Merge pull request #7864 from Staars/nrf24

MI_NRF24: add GCD1, missing PDU-type, small refactoring
This commit is contained in:
Theo Arends 2020-03-07 14:57:43 +01:00 committed by GitHub
commit df43217a18
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 99 additions and 25 deletions

View File

@ -21,6 +21,9 @@
Version yyyymmdd Action Description Version yyyymmdd Action Description
-------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------
0.9.4.0 20200304 integrate - sensor types can be ignored (default for LYWSD03),
add CGD1 (Alarm clock), correct PDU-types for LYWSD02
---
0.9.3.0 20200222 integrate - use now the correct id-word instead of MAC-OUI, 0.9.3.0 20200222 integrate - use now the correct id-word instead of MAC-OUI,
add CGG1 add CGG1
--- ---
@ -48,7 +51,7 @@
/*********************************************************************************************\ /*********************************************************************************************\
* MINRF * MINRF
* BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora, LYWSD02 * BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora, LYWSD02, GCx
* *
* Usage: Configure NRF24 * Usage: Configure NRF24
\*********************************************************************************************/ \*********************************************************************************************/
@ -62,12 +65,19 @@
#define LYWSD02 3 #define LYWSD02 3
#define LYWSD03 4 #define LYWSD03 4
#define CGG1 5 #define CGG1 5
#define CGD1 6
const uint16_t kMINRFSlaveID[5]={ 0x0098, // Flora /* define sensors to ignore, which can improve performance
pattern: #define IGNORE_sensorname
*/
#define IGNORE_LYWSD03
const uint16_t kMINRFSlaveID[6]={ 0x0098, // Flora
0x01aa, // MJ_HT_V1 0x01aa, // MJ_HT_V1
0x045b, // LYWSD02 0x045b, // LYWSD02
0x055b, // LYWSD03 0x055b, // LYWSD03
0x0347 // CGG1 0x0347, // CGG1
0x0576 // CGD1
}; };
const char kMINRFSlaveType1[] PROGMEM = "Flora"; const char kMINRFSlaveType1[] PROGMEM = "Flora";
@ -75,19 +85,21 @@ const char kMINRFSlaveType2[] PROGMEM = "MJ_HT_V1";
const char kMINRFSlaveType3[] PROGMEM = "LYWSD02"; const char kMINRFSlaveType3[] PROGMEM = "LYWSD02";
const char kMINRFSlaveType4[] PROGMEM = "LYWSD03"; const char kMINRFSlaveType4[] PROGMEM = "LYWSD03";
const char kMINRFSlaveType5[] PROGMEM = "CGG1"; const char kMINRFSlaveType5[] PROGMEM = "CGG1";
const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4,kMINRFSlaveType5}; const char kMINRFSlaveType6[] PROGMEM = "CGD1";
const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4,kMINRFSlaveType5,kMINRFSlaveType6};
// PDU's or different channels 37-39 // PDU's or different channels 37-39
const uint32_t kMINRFFloPDU[3] = {0x3eaa857d,0xef3b8730,0x71da7b46}; const uint32_t kMINRFFloPDU[3] = {0x3eaa857d,0xef3b8730,0x71da7b46};
const uint32_t kMINRFMJPDU[3] = {0x4760cd66,0xdbcc0cd3,0x33048df5}; const uint32_t kMINRFMJPDU[3] = {0x4760cd66,0xdbcc0cd3,0x33048df5};
const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71da7646}; // 1 and 3 unsure const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71dafb46};
// const uint32_t kMINRFL3PDU[3] = {0x4760dd78,0xdbcc1ccd,0xffffffff}; //encrypted - 58 58 // const uint32_t kMINRFL3PDU[3] = {0x4760dd78,0xdbcc1ccd,0xffffffff}; //encrypted - 58 58
const uint32_t kMINRFL3PDU[3] = {0x4760cb78,0xdbcc0acd,0x33048beb}; //unencrypted - 30 58 const uint32_t kMINRFL3PDU[3] = {0x4760cb78,0xdbcc0acd,0x33048beb}; //unencrypted - 30 58
const uint32_t kMINRFCGPDU[3] = {0x4760cd6e,0xdbcc0cdb,0x33048dfd}; const uint32_t kMINRFCGGPDU[3] = {0x4760cd6e,0xdbcc0cdb,0x33048dfd};
const uint32_t kMINRFCGDPDU[3] = {0x5da0d752,0xc10c16e7,0x29c497c1};
// start-LSFR for different channels 37-39 // start-LSFR for different channels 37-39
const uint8_t kMINRFlsfrList_A[3] = {0x4b,0x17,0x23}; // Flora, LYWSD02 const uint8_t kMINRFlsfrList_A[3] = {0x4b,0x17,0x23}; // Flora, LYWSD02
const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03, CGG1 const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03, CGx
#pragma pack(1) // important!! #pragma pack(1) // important!!
