.payload != -99) {
|
||||
//target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent;
|
||||
Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index);
|
||||
Shutter.accelerator[index] = Shutter.max_pwm_frequency / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1);
|
||||
//Shutter.accelerator[index] = Shutter.max_pwm_frequency / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1);
|
||||
//Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index];
|
||||
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent);
|
||||
}
|
||||
|
|
|
@ -100,6 +100,7 @@ bool DhtRead(uint32_t sensor)
|
|||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
bool error = false;
|
||||
noInterrupts();
|
||||
if (DhtWaitState(sensor, 0) && DhtWaitState(sensor, 1) && DhtWaitState(sensor, 0)) {
|
||||
|
@ -127,6 +128,22 @@ bool DhtRead(uint32_t sensor)
|
|||
}
|
||||
interrupts();
|
||||
if (error) { return false; }
|
||||
*/
|
||||
|
||||
uint32_t i = 0;
|
||||
noInterrupts();
|
||||
if (DhtWaitState(sensor, 0) && DhtWaitState(sensor, 1) && DhtWaitState(sensor, 0)) {
|
||||
for (i = 0; i < 40; i++) {
|
||||
if (!DhtWaitState(sensor, 1)) { break; }
|
||||
delayMicroseconds(35); // Was 30
|
||||
if (digitalRead(Dht[sensor].pin)) {
|
||||
dht_data[i / 8] |= (1 << (7 - i % 8));
|
||||
}
|
||||
if (!DhtWaitState(sensor, 0)) { break; }
|
||||
}
|
||||
}
|
||||
interrupts();
|
||||
if (i < 40) { return false; }
|
||||
|
||||
uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF;
|
||||
if (dht_data[4] != checksum) {
|
||||
|
|
|
@ -41,7 +41,8 @@
|
|||
#define XSNS_35 35
|
||||
|
||||
#define TX2X_BIT_TIME 1220 // microseconds
|
||||
#define TX2X_RESET_VALUES 60 // seconds
|
||||
#define TX2X_WEIGHT_AVG_SAMPLE 150 // seconds
|
||||
#define TX23_READ_INTERVAL 4 // seconds (don't use less than 3)
|
||||
|
||||
// The Arduino standard GPIO routines are not enough,
|
||||
// must use some from the Espressif SDK as well
|
||||
|
@ -59,8 +60,9 @@ extern "C" {
|
|||
const char HTTP_SNS_TX2X[] PROGMEM =
|
||||
"{s}" D_TX2x_NAME " " D_TX20_WIND_SPEED "{m}%s " D_UNIT_KILOMETER_PER_HOUR "{e}"
|
||||
"{s}" D_TX2x_NAME " " D_TX20_WIND_SPEED_AVG "{m}%s " D_UNIT_KILOMETER_PER_HOUR "{e}"
|
||||
"{s}" D_TX2x_NAME " " D_TX20_WIND_SPEED_MIN "{m}%s " D_UNIT_KILOMETER_PER_HOUR "{e}"
|
||||
"{s}" D_TX2x_NAME " " D_TX20_WIND_SPEED_MAX "{m}%s " D_UNIT_KILOMETER_PER_HOUR "{e}"
|
||||
"{s}" D_TX2x_NAME " " D_TX20_WIND_DIRECTION "{m}%s (%s°){e}";
|
||||
"{s}" D_TX2x_NAME " " D_TX20_WIND_DIRECTION "{m}%s %s°{e}";
|
||||
#endif // USE_WEBSERVER
|
||||
|
||||
const char kTx2xDirections[] PROGMEM = D_TX20_NORTH "|"
|
||||
|
@ -88,11 +90,12 @@ uint16_t tx2x_sc = 0;
|
|||
uint16_t tx2x_sf = 0;
|
||||
|
||||
float tx2x_wind_speed_kmh = 0;
|
||||
float tx2x_wind_speed_min = 200.0;
|
||||
float tx2x_wind_speed_max = 0;
|
||||
float tx2x_wind_speed_avg = 0;
|
||||
float tx2x_wind_sum = 0;
|
||||
int tx2x_count = 0;
|
||||
uint8_t tx2x_wind_direction = 0;
|
||||
int tx2x_count = 0;
|
||||
uint16_t tx2x_avg_samples;
|
||||
|
||||
bool tx2x_available = false;
|
||||
|
||||
|
@ -121,7 +124,6 @@ void TX2xStartRead(void)
|
|||
* La Crosse TX23 Anemometer datagram after setting TxD to low/high
|
||||
* 1-1 0 1 0-0 11011 0011 111010101111 0101 1100 000101010000 1-1 - Received pin data at 1200 uSec per bit
|
||||
* t s c sa sb sc sd se sf
|
||||
* 1 0 1-1 00100 1100 000101010000 1010 1100 000101010000 - sa to sd inverted user data, LSB first
|
||||
* t - host pulls TxD low - signals TX23 to sent measurement
|
||||
* s - TxD released - TxD is pulled high due to pullup
|
||||
* c - TX23U pulls TxD low - calculation in progress
|
||||
|
@ -152,26 +154,8 @@ void TX2xStartRead(void)
|
|||
for (int32_t bitcount = 41; bitcount > 0; bitcount--) {
|
||||
uint8_t dpin = (digitalRead(pin[GPIO_TX2X_TXD_BLACK]));
|
||||
#ifdef USE_TX23_WIND_SENSOR
|
||||
if (bitcount > 41 - 5) {
|
||||
// start
|
||||
tx2x_sa = (tx2x_sa << 1) | (dpin);
|
||||
} else if (bitcount > 41 - 5 - 4) {
|
||||
// wind dir
|
||||
tx2x_sb = tx2x_sb >> 1 | ((dpin) << 3);
|
||||
} else if (bitcount > 41 - 5 - 4 - 12) {
|
||||
// windspeed
|
||||
tx2x_sc = tx2x_sc >> 1 | ((dpin) << 11);
|
||||
} else if (bitcount > 41 - 5 - 4 - 12 - 4) {
|
||||
// checksum
|
||||
tx2x_sd = tx2x_sd >> 1 | ((dpin) << 3);
|
||||
} else if (bitcount > 41 - 5 - 4 - 12 - 4 - 4) {
|
||||
// wind dir (invert)
|
||||
tx2x_se = tx2x_se >> 1 | ((dpin ^ 1) << 3);
|
||||
} else {
|
||||
// windspeed (invert)
|
||||
tx2x_sf = tx2x_sf >> 1 | ((dpin ^ 1) << 11);
|
||||
}
|
||||
#else
|
||||
dpin ^= 1;
|
||||
#endif
|
||||
if (bitcount > 41 - 5) {
|
||||
// start frame (invert)
|
||||
tx2x_sa = (tx2x_sa << 1) | (dpin ^ 1);
|
||||
|
@ -191,23 +175,14 @@ void TX2xStartRead(void)
|
|||
// windspeed
|
||||
tx2x_sf = tx2x_sf >> 1 | (dpin << 11);
|
||||
}
|
||||
#endif
|
||||
delayMicroseconds(TX2X_BIT_TIME);
|
||||
}
|
||||
|
||||
uint8_t chk = (tx2x_sb + (tx2x_sc & 0xf) + ((tx2x_sc >> 4) & 0xf) + ((tx2x_sc >> 8) & 0xf));
|
||||
chk &= 0xf;
|
||||
|
||||
#ifdef USE_TX23_WIND_SENSOR
|
||||
// check checksum, non-inverted with inverted values and max. speed
|
||||
if ((chk == tx2x_sd) && (tx2x_sb==tx2x_se) && (tx2x_sc==tx2x_sf) && (tx2x_sc < 511)) {
|
||||
tx2x_available = true;
|
||||
}
|
||||
#else
|
||||