@ -196,6 +208,15 @@ union LYWSD02Packet_t { // related to the whole 32-byte-packet/buffer
} TH; // mode 04 or 06 } TH; // mode 04 or 06
}; };
union CGDPacket_t { // related to the whole 32-byte-packet/buffer
struct {
uint8_t serial[6];
uint16_t mode;
int16_t temp; // -9 - 59 °C
uint16_t hum;
} TH; // This is no MiBeacon
};
struct bleAdvPacket_t { // for nRF24L01 max 32 bytes = 2+6+24 struct bleAdvPacket_t { // for nRF24L01 max 32 bytes = 2+6+24
uint8_t pduType; uint8_t pduType;
uint8_t payloadSize; uint8_t payloadSize;
@ -254,6 +275,7 @@ union FIFO_t{
floraPacket_t floraPacket; floraPacket_t floraPacket;
MJ_HT_V1Packet_t MJ_HT_V1Packet; MJ_HT_V1Packet_t MJ_HT_V1Packet;
LYWSD02Packet_t LYWSD02Packet; LYWSD02Packet_t LYWSD02Packet;
CGDPacket_t CGDPacket;
uint8_t raw[32]; uint8_t raw[32];
}; };
@ -266,7 +288,7 @@ struct {
uint16_t timer; uint16_t timer;
uint8_t currentChan=0; uint8_t currentChan=0;
FIFO_t buffer; FIFO_t buffer;
uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - special "flora"-packet, 2 - special "MJ_HT_V1"-packet uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - 6 "special" sensor packets
#ifdef DEBUG_TASMOTA_SENSOR #ifdef DEBUG_TASMOTA_SENSOR
uint8_t streamBuffer[sizeof(buffer)]; // raw data stream bytes uint8_t streamBuffer[sizeof(buffer)]; // raw data stream bytes
@ -276,10 +298,10 @@ struct {
} MINRF; } MINRF;
struct mi_sensor_t{ struct mi_sensor_t{
uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4; ; CGG1=5 uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4; CGG1=5; CGD1=6
uint8_t serial[6]; uint8_t serial[6];
uint8_t showedUp; uint8_t showedUp;
float temp; //Flora, MJ_HT_V1, LYWSD0x float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx
union { union {
struct { struct {
float moisture; float moisture;
@ -289,7 +311,7 @@ struct mi_sensor_t{
struct { struct {
float hum; float hum;
uint8_t bat; uint8_t bat;
}; // MJ_HT_V1, LYWSD0x }; // MJ_HT_V1, LYWSD0x, CGx
}; };
}; };
@ -372,6 +394,9 @@ bool MINRFreceivePacket(void)
case 5: case 5:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGG1" mode MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGG1" mode
break; break;
case 6:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "CGD1" mode
break;
} }
// DEBUG_SENSOR_LOG(PSTR("MINRF: LSFR:%x"),_lsfr); // DEBUG_SENSOR_LOG(PSTR("MINRF: LSFR:%x"),_lsfr);
// if (_lsfr>254) _lsfr=0; // if (_lsfr>254) _lsfr=0;
@ -481,7 +506,10 @@ void MINRFchangePacketModeTo(uint8_t _mode) {
NRF24radio.openReadingPipe(0,kMINRFL3PDU[_nextchannel]);// 95 fe 58 30 -> LYWSD03 (= no data message) NRF24radio.openReadingPipe(0,kMINRFL3PDU[_nextchannel]);// 95 fe 58 30 -> LYWSD03 (= no data message)
break; break;
case 5: // special CGG1 packet case 5: // special CGG1 packet
NRF24radio.openReadingPipe(0,kMINRFCGPDU[_nextchannel]); // 95 fe 50 30 -> CGG1 NRF24radio.openReadingPipe(0,kMINRFCGGPDU[_nextchannel]); // 95 fe 50 30 -> CGG1
break;
case 6: // special CGD1 packet
NRF24radio.openReadingPipe(0,kMINRFCGDPDU[_nextchannel]); // cd fd 08 0c -> CGD1
break; break;
} }
// DEBUG_SENSOR_LOG(PSTR("MINRF: Change Mode to %u"),_mode); // DEBUG_SENSOR_LOG(PSTR("MINRF: Change Mode to %u"),_mode);
@ -499,7 +527,7 @@ uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint16_t _type){
DEBUG_SENSOR_LOG(PSTR("MINRF: will test ID-type: %x"), _type); DEBUG_SENSOR_LOG(PSTR("MINRF: will test ID-type: %x"), _type);
bool _success = false; bool _success = false;