if ((chk == tx2x_sd) && (tx2x_sc < 511)) { // if checksum seems to be ok and wind speed below 51.1 m/s
|
||||
tx2x_available = true;
|
||||
}
|
||||
#endif
|
||||
tx2x_available = ((chk == tx2x_sd) && (tx2x_sb==tx2x_se) && (tx2x_sc==tx2x_sf) && (tx2x_sc < 511));
|
||||
#ifdef USE_TX23_WIND_SENSOR
|
||||
}
|
||||
tx23_stage++;
|
||||
|
@ -219,49 +194,82 @@ void TX2xStartRead(void)
|
|||
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, 1 << pin[GPIO_TX2X_TXD_BLACK]);
|
||||
}
|
||||
|
||||
void Tx2xReset(void)
|
||||
void Tx2xResetStat(void)
|
||||
{
|
||||
tx2x_wind_speed_min = tx2x_wind_speed_kmh;
|
||||
tx2x_wind_speed_max = tx2x_wind_speed_kmh;
|
||||
uint16_t tx2x_prev_avg_samples = tx2x_avg_samples;
|
||||
if (Settings.tele_period) {
|
||||
// number for avg samples = teleperiod value if set
|
||||
tx2x_avg_samples = Settings.tele_period;
|
||||
} else {
|
||||
// otherwise use default number of samples for this driver
|
||||
tx2x_avg_samples = TX2X_WEIGHT_AVG_SAMPLE;
|
||||
}
|
||||
if (tx2x_prev_avg_samples != tx2x_avg_samples) {
|
||||
tx2x_wind_speed_avg = tx2x_wind_speed_kmh;
|
||||
tx2x_count = 0;
|
||||
tx2x_wind_sum = 0;
|
||||
tx2x_wind_speed_max = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void Tx2xRead(void)
|
||||
{
|
||||
#ifdef USE_TX23_WIND_SENSOR
|
||||
// TX23 needs to trigger start transmission - TxD Line
|
||||
// ___________ _ ___ ___
|
||||
// |____| |___________| |_| |__XXXXXXXXXX
|
||||
// trigger start conv Startframe Data
|
||||
//
|
||||
// note: TX23 speed calculation is unstable when conversion starts
|
||||
// less than 2 seconds after last request
|
||||
if ((uptime % 3)==0) {
|
||||
if ((uptime % TX23_READ_INTERVAL)==0) {
|
||||
// TX23 start transmission by pulling down TxD line for at minimum 500ms
|
||||
// so we pull TxD signal to low every 3 seconds
|
||||
tx23_stage = 0;
|
||||
pinMode(pin[GPIO_TX2X_TXD_BLACK], OUTPUT);
|
||||
digitalWrite(pin[GPIO_TX2X_TXD_BLACK], LOW);
|
||||
} else if ((uptime % 3)==1) {
|
||||
// after pulling down TxD every 3 second we pull-up TxD every 3+1 seconds
|
||||
// to trigger start transmission
|
||||
} else if ((uptime % TX23_READ_INTERVAL)==1) {
|
||||
// after pulling down TxD: pull-up TxD every x+1 seconds
|
||||
// to trigger TX23 start transmission
|
||||
tx23_stage = 1; // first rising signal is invalid
|
||||
pinMode(pin[GPIO_TX2X_TXD_BLACK], INPUT_PULLUP);
|
||||
}
|
||||
#endif
|
||||
if (0==Settings.tele_period && !(uptime % TX2X_RESET_VALUES)) {
|
||||
Tx2xReset();
|
||||
if (0!=Settings.tele_period && Settings.tele_period!=tx2x_avg_samples) {
|
||||
// new teleperiod value
|
||||
Tx2xResetStat();
|
||||
}
|
||||
else if (tx2x_available) {
|
||||
if (tx2x_available) {
|
||||
// Wind speed spec: 0 to 180 km/h (0 to 50 m/s)
|
||||
tx2x_wind_speed_kmh = float(tx2x_sc) * 0.36;
|
||||
if (tx2x_wind_speed_kmh < tx2x_wind_speed_min) {
|
||||
tx2x_wind_speed_min = tx2x_wind_speed_kmh;
|
||||
}
|
||||
if (tx2x_wind_speed_kmh > tx2x_wind_speed_max) {
|
||||
tx2x_wind_speed_max = tx2x_wind_speed_kmh;
|
||||
}
|
||||
tx2x_count++;
|
||||
tx2x_wind_sum += tx2x_wind_speed_kmh;
|
||||
tx2x_wind_speed_avg = tx2x_wind_sum / tx2x_count;
|
||||
// exponentially weighted average is not quite as smooth as the arithmetic average
|
||||
// but close enough to the moving average and does not require the regular reset
|
||||
// of the divider with the associated jump in avg values after period is over
|
||||
if (tx2x_count <= tx2x_avg_samples) {
|
||||
tx2x_count++;
|
||||
}
|
||||
tx2x_wind_speed_avg -= tx2x_wind_speed_avg / tx2x_count;
|
||||
tx2x_wind_speed_avg += tx2x_wind_speed_kmh / tx2x_count;
|
||||
|
||||
tx2x_wind_direction = tx2x_sb;
|
||||
|
||||
if (!(uptime % tx2x_avg_samples)) {
|
||||
tx2x_wind_speed_min = tx2x_wind_speed_kmh;
|
||||
tx2x_wind_speed_max = tx2x_wind_speed_kmh;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Tx2xInit(void)
|
||||
{
|
||||
Tx2xResetStat();
|
||||
#ifdef USE_TX23_WIND_SENSOR
|
||||
tx23_stage = 0;
|
||||
pinMode(pin[GPIO_TX2X_TXD_BLACK], OUTPUT);
|
||||
|
@ -276,22 +284,46 @@ void Tx2xShow(bool json)
|
|||
{
|
||||
char wind_speed_string[33];
|
||||
dtostrfd(tx2x_wind_speed_kmh, 1, wind_speed_string);
|
||||
char wind_speed_min_string[33];
|
||||
dtostrfd(tx2x_wind_speed_min, 1, wind_speed_min_string);
|
||||
char wind_speed_max_string[33];
|
||||
dtostrfd(tx2x_wind_speed_max, 1, wind_speed_max_string);
|
||||
char wind_speed_avg_string[33];
|
||||
dtostrfd(tx2x_wind_speed_avg, 1, wind_speed_avg_string);
|
||||
char wind_direction_degree_string[33];
|
||||
dtostrfd(tx2x_wind_direction*22.5, 1, wind_direction_degree_string);
|
||||
char wind_direction_string[4];
|
||||
GetTextIndexed(wind_direction_string, sizeof(wind_direction_string), tx2x_wind_direction, kTx2xDirections);
|
||||
char wind_direction_degree[33];
|
||||
dtostrfd(tx2x_wind_direction*22.5, 1, wind_direction_degree);
|
||||
|
||||
if (json) {
|
||||
#ifdef USE_TX2x_LEGACY_JSON
|
||||
ResponseAppend_P(PSTR(",\"" D_TX2x_NAME "\":{\"Speed\":%s,\"SpeedAvg\":%s,\"SpeedMax\":%s,\"Direction\":\"%s\",\"Degree\":%s}"),
|
||||
wind_speed_string, wind_speed_avg_string, wind_speed_max_string, wind_direction_string, wind_direction_degree);
|
||||
Tx2xReset();
|
||||
#else
|
||||
// new format grouped by Speed and Dir(ection)
|
||||
// Card = cardianal (N../O../S../W..)