for (uint32_t i=0;i<5;i++){ for (uint32_t i=0;i<6;i++){ // i < sizeof(kMINRFSlaveID) gives compiler warning
if(_type == kMINRFSlaveID[i]){ if(_type == kMINRFSlaveID[i]){
DEBUG_SENSOR_LOG(PSTR("MINRF: ID is type %u"), i); DEBUG_SENSOR_LOG(PSTR("MINRF: ID is type %u"), i);
_type = i+1; _type = i+1;
@ -536,9 +564,9 @@ uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint16_t _type){
_newSensor.fertility =-1000.0f; _newSensor.fertility =-1000.0f;
_newSensor.lux = 0x00ffffff; _newSensor.lux = 0x00ffffff;
break; break;
case 2: case 3: case 4: case 2: case 3: case 4: case 5: case 6:
_newSensor.hum=-1.0f; _newSensor.hum=-1.0f;
_newSensor.bat=0xff; _newSensor.bat=0x00;
break; break;
default: default:
break; break;
@ -574,7 +602,7 @@ void MINRFhandleFloraPacket(void){
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot); DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return; if(_slot==0xff) return;
static float _tempFloat; float _tempFloat;
switch(MINRF.buffer.floraPacket.L.mode) { // we can use any struct with a mode, they are all same at this point switch(MINRF.buffer.floraPacket.L.mode) { // we can use any struct with a mode, they are all same at this point
case 4: case 4:
_tempFloat=(float)(MINRF.buffer.floraPacket.T.data)/10.0f; _tempFloat=(float)(MINRF.buffer.floraPacket.T.data)/10.0f;
@ -617,7 +645,7 @@ void MINRFhandleMJ_HT_V1Packet(void){
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot); DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return; if(_slot==0xff) return;
static float _tempFloat; float _tempFloat;
switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 0x0d: case 0x0d:
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f; _tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f;
@ -653,7 +681,7 @@ void MINRFhandleLYWSD02Packet(void){
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot); DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return; if(_slot==0xff) return;
static float _tempFloat; float _tempFloat;
switch(MINRF.buffer.LYWSD02Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point switch(MINRF.buffer.LYWSD02Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 4: case 4:
_tempFloat=(float)(MINRF.buffer.LYWSD02Packet.TH.data)/10.0f; _tempFloat=(float)(MINRF.buffer.LYWSD02Packet.TH.data)/10.0f;
@ -695,7 +723,7 @@ void MINRFhandleCGG1Packet(void){ // we assume, that the packet structure is equ
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot); DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return; if(_slot==0xff) return;
static float _tempFloat; float _tempFloat;
switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 0x0d: case 0x0d:
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f; _tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f;
@ -720,6 +748,31 @@ void MINRFhandleCGG1Packet(void){ // we assume, that the packet structure is equ
} }
} }
void MINRFhandleCGD1Packet(void){ //
if(MINRF.buffer.CGDPacket.TH.mode!=0x0401){ // not really a mode
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected CGD1-packet"));
MINRF_LOG_BUFFER(MINRF.buffer.raw);
return;
}
MINRFreverseMAC(MINRF.buffer.CGDPacket.TH.serial);
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.CGDPacket.TH.serial, 0x0576); // This must be hard-coded, no object-id in Cleargrass-packet
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
float _tempFloat;
_tempFloat=(float)(MINRF.buffer.CGDPacket.TH.temp)/10.0f;