|
||||
// Deg = Degree
|
||||
ResponseAppend_P(
|
||||
PSTR(",\"" D_TX2x_NAME "\":{\"Speed\":{\"Act\":%s,\"Avg\":%s,\"Min\":%s,\"Max\":%s},\"Direction\":{\"Cardinal\":\"%s\",\"Degree\":%s}}"),
|
||||
wind_speed_string,
|
||||
wind_speed_avg_string,
|
||||
wind_speed_min_string,
|
||||
wind_speed_max_string,
|
||||
wind_direction_string,
|
||||
wind_direction_degree_string
|
||||
);
|
||||
#endif
|
||||
#ifdef USE_WEBSERVER
|
||||
} else {
|
||||
WSContentSend_PD(HTTP_SNS_TX2X, wind_speed_string, wind_speed_avg_string, wind_speed_max_string, wind_direction_string, wind_direction_degree);
|
||||
WSContentSend_PD(
|
||||
HTTP_SNS_TX2X,
|
||||
wind_speed_string,
|
||||
wind_speed_avg_string,
|
||||
wind_speed_min_string,
|
||||
wind_speed_max_string,
|
||||
wind_direction_string,
|
||||
wind_direction_degree_string
|
||||
);
|
||||
#endif // USE_WEBSERVER
|
||||
}
|
||||
}
|
||||
|
@ -313,11 +345,11 @@ bool Xsns35(uint8_t function)
|
|||
Tx2xRead();
|
||||
break;
|
||||
case FUNC_JSON_APPEND:
|
||||
Tx2xShow(1);
|
||||
Tx2xShow(true);
|
||||
break;
|
||||
#ifdef USE_WEBSERVER
|
||||
case FUNC_WEB_SENSOR:
|
||||
Tx2xShow(0);
|
||||
Tx2xShow(false);
|
||||
break;
|
||||
#endif // USE_WEBSERVER
|
||||
}
|
||||
|
|
|
@ -21,6 +21,9 @@
|
|||
Version yyyymmdd Action Description
|
||||
--------------------------------------------------------------------------------------------
|
||||
|
||||
0.9.3.0 20200222 integrate - use now the correct id-word instead of MAC-OUI,
|
||||
add CGG1
|
||||
---
|
||||
0.9.2.0 20200212 integrate - "backports" from MI-HM10, change reading pattern,
|
||||
add missing PDU-types, renaming driver
|
||||
---
|
||||
|
@ -58,18 +61,21 @@
|
|||
#define MJ_HT_V1 2
|
||||
#define LYWSD02 3
|
||||
#define LYWSD03 4
|
||||
#define CGG1 5
|
||||
|
||||
uint8_t kMINRFSlaveID[4][3] = { 0xC4,0x7C,0x8D, // Flora
|
||||
0x58,0x2D,0x34, // MJ_HT_V1
|
||||
0xE7,0x2E,0x00, // LYWSD02
|
||||
0xA4,0xC1,0x38, // LYWSD03
|
||||
};
|
||||
const uint16_t kMINRFSlaveID[5]={ 0x0098, // Flora
|
||||
0x01aa, // MJ_HT_V1
|
||||
0x045b, // LYWSD02
|
||||
0x055b, // LYWSD03
|
||||
0x0347 // CGG1
|
||||
};
|
||||
|
||||
const char kMINRFSlaveType1[] PROGMEM = "Flora";
|
||||
const char kMINRFSlaveType2[] PROGMEM = "MJ_HT_V1";
|
||||
const char kMINRFSlaveType3[] PROGMEM = "LYWSD02";
|
||||
const char kMINRFSlaveType4[] PROGMEM = "LYWSD03";
|
||||
const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4};
|
||||
const char kMINRFSlaveType5[] PROGMEM = "CGG1";
|
||||
const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4,kMINRFSlaveType5};
|
||||
|
||||
// PDU's or different channels 37-39
|
||||
const uint32_t kMINRFFloPDU[3] = {0x3eaa857d,0xef3b8730,0x71da7b46};
|
||||
|
@ -77,10 +83,11 @@ const uint32_t kMINRFMJPDU[3] = {0x4760cd66,0xdbcc0cd3,0x33048df5};
|
|||
const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71da7646}; // 1 and 3 unsure
|
||||
// const uint32_t kMINRFL3PDU[3] = {0x4760dd78,0xdbcc1ccd,0xffffffff}; //encrypted - 58 58
|
||||
const uint32_t kMINRFL3PDU[3] = {0x4760cb78,0xdbcc0acd,0x33048beb}; //unencrypted - 30 58
|
||||
const uint32_t kMINRFCGPDU[3] = {0x4760cd6e,0xdbcc0cdb,0x33048dfd};
|
||||
|
||||
// start-LSFR for different channels 37-39
|
||||
const uint8_t kMINRFlsfrList_A[3] = {0x4b,0x17,0x23}; // Flora, LYWSD02
|
||||
const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03
|
||||
const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03, CGG1
|
||||
|
||||
|
||||
#pragma pack(1) // important!!
|
||||
|
@ -269,7 +276,7 @@ struct {
|
|||
} MINRF;
|
||||
|
||||
struct mi_sensor_t{
|
||||
uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4
|
||||
uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4; ; CGG1=5
|
||||
uint8_t serial[6];
|
||||
uint8_t showedUp;
|
||||
float temp; //Flora, MJ_HT_V1, LYWSD0x
|
||||
|
@ -362,6 +369,9 @@ bool MINRFreceivePacket(void)
|
|||
case 4:
|
||||
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "LYWSD03" mode
|
||||
break;
|
||||
case 5:
|
||||
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGG1" mode
|
||||
break;
|
||||
}
|
||||
// DEBUG_SENSOR_LOG(PSTR("MINRF: LSFR:%x"),_lsfr);
|
||||
// if (_lsfr>254) _lsfr=0;
|
||||
|
@ -470,6 +480,9 @@ void MINRFchangePacketModeTo(uint8_t _mode) {
|
|||
if(kMINRFL3PDU[_nextchannel]==0xffffffff) break;
|
||||
NRF24radio.openReadingPipe(0,kMINRFL3PDU[_nextchannel]);// 95 fe 58 30 -> LYWSD03 (= no data message)
|
||||
break;
|
||||
case 5: // special CGG1 packet
|
||||
NRF24radio.openReadingPipe(0,kMINRFCGPDU[_nextchannel]); // 95 fe 50 30 -> CGG1
|
||||
break;
|
||||
}
|
||||
// DEBUG_SENSOR_LOG(PSTR("MINRF: Change Mode to %u"),_mode);
|
||||
MINRF.packetMode = _mode;
|
||||
|
@ -479,24 +492,25 @@ void MINRFchangePacketModeTo(uint8_t _mode) {
|
|||
* @brief Return the slot number of a known sensor or return create new sensor slot
|
||||
*
|
||||
* @param _serial BLE address of the sensor
|
||||
* @param _type Type number of the sensor, 0xff for Auto-type
|
||||
* @param _type Type number of the sensor
|
||||
* @return uint32_t Known or new slot in the sensors-vector
|
||||
*/
|
||||
uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint8_t _type){
|
||||
if(_type==0xff){
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: will test MAC-type"));
|
||||
for (uint32_t i=0;i<4;i++){
|
||||
if(memcmp(_serial,kMINRFSlaveID+i,3)==0){
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: MAC is type %u"), i);
|
||||
_type = i+1;
|
||||
}
|
||||
else {
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: MAC-type is unknown"));
|
||||
}
|
||||
uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint16_t _type){
|
||||
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: will test ID-type: %x"), _type);
|
||||
bool _success = false;
|
||||
for (uint32_t i=0;i<5;i++){
|
||||
if(_type == kMINRFSlaveID[i]){
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: ID is type %u"), i);
|
||||
_type = i+1;
|
||||
_success = true;
|
||||
}
|
||||
else {
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: ID-type is not: %x"),kMINRFSlaveID[i]);
|
||||
}
|
||||
}
|
||||
if(_type==0xff) return _type; // error
|
||||
|
||||
if(!_success) return 0xff;
|
||||
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: vector size %u"), MIBLEsensors.size());
|
||||
for(uint32_t i=0; i<MIBLEsensors.size(); i++){
|
||||
if(memcmp(_serial,MIBLEsensors.at(i).serial,sizeof(_serial))==0){