if(_tempFloat<60){
MIBLEsensors.at(_slot).temp = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("CGD1: temp updated"));
}
_tempFloat=(float)(MINRF.buffer.CGDPacket.TH.hum)/10.0f;
if(_tempFloat<100){
MIBLEsensors.at(_slot).hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("CGD1: hum updated"));
}
DEBUG_SENSOR_LOG(PSTR("CGD1: U16: %x Temp U16: %x Hum"), MINRF.buffer.CGDPacket.TH.temp, MINRF.buffer.CGDPacket.TH.hum);
}
/*********************************************************************************************\ /*********************************************************************************************\
* Main loop of the driver * Main loop of the driver
\*********************************************************************************************/ \*********************************************************************************************/
@ -769,11 +822,32 @@ void MINRF_EVERY_50_MSECOND() { // Every 50mseconds
else if (MINRF.packetMode == CGG1){ else if (MINRF.packetMode == CGG1){
MINRFhandleCGG1Packet(); MINRFhandleCGG1Packet();
} }
if (MINRF.packetMode == CGG1){ else if (MINRF.packetMode == CGD1){
MINRFinitBLE(1); // no real ble packets in release mode, otherwise for developing use 0 MINRFhandleCGD1Packet();
} }
else {
MINRFinitBLE(++MINRF.packetMode); #ifdef IGNORE_FLORA
if (MINRF.packetMode+1 == FLORA) MINRF.packetMode++;
#endif // IGNORE_LYWSD03
#ifdef IGNORE_MJ_HT_V1
if (MINRF.packetMode+1 == MJ_HT_V1) MINRF.packetMode++;
#endif //IGNORE_MJ_HT_V1
#ifdef IGNORE_LYWSD02
if (MINRF.packetMode+1 == LYWSD02) MINRF.packetMode++;
#endif // IGNORE_LYWSD02
#ifdef IGNORE_LYWSD03
if (MINRF.packetMode+1 == LYWSD03) MINRF.packetMode++;
#endif // IGNORE_LYWSD03
#ifdef IGNORE_CGG1
if (MINRF.packetMode+1 == CGG1) MINRF.packetMode++;
#endif // IGNORE_CGG1
#ifdef IGNORE_CGD1
if (MINRF.packetMode+1 == CGD1) MINRF.packetMode=0;
#endif // IGNORE_CGD1
MINRFinitBLE(++MINRF.packetMode);
if (MINRF.packetMode > CGD1){
MINRFinitBLE(1); // no real ble packets in release mode, otherwise for developing use 0
} }
MINRFhopChannel(); MINRFhopChannel();
@ -828,7 +902,7 @@ void MINRFShow(bool json)
if(MIBLEsensors.at(i).hum!=-1.0f){ // this is the error code -> no humidity if(MIBLEsensors.at(i).hum!=-1.0f){ // this is the error code -> no humidity
ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity); ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity);
} }
if(MIBLEsensors.at(i).bat!=0xff){ // this is the error code -> no battery if(MIBLEsensors.at(i).bat!=0x00){ // this is the error code -> no battery
ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors.at(i).bat); ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors.at(i).bat);
} }
} }
@ -868,7 +942,7 @@ void MINRFShow(bool json)
dtostrfd(MIBLEsensors.at(i).hum, Settings.flag2.humidity_resolution, humidity); dtostrfd(MIBLEsensors.at(i).hum, Settings.flag2.humidity_resolution, humidity);
WSContentSend_PD(HTTP_SNS_HUM, kMINRFSlaveType[MIBLEsensors.at(i).type-1], humidity); WSContentSend_PD(HTTP_SNS_HUM, kMINRFSlaveType[MIBLEsensors.at(i).type-1], humidity);
} }
if(MIBLEsensors.at(i).bat!=0xff){ if(MIBLEsensors.at(i).bat!=0x00){ // without "juice" nothing can be done
WSContentSend_PD(HTTP_BATTERY, kMINRFSlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).bat); WSContentSend_PD(HTTP_BATTERY, kMINRFSlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).bat);
} }
} }