|
||||
|
@ -550,13 +564,13 @@ void MINRFpurgeFakeSensors(void){
|
|||
|
||||
|
||||
void MINRFhandleFloraPacket(void){
|
||||
if(MINRF.buffer.floraPacket.T.idWord!=0x9800 && MINRF.buffer.floraPacket.T.valueTen!=0x10){
|
||||
if(MINRF.buffer.floraPacket.T.valueTen!=0x10){
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected Flora packet"));
|
||||
MINRF_LOG_BUFFER(MINRF.buffer.raw);
|
||||
return;
|
||||
}
|
||||
MINRFreverseMAC(MINRF.buffer.floraPacket.T.serial);
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.floraPacket.T.serial, 0xff); // T is not specific, any struct would be possible to use
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.floraPacket.T.serial, MINRF.buffer.floraPacket.T.idWord); // T is not specific, any struct would be possible to use
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
|
||||
if(_slot==0xff) return;
|
||||
|
||||
|
@ -593,13 +607,13 @@ void MINRFhandleFloraPacket(void){
|
|||
}
|
||||
|
||||
void MINRFhandleMJ_HT_V1Packet(void){
|
||||
if(MINRF.buffer.MJ_HT_V1Packet.TH.idWord != 0xaa01 && MINRF.buffer.MJ_HT_V1Packet.TH.valueTen!=0x10){
|
||||
if(MINRF.buffer.MJ_HT_V1Packet.TH.valueTen!=0x10){
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected MJ_HT_V1-packet"));
|
||||
MINRF_LOG_BUFFER(MINRF.buffer.raw);
|
||||
return;
|
||||
}
|
||||
MINRFreverseMAC(MINRF.buffer.MJ_HT_V1Packet.TH.serial);
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.MJ_HT_V1Packet.TH.serial, 0xff); // B would be possible too
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.MJ_HT_V1Packet.TH.serial, MINRF.buffer.MJ_HT_V1Packet.TH.idWord); // B would be possible too
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
|
||||
if(_slot==0xff) return;
|
||||
|
||||
|
@ -635,9 +649,9 @@ void MINRFhandleLYWSD02Packet(void){
|
|||
return;
|
||||
}
|
||||
MINRFreverseMAC(MINRF.buffer.LYWSD02Packet.TH.serial);
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.LYWSD02Packet.TH.serial, 0xff); // H would be possible too
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.LYWSD02Packet.TH.serial, MINRF.buffer.LYWSD02Packet.TH.idWord); // H would be possible too
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
|
||||
if(_slot==0xff) return;
|
||||
if(_slot==0xff) return;
|
||||
|
||||
static float _tempFloat;
|
||||
switch(MINRF.buffer.LYWSD02Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
|
||||
|
@ -661,7 +675,7 @@ void MINRFhandleLYWSD02Packet(void){
|
|||
void MINRFhandleLYWSD03Packet(void){
|
||||
// not much to do ATM, just show the sensor without data
|
||||
MINRFreverseMAC(MINRF.buffer.LYWSD02Packet.TH.serial); //the beginning is equal to the LYWSD02-packet
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.LYWSD02Packet.TH.serial, 0xff);
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.LYWSD02Packet.TH.serial, MINRF.buffer.LYWSD02Packet.TH.idWord);
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
|
||||
if(_slot==0xff) return;
|
||||
|
||||
|
@ -670,6 +684,46 @@ void MINRFhandleLYWSD03Packet(void){
|
|||
MINRF_LOG_BUFFER(MINRF.buffer.raw);
|
||||
}
|
||||
|
||||
void MINRFhandleCGG1Packet(void){ // we assume, that the packet structure is equal to the MJ_HT_V1
|
||||
if(MINRF.buffer.MJ_HT_V1Packet.TH.valueTen!=0x10){
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected CGG1-packet"));
|
||||
MINRF_LOG_BUFFER(MINRF.buffer.raw);
|
||||
return;
|
||||
}
|
||||
MINRFreverseMAC(MINRF.buffer.MJ_HT_V1Packet.TH.serial);
|
||||
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.MJ_HT_V1Packet.TH.serial, MINRF.buffer.MJ_HT_V1Packet.TH.idWord); // B would be possible too
|
||||
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
|
||||
if(_slot==0xff) return;
|
||||
|
||||
static float _tempFloat;
|
||||
switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
|
||||
case 0x0d:
|
||||
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f;
|
||||
if(_tempFloat<60){
|
||||
MIBLEsensors.at(_slot).temp = _tempFloat;
|
||||
DEBUG_SENSOR_LOG(PSTR("CGG1: temp updated"));
|
||||
}
|
||||
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.hum)/10.0f;
|
||||
if(_tempFloat<100){
|
||||
MIBLEsensors.at(_slot).hum = _tempFloat;
|
||||
DEBUG_SENSOR_LOG(PSTR("CGG1: hum updated"));
|
||||
}
|
||||
DEBUG_SENSOR_LOG(PSTR("CGG1 mode:0x0d: U16: %x Temp U16: %x Hum"), MINRF.buffer.MJ_HT_V1Packet.TH.temp, MINRF.buffer.MJ_HT_V1Packet.TH.hum);
|
||||
break;
|
||||
case 0x0a:
|
||||
if(MINRF.buffer.MJ_HT_V1Packet.B.battery<101){
|
||||
MIBLEsensors.at(_slot).bat = MINRF.buffer.MJ_HT_V1Packet.B.battery;
|
||||
DEBUG_SENSOR_LOG(PSTR("CGG1: bat updated"));
|
||||
}
|
||||
DEBUG_SENSOR_LOG(PSTR("CGG1 mode:0x0a: U8: %x %%"), MINRF.buffer.MJ_HT_V1Packet.B.battery);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************************************\
|
||||
* Main loop of the driver
|
||||
\*********************************************************************************************/
|
||||
|
||||
void MINRF_EVERY_50_MSECOND() { // Every 50mseconds
|
||||
|
||||
if(MINRF.timer>6000){ // happens every 6000/20 = 300 seconds
|
||||
|
@ -712,15 +766,16 @@ void MINRF_EVERY_50_MSECOND() { // Every 50mseconds
|
|||
else if (MINRF.packetMode == LYWSD03){
|
||||
MINRFhandleLYWSD03Packet();
|
||||
}
|
||||
|
||||
// DEBUG_SENSOR_LOG(PSTR("MINRF: Change packet mode every 50 msec"));
|
||||
if (MINRF.packetMode == LYWSD03){
|
||||
else if (MINRF.packetMode == CGG1){
|
||||
MINRFhandleCGG1Packet();
|
||||
}
|
||||
if (MINRF.packetMode == CGG1){
|
||||
MINRFinitBLE(1); // no real ble packets in release mode, otherwise for developing use 0
|
||||
}
|
||||
else {
|
||||
MINRFinitBLE(++MINRF.packetMode);
|
||||
}
|
||||
|
||||
|
||||
MINRFhopChannel();
|
||||
NRF24radio.startListening();
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue