Merge pull request #9437 from arendst/dev-gpio16

Redesign internal 8-bit GPIO to 16-bit GPIO
This commit is contained in:
Theo Arends 2020-10-02 12:38:46 +02:00 committed by GitHub
commit e1620d62b0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 2121 additions and 3050 deletions

View File

@ -17,7 +17,11 @@ See [migration path](https://tasmota.github.io/docs/Upgrading#migration-path) fo
6. Migrate to **Tasmota 8.1**
7. Migrate to **Tasmota 8.x**
While fallback or downgrading is common practice it was never supported due to Settings additions or changes in newer releases. Starting with release **v8.1.0 Doris** the Settings are re-allocated in such a way that fallback is only allowed and possible to release **v7.2.0 Constance**. Once at v7.2.0 you're on your own when downgrading even further.
--- Major change in GPIO function representation ---
8. Migrate to **Tasmota 9.x**
While fallback or downgrading is common practice it was never supported due to Settings additions or changes in newer releases. Starting with release **v9.1.0 Imogen** the internal GPIO function representation has changed in such a way that fallback is only possible to the latest GPIO configuration before installing **v9.1.0**.
## Supported Core versions
@ -57,4 +61,5 @@ The attached binaries can also be downloaded from http://ota.tasmota.com/tasmota
### Version 9.0.0.1
- New dev release
- Remove auto config update for all Friendlynames and Switchtopic from versions before 8.x
- Change redesigning ESP8266 GPIO internal representation in line with ESP32

View File

@ -4,7 +4,8 @@
### 9.0.0.1 20201002
- New dev release
- Remove auto config update for all Friendlynames and Switchtopic from versions before 8.x
- Change redesigning ESP8266 GPIO internal representation in line with ESP32
### 8.5.1 20201002

View File

@ -424,12 +424,18 @@ struct {
SysBitfield3 flag3; // 3A0
uint8_t switchmode[MAX_SWITCHES]; // 3A4 (6.0.0b - moved from 0x4CA)
// char ex_friendlyname[4][33]; // 3AC
// char ex_switch_topic[33]; // 430
myio my_gp; // 3AC - 2 x 18 bytes (ESP8266) / 2 x 40 bytes (ESP32)
#ifdef ESP8266
char ex_friendlyname[4][33]; // 3AC
char ex_switch_topic[33]; // 430
uint16_t gpio16_converted; // 3D0
uint8_t free_esp8266_3D2[42]; // 3D2
#endif
mytmplt user_template; // 3FC - 2 x 15 bytes (ESP8266) / 2 x 37 bytes (ESP32)
#ifdef ESP8266
uint8_t free_esp8266_41A[55]; // 41A
#else // ESP32
myio my_gp; // 3AC - 2 x 40 bytes (ESP32)
mytmplt user_template; // 3FC - 2 x 37 bytes (ESP32)
uint8_t eth_type; // 446
uint8_t eth_clk_mode; // 447
@ -449,12 +455,12 @@ struct {
uint8_t ws_width[3]; // 481
#ifdef ESP8266
myio my_gp; // 484 - 17 bytes (ESP8266)
myio8 ex_my_gp8; // 484 - 17 bytes (ESP8266) - free once gpio16 is active
#else // ESP32
uint8_t free_esp32_484[17]; // 484
#endif // ESP8266 - ESP32
uint8_t ex_my_adc0; // 495 free once gpio16 is active
uint8_t my_adc0; // 495
uint16_t light_pixels; // 496
uint8_t light_color[5]; // 498
uint8_t light_correction; // 49D
@ -508,7 +514,7 @@ struct {
char user_template_name[15]; // 720 15 bytes - Backward compatibility since v8.2.0.3
#ifdef ESP8266
mytmplt user_template; // 72F 14 bytes (ESP8266)
mytmplt8285 ex_user_template8; // 72F 14 bytes (ESP8266) - free once gpio16 is active
#else // ESP32
uint8_t free_esp32_72f[14]; // 72F
#endif // ESP8266 - ESP32

View File

@ -1193,8 +1193,8 @@ void SettingsDelta(void)
}
}
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) {
if (Settings.my_gp.io[i] >= GPIO_SWT5) { // Move up from GPIO_SWT5 to GPIO_KEY1
Settings.my_gp.io[i] += 4;
if (Settings.ex_my_gp8.io[i] >= GPI8_SWT5) { // Move up from GPI8_SWT5 to GPI8_KEY1
Settings.ex_my_gp8.io[i] += 4;
}
}
}
@ -1259,7 +1259,7 @@ void SettingsDelta(void)
Settings.ledmask = APP_LEDMASK;
}
if (Settings.version < 0x0605000A) {
Settings.my_adc0 = ADC0_NONE;
Settings.ex_my_adc0 = GPIO_NONE;
}
if (Settings.version < 0x0605000D) {
Settings.param[P_IR_UNKNOW_THRESHOLD] = IR_RCV_MIN_UNKNOWN_SIZE;
@ -1450,7 +1450,7 @@ void SettingsDelta(void)
SettingsUpdateText(SET_WEBPWD, Settings.ex_web_password);
SettingsUpdateText(SET_CORS, Settings.ex_cors_domain);
SettingsUpdateText(SET_MQTT_FULLTOPIC, Settings.ex_mqtt_fulltopic);
SettingsUpdateText(SET_MQTT_SWITCH_TOPIC, Settings.ex_switch_topic);
// SettingsUpdateText(SET_MQTT_SWITCH_TOPIC, Settings.ex_switch_topic);
SettingsUpdateText(SET_STATE_TXT1, Settings.ex_state_text[0]);
SettingsUpdateText(SET_STATE_TXT2, Settings.ex_state_text[1]);
SettingsUpdateText(SET_STATE_TXT3, Settings.ex_state_text[2]);
@ -1463,10 +1463,10 @@ void SettingsDelta(void)
SettingsUpdateText(SET_MEM3, Settings.script_pram[2]);
SettingsUpdateText(SET_MEM4, Settings.script_pram[3]);
SettingsUpdateText(SET_MEM5, Settings.script_pram[4]);
SettingsUpdateText(SET_FRIENDLYNAME1, Settings.ex_friendlyname[0]);
SettingsUpdateText(SET_FRIENDLYNAME2, Settings.ex_friendlyname[1]);
SettingsUpdateText(SET_FRIENDLYNAME3, Settings.ex_friendlyname[2]);
SettingsUpdateText(SET_FRIENDLYNAME4, Settings.ex_friendlyname[3]);
// SettingsUpdateText(SET_FRIENDLYNAME1, Settings.ex_friendlyname[0]);
// SettingsUpdateText(SET_FRIENDLYNAME2, Settings.ex_friendlyname[1]);
// SettingsUpdateText(SET_FRIENDLYNAME3, Settings.ex_friendlyname[2]);
// SettingsUpdateText(SET_FRIENDLYNAME4, Settings.ex_friendlyname[3]);
}
if (Settings.version < 0x08020003) {
SettingsUpdateText(SET_TEMPLATE_NAME, Settings.user_template_name);

View File

@ -1131,13 +1131,94 @@ int ResponseJsonEndEnd(void)
* GPIO Module and Template management
\*********************************************************************************************/
#ifdef ESP8266
uint16_t GpioConvert(uint8_t gpio) {
if (gpio > ARRAY_SIZE(kGpioConvert)) {
return AGPIO(GPIO_USER);
}
return pgm_read_word(kGpioConvert + gpio);
}
uint16_t Adc0Convert(uint8_t adc0) {
if (adc0 > 7) {
return AGPIO(GPIO_USER);
}
else if (0 == adc0) {
return GPIO_NONE;
}
return AGPIO(GPIO_ADC_INPUT + adc0 -1);
}
void TemplateConvert(uint8_t template8[], uint16_t template16[]) {
for (uint32_t i = 0; i < (sizeof(mytmplt) / 2) -2; i++) {
template16[i] = GpioConvert(template8[i]);
}
template16[(sizeof(mytmplt) / 2) -2] = Adc0Convert(template8[sizeof(mytmplt8285) -1]);
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("FNC: TemplateConvert"));
// AddLogBuffer(LOG_LEVEL_DEBUG, template8, sizeof(mytmplt8285));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)template16, sizeof(mytmplt) / 2, 2);
}
void ConvertGpios(void) {
if (Settings.gpio16_converted != 0xF5A0) {
// Convert 8-bit user template
TemplateConvert((uint8_t*)&Settings.ex_user_template8, (uint16_t*)&Settings.user_template);
for (uint32_t i = 0; i < sizeof(Settings.ex_my_gp8.io); i++) {
Settings.my_gp.io[i] = GpioConvert(Settings.ex_my_gp8.io[i]);
}
Settings.my_gp.io[(sizeof(myio) / 2) -1] = Adc0Convert(Settings.ex_my_adc0);
Settings.gpio16_converted = 0xF5A0;
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("FNC: ConvertGpios"));
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.ex_my_gp8.io, sizeof(myio8));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.my_gp.io, sizeof(myio) / 2, 2);
}
}
/*
void DumpConvertTable(void) {
bool jsflg = false;
uint32_t lines = 1;
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioConvert); i++) {
uint32_t data = pgm_read_word(kGpioConvert + i);
if (!jsflg) {
Response_P(PSTR("{\"GPIOConversion%d\":{"), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (LOGSZ - TOPSZ)) || (i == ARRAY_SIZE(kGpioConvert) -1)) {
ResponseJsonEndEnd();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command);
jsflg = false;
lines++;
}
}
for (uint32_t i = 0; i < ARRAY_SIZE(kAdcNiceList); i++) {
uint32_t data = pgm_read_word(kAdcNiceList + i);
if (!jsflg) {
Response_P(PSTR("{\"ADC0Conversion%d\":{"), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (LOGSZ - TOPSZ)) || (i == ARRAY_SIZE(kAdcNiceList) -1)) {
ResponseJsonEndEnd();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command);
jsflg = false;
lines++;
}
}
mqtt_data[0] = '\0';
}
*/
#endif // ESP8266
uint32_t ICACHE_RAM_ATTR Pin(uint32_t gpio, uint32_t index = 0);
uint32_t ICACHE_RAM_ATTR Pin(uint32_t gpio, uint32_t index) {
#ifdef ESP8266
uint16_t real_gpio = gpio + index;
#else // ESP32
uint16_t real_gpio = (gpio << 5) + index;
#endif // ESP8266 - ESP32
for (uint32_t i = 0; i < ARRAY_SIZE(gpio_pin); i++) {
if (gpio_pin[i] == real_gpio) {
return i; // Pin number configured for gpio
@ -1224,44 +1305,45 @@ void GetInternalTemplate(void* ptr, uint32_t module, uint32_t option) {
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: Template %d, Option %d"), module_template, option);
uint8_t internal_template[sizeof(mytmplt)] = { GPIO_NONE };
// template8 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
if (module_template < TMP_WEMOS) {
memcpy_P(&internal_template, &kModules8266[module_template], 6);
memcpy_P(&internal_template[8], &kModules8266[module_template].gp.io[6], 6);
memcpy_P(&template8, &kModules8266[module_template], 6);
memcpy_P(&template8[8], &kModules8266[module_template].gp.io[6], 6);
} else {
memcpy_P(&internal_template, &kModules8285[module_template - TMP_WEMOS], sizeof(mytmplt));
memcpy_P(&template8, &kModules8285[module_template - TMP_WEMOS], sizeof(template8));
}
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&internal_template, sizeof(mytmplt));
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&template8, sizeof(mytmplt8285));
// template16 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc,Flg
uint16_t template16[(sizeof(mytmplt) / 2)] = { GPIO_NONE };
TemplateConvert(template8, template16);
uint32_t index = 0;
uint32_t size = sizeof(mycfgio); // kmodules[module_template].gp
uint32_t size = sizeof(mycfgio); // template16[module_template].gp
switch (option) {
case 2: {
index = sizeof(internal_template) -1; // kModules[module_template].flag
size = 1;
index = (sizeof(mytmplt) / 2) -1; // template16[module_template].flag
size = 2;
break;
}
case 3: {
size = sizeof(internal_template); // kmodules[module_template]
size = sizeof(mytmplt); // template16[module_template]
break;
}
}
memcpy(ptr, &internal_template[index], size);
memcpy(ptr, &template16[index], size);
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)ptr, size);
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("FNC: GetInternalTemplate option %d"), option);
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)ptr, size / 2, 2);
}
#endif // ESP8266
void ModuleGpios(myio *gp)
{
#ifdef ESP8266
uint8_t *dest = (uint8_t *)gp;
uint8_t src[ARRAY_SIZE(Settings.user_template.gp.io)];
#else // ESP32
uint16_t *dest = (uint16_t *)gp;
uint16_t src[ARRAY_SIZE(Settings.user_template.gp.io)];
#endif // ESP8266 - ESP32
memset(dest, GPIO_NONE, sizeof(myio));
if (USER_MODULE == Settings.module) {
@ -1337,7 +1419,7 @@ uint32_t ValidPin(uint32_t pin, uint32_t gpio)
// if (!is_8285 && !Settings.flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's
if ((WEMOS == Settings.module) && !Settings.flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's
if ((pin == 9) || (pin == 10)) {
if ((9 == pin) || (10 == pin)) {
return GPIO_NONE; // Disable possible flash GPIO9 and GPIO10
}
}
@ -1347,23 +1429,15 @@ uint32_t ValidPin(uint32_t pin, uint32_t gpio)
bool ValidGPIO(uint32_t pin, uint32_t gpio)
{
#ifdef ESP8266
#ifdef USE_ADC_VCC
if (ADC0_PIN == pin) { return false; } // ADC0 = GPIO17
#endif
#endif
return (GPIO_USER == ValidPin(pin, BGPIO(gpio))); // Only allow GPIO_USER pins
}
#ifdef ESP8266
bool ValidAdc(void)
{
gpio_flag flag = ModuleFlag();
uint32_t template_adc0 = flag.data &15;
return (ADC0_USER == template_adc0);
}
#endif // ESP8266
#ifdef ESP8266
bool GetUsedInModule(uint32_t val, uint8_t *arr)
#else // ESP32
bool GetUsedInModule(uint32_t val, uint16_t *arr)
#endif // ESP8266 - ESP32
{
int offset = 0;
@ -1426,7 +1500,8 @@ bool GetUsedInModule(uint32_t val, uint16_t *arr)
bool JsonTemplate(char* dataBuf)
{
// {"NAME":"Generic","GPIO":[17,254,29,254,7,254,254,254,138,254,139,254,254],"FLAG":1,"BASE":255}
// Old: {"NAME":"Shelly 2.5","GPIO":[56,0,17,0,21,83,0,0,6,82,5,22,156],"FLAG":2,"BASE":18}
// New: {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18}
if (strlen(dataBuf) < 9) { return false; } // Workaround exception if empty JSON like {} - Needs checks
@ -1441,23 +1516,38 @@ bool JsonTemplate(char* dataBuf)
}
JsonParserArray arr = root[PSTR(D_JSON_GPIO)];
if (arr) {
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
#ifdef ESP8266
Settings.user_template.gp.io[i] = arr[i].getUInt();
#else // ESP32
uint16_t gpio = arr[i].getUInt();
if (gpio == (AGPIO(GPIO_NONE) +1)) {
gpio = AGPIO(GPIO_USER);
if (!arr[13].getUInt()) { // Old template
AddLog_P(LOG_LEVEL_DEBUG, PSTR("TPL: Converting template ..."));
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
for (uint32_t i = 0; i < ARRAY_SIZE(template8) -1; i++) {
template8[i] = arr[i].getUInt();
}
Settings.user_template.gp.io[i] = gpio;
val = root[PSTR(D_JSON_FLAG)];
if (val) {
template8[ARRAY_SIZE(template8) -1] = val.getUInt() & 0x0F;
}
TemplateConvert(template8, Settings.user_template.gp.io);
Settings.user_template.flag.data = 0;
} else {
#endif
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
uint16_t gpio = arr[i].getUInt();
if (gpio == (AGPIO(GPIO_NONE) +1)) {
gpio = AGPIO(GPIO_USER);
}
Settings.user_template.gp.io[i] = gpio;
}
val = root[PSTR(D_JSON_FLAG)];
if (val) {
Settings.user_template.flag.data = val.getUInt();
}
}
#ifdef ESP8266
}
val = root[PSTR(D_JSON_FLAG)];
if (val) {
uint32_t flag = val.getUInt();
memcpy(&Settings.user_template.flag, &flag, sizeof(gpio_flag));
}
#endif
val = root[PSTR(D_JSON_BASE)];
if (val) {
uint32_t base = val.getUInt();
@ -1471,15 +1561,11 @@ void TemplateJson(void)
{
Response_P(PSTR("{\"" D_JSON_NAME "\":\"%s\",\"" D_JSON_GPIO "\":["), SettingsText(SET_TEMPLATE_NAME));
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
#ifdef ESP8266
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", Settings.user_template.gp.io[i]);
#else // ESP32
uint16_t gpio = Settings.user_template.gp.io[i];
if (gpio == AGPIO(GPIO_USER)) {
gpio = AGPIO(GPIO_NONE) +1;
}
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", gpio);
#endif
}
ResponseAppend_P(PSTR("],\"" D_JSON_FLAG "\":%d,\"" D_JSON_BASE "\":%d}"), Settings.user_template.flag, Settings.user_template_base +1);
}

View File

@ -92,7 +92,7 @@ void ButtonInit(void)
}
#ifdef ESP8266
#ifndef USE_ADC_VCC
else if ((99 == Button.adc) && ((ADC0_BUTTON == my_adc0) || (ADC0_BUTTON_INV == my_adc0))) {
else if ((99 == Button.adc) && AdcButtonPresent(0)) {
Button.present++;
Button.adc = i;
}
@ -167,12 +167,7 @@ void ButtonHandler(void)
#ifndef USE_ADC_VCC
if (Button.adc == button_index) {
button_present = 1;
if (ADC0_BUTTON_INV == my_adc0) {
button = (AdcRead(1) < 128);
}
else if (ADC0_BUTTON == my_adc0) {
button = (AdcRead(1) > 128);
}
button = AdcGetButton(0);
}
#endif // USE_ADC_VCC
#else // ESP32

View File

@ -1120,19 +1120,11 @@ void CmndGpio(void)
if (ValidGPIO(XdrvMailbox.index, cmodule.io[XdrvMailbox.index]) && (XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < AGPIO(GPIO_SENSOR_END))) {
bool present = false;
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioNiceList); i++) {
#ifdef ESP8266
uint32_t midx = pgm_read_byte(kGpioNiceList + i);
if (midx == XdrvMailbox.payload) {
present = true;
break;
}
#else // ESP32
uint32_t midx = pgm_read_word(kGpioNiceList + i);
if ((XdrvMailbox.payload >= (midx & 0xFFE0)) && (XdrvMailbox.payload < midx)) {
present = true;
break;
}
#endif // ESP8266 - ESP32
}
if (present) {
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) {
@ -1147,7 +1139,7 @@ void CmndGpio(void)
Response_P(PSTR("{"));
bool jsflg = false;
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) {
if (ValidGPIO(i, cmodule.io[i]) || ((AGPIO(GPIO_USER) == XdrvMailbox.payload) && !FlashPin(i))) {
if (ValidGPIO(i, cmodule.io[i]) || ((255 == XdrvMailbox.payload) && !FlashPin(i))) {
if (jsflg) { ResponseAppend_P(PSTR(",")); }
jsflg = true;
uint32_t sensor_type = Settings.my_gp.io[i];
@ -1159,7 +1151,6 @@ void CmndGpio(void)
}
char sindex[4] = { 0 };
uint32_t sensor_name_idx = BGPIO(sensor_type);
#ifdef ESP32
uint32_t nice_list_search = sensor_type & 0xFFE0;
for (uint32_t j = 0; j < ARRAY_SIZE(kGpioNiceList); j++) {
uint32_t nls_idx = pgm_read_word(kGpioNiceList + j);
@ -1168,7 +1159,6 @@ void CmndGpio(void)
break;
}
}
#endif // ESP32
const char *sensor_names = kSensorNames;
if (sensor_name_idx > GPIO_FIX_START) {
sensor_name_idx = sensor_name_idx - GPIO_FIX_START -1;
@ -1187,20 +1177,13 @@ void CmndGpio(void)
}
}
void CmndGpios(void)
{
void ShowGpios(const uint16_t *NiceList, uint32_t size, uint32_t offset, uint32_t &lines) {
myio cmodule;
ModuleGpios(&cmodule);
uint32_t lines = 1;
bool jsflg = false;
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioNiceList); i++) {
#ifdef ESP8266
uint32_t midx = pgm_read_byte(kGpioNiceList + i);
uint32_t ridx = midx;
#else // ESP32
uint32_t ridx = pgm_read_word(kGpioNiceList + i) & 0xFFE0;
for (uint32_t i = offset; i < size; i++) { // Skip ADC_NONE
uint32_t ridx = pgm_read_word(NiceList + i) & 0xFFE0;
uint32_t midx = BGPIO(ridx);
#endif // ESP8266 - ESP32
if ((XdrvMailbox.payload != 255) && GetUsedInModule(midx, cmodule.io)) { continue; }
if (!jsflg) {
Response_P(PSTR("{\"" D_CMND_GPIOS "%d\":{"), lines);
@ -1209,19 +1192,37 @@ void CmndGpios(void)
}
jsflg = true;
char stemp1[TOPSZ];
if ((ResponseAppend_P(PSTR("\"%d\":\"%s\""), ridx, GetTextIndexed(stemp1, sizeof(stemp1), midx, kSensorNames)) > (LOGSZ - TOPSZ)) || (i == ARRAY_SIZE(kGpioNiceList) -1)) {
if ((ResponseAppend_P(PSTR("\"%d\":\"%s\""), ridx, GetTextIndexed(stemp1, sizeof(stemp1), midx, kSensorNames)) > (LOGSZ - TOPSZ)) || (i == size -1)) {
ResponseJsonEndEnd();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command);
jsflg = false;
lines++;
}
}
}
void CmndGpios(void)
{
/*
if (XdrvMailbox.payload == 17) {
DumpConvertTable();
return;
}
*/
uint32_t lines = 1;
ShowGpios(kGpioNiceList, ARRAY_SIZE(kGpioNiceList), 0, lines);
#ifdef ESP8266
#ifndef USE_ADC_VCC
ShowGpios(kAdcNiceList, ARRAY_SIZE(kAdcNiceList), 1, lines);
#endif // USE_ADC_VCC
#endif // ESP8266
mqtt_data[0] = '\0';
}
void CmndTemplate(void)
{
// {"NAME":"Generic","GPIO":[17,254,29,254,7,254,254,254,138,254,139,254,254],"FLAG":1,"BASE":255}
// {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18}
bool error = false;
if (strstr(XdrvMailbox.data, "{") == nullptr) { // If no JSON it must be parameter

View File

@ -1476,6 +1476,10 @@ void GpioInit(void)
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: Used GPIOs %d"), GPIO_SENSOR_END);
#ifdef ESP8266
ConvertGpios();
#endif // ESP8266
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
if ((Settings.user_template.gp.io[i] >= AGPIO(GPIO_SENSOR_END)) && (Settings.user_template.gp.io[i] < AGPIO(GPIO_USER))) {
Settings.user_template.gp.io[i] = AGPIO(GPIO_USER); // Fix not supported sensor ids in template
@ -1495,19 +1499,6 @@ void GpioInit(void)
my_module.io[i] = def_gp.io[i]; // Force Template override
}
}
#ifdef ESP8266
if ((Settings.my_adc0 >= ADC0_END) && (Settings.my_adc0 < ADC0_USER)) {
Settings.my_adc0 = ADC0_NONE; // Fix not supported sensor ids in module
}
else if (Settings.my_adc0 > ADC0_NONE) {
my_adc0 = Settings.my_adc0; // Set User selected Module sensors
}
my_module_flag = ModuleFlag();
uint32_t template_adc0 = my_module_flag.data &15;
if ((template_adc0 > ADC0_NONE) && (template_adc0 < ADC0_USER)) {
my_adc0 = template_adc0; // Force Template override
}
#endif
for (uint32_t i = 0; i < ARRAY_SIZE(my_module.io); i++) {
uint32_t mpin = ValidPin(i, my_module.io[i]);

View File

@ -82,7 +82,11 @@ const uint8_t MAX_FRIENDLYNAMES = 8; // Max number of Friendly names
const uint8_t MAX_BUTTON_TEXT = 16; // Max number of GUI button labels
const uint8_t MAX_GROUP_TOPICS = 4; // Max number of Group Topics
const uint8_t MAX_DEV_GROUP_NAMES = 4; // Max number of Device Group names
#ifdef ESP8266
const uint8_t MAX_ADCS = 1; // Max number of ESP8266 ADC pins
#else
const uint8_t MAX_ADCS = 8; // Max number of ESP32 ADC pins (ADC2 pins are unusable with Wifi enabled)
#endif
const uint8_t MAX_HUE_DEVICES = 15; // Max number of Philips Hue device per emulation
const uint8_t MAX_ROTARIES = 2; // Max number of Rotary Encoders
@ -297,7 +301,9 @@ enum SettingsTextIndex { SET_OTAURL,
SET_DEV_GROUP_NAME1, SET_DEV_GROUP_NAME2, SET_DEV_GROUP_NAME3, SET_DEV_GROUP_NAME4, // MAX_DEV_GROUP_NAMES
SET_DEVICENAME,
SET_TELEGRAM_TOKEN, SET_TELEGRAM_CHATID,
#ifdef ESP32
#ifdef ESP8266
SET_ADC_PARAM1,
#else // ESP32
SET_ADC_PARAM1, SET_ADC_PARAM2, SET_ADC_PARAM3, SET_ADC_PARAM4, SET_ADC_PARAM5, SET_ADC_PARAM6, SET_ADC_PARAM7, SET_ADC_PARAM8, // MAX_ADCS
#endif
SET_MAX };

View File

@ -116,11 +116,7 @@ uint16_t tele_period = 9999; // Tele period timer
uint16_t blink_counter = 0; // Number of blink cycles
uint16_t seriallog_timer = 0; // Timer to disable Seriallog
uint16_t syslog_timer = 0; // Timer to re-enable syslog_level
#ifdef ESP32
uint16_t gpio_pin[MAX_GPIO_PIN] = { 0 }; // GPIO functions indexed by pin number
#endif // ESP32
int16_t save_data_counter; // Counter and flag for config save to Flash
RulesBitfield rules_flag; // Rule state flags (16 bits)
uint8_t mqtt_cmnd_blocked = 0; // Ignore flag for publish command
@ -129,11 +125,6 @@ uint8_t state_250mS = 0; // State 250msecond per second flag
uint8_t latching_relay_pulse = 0; // Latching relay pulse timer
uint8_t ssleep; // Current copy of Settings.sleep
uint8_t blinkspeed = 1; // LED blink rate
#ifdef ESP8266
uint8_t gpio_pin[MAX_GPIO_PIN] = { 0 }; // GPIO functions indexed by pin number
#endif // ESP8266 - ESP32
uint8_t active_device = 1; // Active device in ExecuteCommandPower
uint8_t leds_present = 0; // Max number of LED supported
uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off))
@ -150,7 +141,6 @@ uint8_t masterlog_level = 0; // Master log level used to override
uint8_t seriallog_level; // Current copy of Settings.seriallog_level
uint8_t syslog_level; // Current copy of Settings.syslog_level
uint8_t my_module_type; // Current copy of Settings.module or user template type
uint8_t my_adc0 = 0; // Active copy of Module ADC0
uint8_t last_source = 0; // Last command source
uint8_t shutters_present = 0; // Number of actual define shutters
uint8_t prepped_loglevel = 0; // Delayed log level message
@ -172,7 +162,6 @@ bool is_8285 = false; // Hardware device ESP8266EX (0) or
bool skip_light_fade; // Temporarily skip light fading
bool restart_halt = false; // Do not restart but stay in wait loop
myio my_module; // Active copy of Module GPIOs (17 x 8 bits)
gpio_flag my_module_flag; // Active copy of Template GPIO flags
StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits)
char my_version[33]; // Composed version string
char my_image[33]; // Code image and/or commit
@ -277,9 +266,6 @@ void setup(void) {
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) {
Settings.my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors
}
#ifdef ESP8266
Settings.my_adc0 = ADC0_NONE; // Reset user defined ADC0 disabling sensors
#endif
}
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times
Settings.module = Settings.fallback_module; // Reset module to fallback module

View File

@ -333,6 +333,12 @@ const char kWebColors[] PROGMEM =
#define ARDUINO_CORE_RELEASE ARDUINO_ESP8266_RELEASE
#endif // ARDUINO_ESP8266_RELEASE
#ifndef USE_ADC_VCC
#define USE_ADC
#else
#undef USE_ADC
#endif
#endif // ESP8266
#ifdef ESP32
@ -378,13 +384,8 @@ const char kWebColors[] PROGMEM =
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
#ifdef ESP8266
#define AGPIO(x) (x)
#define BGPIO(x) (x)
#else // ESP32
#define AGPIO(x) (x<<5)
#define BGPIO(x) (x>>5)
#endif // ESP8266 - ESP32
#ifdef USE_DEVICE_GROUPS
#define SendDeviceGroupMessage(DEVICE_INDEX, REQUEST_TYPE, ...) _SendDeviceGroupMessage(DEVICE_INDEX, REQUEST_TYPE, __VA_ARGS__, 0)

File diff suppressed because it is too large Load Diff

View File

@ -1,729 +0,0 @@
/*
tasmota_template_ESP32.h - ESP32 template settings for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _TASMOTA_TEMPLATE_ESP32_H_
#define _TASMOTA_TEMPLATE_ESP32_H_
#ifdef ESP32
// Hardware has no ESP32
#undef USE_TUYA_DIMMER
#undef USE_PWM_DIMMER
#undef USE_EXS_DIMMER
#undef USE_ARMTRONIX_DIMMERS
#undef USE_SONOFF_RF
#undef USE_SONOFF_SC
#undef USE_SONOFF_IFAN
#undef USE_SONOFF_L1
#undef USE_SONOFF_D1
#undef USE_RF_FLASH
// Not ported (yet)
#undef USE_DISCOVERY
#undef USE_MY92X1
#undef USE_TUYA_MCU
#undef USE_PS_16_DZ
enum UserSelectablePins {
GPIO_NONE, // Not used
GPIO_KEY1, GPIO_KEY1_NP, GPIO_KEY1_INV, GPIO_KEY1_INV_NP, // 4 x Button
GPIO_SWT1, GPIO_SWT1_NP, // 8 x User connected external switches
GPIO_REL1, GPIO_REL1_INV, // 8 x Relays
GPIO_LED1, GPIO_LED1_INV, // 4 x Leds
GPIO_CNTR1, GPIO_CNTR1_NP, // 4 x Counter
GPIO_PWM1, GPIO_PWM1_INV, // 5 x PWM
GPIO_BUZZER, GPIO_BUZZER_INV, // Buzzer
GPIO_LEDLNK, GPIO_LEDLNK_INV, // Link led
GPIO_I2C_SCL, GPIO_I2C_SDA, // Software I2C
GPIO_SPI_MISO, GPIO_SPI_MOSI, GPIO_SPI_CLK, GPIO_SPI_CS, GPIO_SPI_DC, // Hardware SPI
GPIO_SSPI_MISO, GPIO_SSPI_MOSI, GPIO_SSPI_SCLK, GPIO_SSPI_CS, GPIO_SSPI_DC, // Software SPI
GPIO_BACKLIGHT, // Display backlight control
GPIO_OLED_RESET, // OLED Display Reset
GPIO_IRSEND, GPIO_IRRECV, // IR interface
GPIO_RFSEND, GPIO_RFRECV, // RF interface
GPIO_DHT11, GPIO_DHT22, GPIO_SI7021, GPIO_DHT11_OUT, // DHT11, DHT21, DHT22, AM2301, AM2302, AM2321
GPIO_DSB, GPIO_DSB_OUT, // DS18B20 or DS18S20
GPIO_WS2812, // WS2812 Led string
GPIO_MHZ_TXD, GPIO_MHZ_RXD, // MH-Z19 Serial interface
GPIO_PZEM0XX_TX, GPIO_PZEM004_RX, GPIO_PZEM016_RX, GPIO_PZEM017_RX, // PZEM Serial Modbus interface
GPIO_SAIR_TX, GPIO_SAIR_RX, // SenseAir Serial interface
GPIO_PMS5003_TX, GPIO_PMS5003_RX, // Plantower PMS5003 Serial interface
GPIO_SDS0X1_TX, GPIO_SDS0X1_RX, // Nova Fitness SDS011 Serial interface
GPIO_SBR_TX, GPIO_SBR_RX, // Serial Bridge Serial interface
GPIO_SR04_TRIG, GPIO_SR04_ECHO, // SR04 interface
GPIO_SDM120_TX, GPIO_SDM120_RX, // SDM120 Serial interface
GPIO_SDM630_TX, GPIO_SDM630_RX, // SDM630 Serial interface
GPIO_TM16CLK, GPIO_TM16DIO, GPIO_TM16STB, // TM1638 interface
GPIO_MP3_DFR562, // RB-DFR-562, DFPlayer Mini MP3 Player
GPIO_HX711_SCK, GPIO_HX711_DAT, // HX711 Load Cell interface
GPIO_TX2X_TXD_BLACK, // TX20/TX23 Transmission Pin
GPIO_TUYA_TX, GPIO_TUYA_RX, // Tuya Serial interface
GPIO_MGC3130_XFER, GPIO_MGC3130_RESET, // MGC3130 interface
GPIO_RF_SENSOR, // Rf receiver with sensor decoding
GPIO_AZ_TXD, GPIO_AZ_RXD, // AZ-Instrument 7798 Serial interface
GPIO_MAX31855CS, GPIO_MAX31855CLK, GPIO_MAX31855DO, // MAX31855 Serial interface
GPIO_NRG_SEL, GPIO_NRG_SEL_INV, GPIO_NRG_CF1, GPIO_HLW_CF, GPIO_HJL_CF, // HLW8012/HJL-01/BL0937 energy monitoring
GPIO_MCP39F5_TX, GPIO_MCP39F5_RX, GPIO_MCP39F5_RST, // MCP39F501 Energy monitoring (Shelly2)
GPIO_PN532_TXD, GPIO_PN532_RXD, // PN532 NFC Serial interface
GPIO_SM16716_CLK, GPIO_SM16716_DAT, GPIO_SM16716_SEL, // SM16716 SELECT
GPIO_DI, GPIO_DCKI, // my92x1 PWM controller
GPIO_CSE7766_TX, GPIO_CSE7766_RX, // CSE7766 Serial interface (S31 and Pow R2)
GPIO_ARIRFRCV, GPIO_ARIRFSEL, // Arilux RF Receive input
GPIO_TXD, GPIO_RXD, // Serial interface
GPIO_ROT1A, GPIO_ROT1B, // Rotary switch
GPIO_ADC_JOY, // Analog joystick
GPIO_SSPI_MAX31865_CS1, // MAX31865 Chip Select
GPIO_HRE_CLOCK, GPIO_HRE_DATA, // HR-E Water Meter
GPIO_ADE7953_IRQ, // ADE7953 IRQ
GPIO_SOLAXX1_TX, GPIO_SOLAXX1_RX, // Solax Inverter Serial interface
GPIO_ZIGBEE_TX, GPIO_ZIGBEE_RX, // Zigbee Serial interface
GPIO_RDM6300_RX, // RDM6300 RX
GPIO_IBEACON_TX, GPIO_IBEACON_RX, // HM17 IBEACON Serial interface
GPIO_A4988_DIR, GPIO_A4988_STP, GPIO_A4988_ENA, // A4988 interface
GPIO_A4988_MS1, GPIO_A4988_MS2, GPIO_A4988_MS3, // A4988 microstep
GPIO_DDS2382_TX, GPIO_DDS2382_RX, // DDS2382 Serial interface
GPIO_DDSU666_TX, GPIO_DDSU666_RX, // DDSU666 Serial interface
GPIO_SM2135_CLK, GPIO_SM2135_DAT, // SM2135 PWM controller
GPIO_DEEPSLEEP, // Kill switch for deepsleep
GPIO_EXS_ENABLE, // EXS MCU Enable
GPIO_TASMOTACLIENT_TXD, GPIO_TASMOTACLIENT_RXD, // Client Serial interface
GPIO_TASMOTACLIENT_RST, GPIO_TASMOTACLIENT_RST_INV, // Client Reset
GPIO_HPMA_RX, GPIO_HPMA_TX, // Honeywell HPMA115S0 Serial interface
GPIO_GPS_RX, GPIO_GPS_TX, // GPS Serial interface
GPIO_HM10_RX, GPIO_HM10_TX, // HM10-BLE-Mijia-bridge Serial interface
GPIO_LE01MR_RX, GPIO_LE01MR_TX, // F&F LE-01MR energy meter
GPIO_CC1101_GDO0, GPIO_CC1101_GDO2, // CC1101 Serial interface
GPIO_HRXL_RX, // Data from MaxBotix HRXL sonar range sensor
GPIO_ELECTRIQ_MOODL_TX, // ElectriQ iQ-wifiMOODL Serial TX
GPIO_AS3935, // Franklin Lightning Sensor
GPIO_ADC_INPUT, // Analog input
GPIO_ADC_TEMP, // Analog Thermistor
GPIO_ADC_LIGHT, // Analog Light sensor
GPIO_ADC_BUTTON, GPIO_ADC_BUTTON_INV, // Analog Button
GPIO_ADC_RANGE, // Analog Range
GPIO_ADC_CT_POWER, // ANalog Current
GPIO_WEBCAM_PWDN, GPIO_WEBCAM_RESET, GPIO_WEBCAM_XCLK, // Webcam
GPIO_WEBCAM_SIOD, GPIO_WEBCAM_SIOC, // Webcam I2C
GPIO_WEBCAM_DATA,
GPIO_WEBCAM_VSYNC, GPIO_WEBCAM_HREF, GPIO_WEBCAM_PCLK,
GPIO_WEBCAM_PSCLK,
GPIO_WEBCAM_HSD,
GPIO_WEBCAM_PSRCS,
GPIO_BOILER_OT_RX, GPIO_BOILER_OT_TX, // OpenTherm Boiler TX pin
GPIO_WINDMETER_SPEED, // WindMeter speed counter pin
GPIO_KEY1_TC, // Touch pin as button
GPIO_BL0940_RX, // BL0940 serial interface
GPIO_TCP_TX, GPIO_TCP_RX, // TCP to serial bridge
GPIO_ETH_PHY_POWER, GPIO_ETH_PHY_MDC, GPIO_ETH_PHY_MDIO, // Ethernet
GPIO_TELEINFO_RX, // Teleinfo telemetry data receive pin
GPIO_TELEINFO_ENABLE, // Teleinfo Enable Receive Pin
GPIO_LMT01, // LMT01 input counting pin
GPIO_IEM3000_TX, GPIO_IEM3000_RX, // IEM3000 Serial interface
GPIO_ZIGBEE_RST, // Zigbee reset
GPIO_DYP_RX,
GPIO_SENSOR_END };
enum ProgramSelectablePins {
// GPIO_FIX_START = 254,
GPIO_FIX_START = 2046,
GPIO_USER, // User configurable needs to be 2047
GPIO_MAX };
// Text in webpage Module Parameters and commands GPIOS and GPIO
const char kSensorNames[] PROGMEM =
D_SENSOR_NONE "|"
D_SENSOR_BUTTON "|" D_SENSOR_BUTTON "_n|" D_SENSOR_BUTTON "_i|" D_SENSOR_BUTTON "_in|"
D_SENSOR_SWITCH "|" D_SENSOR_SWITCH "_n|"
D_SENSOR_RELAY "|" D_SENSOR_RELAY "_i|"
D_SENSOR_LED "|" D_SENSOR_LED "_i|"
D_SENSOR_COUNTER "|" D_SENSOR_COUNTER "_n|"
D_SENSOR_PWM "|" D_SENSOR_PWM "_i|"
D_SENSOR_BUZZER "|" D_SENSOR_BUZZER "_i|"
D_SENSOR_LED_LINK "|" D_SENSOR_LED_LINK "_i|"
D_SENSOR_I2C_SCL "|" D_SENSOR_I2C_SDA "|"
D_SENSOR_SPI_MISO "|" D_SENSOR_SPI_MOSI "|" D_SENSOR_SPI_CLK "|" D_SENSOR_SPI_CS "|" D_SENSOR_SPI_DC "|"
D_SENSOR_SSPI_MISO "|" D_SENSOR_SSPI_MOSI "|" D_SENSOR_SSPI_SCLK "|" D_SENSOR_SSPI_CS "|" D_SENSOR_SSPI_DC "|"
D_SENSOR_BACKLIGHT "|" D_SENSOR_OLED_RESET "|"
D_SENSOR_IRSEND "|" D_SENSOR_IRRECV "|"
D_SENSOR_RFSEND "|" D_SENSOR_RFRECV "|"
D_SENSOR_DHT11 "|" D_SENSOR_AM2301 "|" D_SENSOR_SI7021 "|" D_SENSOR_DHT11 "_o|"
D_SENSOR_DS18X20 "|" D_SENSOR_DS18X20 "_o|"
D_SENSOR_WS2812 "|"
D_SENSOR_MHZ_TX "|" D_SENSOR_MHZ_RX "|"
D_SENSOR_PZEM0XX_TX "|" D_SENSOR_PZEM004_RX "|" D_SENSOR_PZEM016_RX "|" D_SENSOR_PZEM017_RX "|"
D_SENSOR_SAIR_TX "|" D_SENSOR_SAIR_RX "|"
D_SENSOR_PMS5003_TX "|" D_SENSOR_PMS5003_RX "|"
D_SENSOR_SDS0X1_TX "|" D_SENSOR_SDS0X1_RX "|"
D_SENSOR_SBR_TX "|" D_SENSOR_SBR_RX "|"
D_SENSOR_SR04_TRIG "|" D_SENSOR_SR04_ECHO "|"
D_SENSOR_SDM120_TX "|" D_SENSOR_SDM120_RX "|"
D_SENSOR_SDM630_TX "|" D_SENSOR_SDM630_RX "|"
D_SENSOR_TM1638_CLK "|" D_SENSOR_TM1638_DIO "|" D_SENSOR_TM1638_STB "|"
D_SENSOR_DFR562 "|"
D_SENSOR_HX711_SCK "|" D_SENSOR_HX711_DAT "|"
D_SENSOR_TX2X_TX "|"
D_SENSOR_TUYA_TX "|" D_SENSOR_TUYA_RX "|"
D_SENSOR_MGC3130_XFER "|" D_SENSOR_MGC3130_RESET "|"
D_SENSOR_RF_SENSOR "|"
D_SENSOR_AZ_TX "|" D_SENSOR_AZ_RX "|"
D_SENSOR_MAX31855_CS "|" D_SENSOR_MAX31855_CLK "|" D_SENSOR_MAX31855_DO "|"
D_SENSOR_NRG_SEL "|" D_SENSOR_NRG_SEL "_i|" D_SENSOR_NRG_CF1 "|" D_SENSOR_HLW_CF "|" D_SENSOR_HJL_CF "|"
D_SENSOR_MCP39F5_TX "|" D_SENSOR_MCP39F5_RX "|" D_SENSOR_MCP39F5_RST "|"
D_SENSOR_PN532_TX "|" D_SENSOR_PN532_RX "|"
D_SENSOR_SM16716_CLK "|" D_SENSOR_SM16716_DAT "|" D_SENSOR_SM16716_POWER "|"
D_SENSOR_MY92X1_DI "|" D_SENSOR_MY92X1_DCKI "|"
D_SENSOR_CSE7766_TX "|" D_SENSOR_CSE7766_RX "|"
D_SENSOR_ARIRFRCV "|" D_SENSOR_ARIRFSEL "|"
D_SENSOR_TXD "|" D_SENSOR_RXD "|"
D_SENSOR_ROTARY "_a|" D_SENSOR_ROTARY "_b|"
D_SENSOR_ADC_JOYSTICK "|"
D_SENSOR_MAX31865_CS "|"
D_SENSOR_HRE_CLOCK "|" D_SENSOR_HRE_DATA "|"
D_SENSOR_ADE7953_IRQ "|"
D_SENSOR_SOLAXX1_TX "|" D_SENSOR_SOLAXX1_RX "|"
D_SENSOR_ZIGBEE_TXD "|" D_SENSOR_ZIGBEE_RXD "|"
D_SENSOR_RDM6300_RX "|"
D_SENSOR_IBEACON_TX "|" D_SENSOR_IBEACON_RX "|"
D_SENSOR_A4988_DIR "|" D_SENSOR_A4988_STP "|" D_SENSOR_A4988_ENA "|" D_SENSOR_A4988_MS1 "|" D_SENSOR_A4988_MS2 "|" D_SENSOR_A4988_MS3 "|"
D_SENSOR_DDS2382_TX "|" D_SENSOR_DDS2382_RX "|"
D_SENSOR_DDSU666_TX "|" D_SENSOR_DDSU666_RX "|"
D_SENSOR_SM2135_CLK "|" D_SENSOR_SM2135_DAT "|"
D_SENSOR_DEEPSLEEP "|" D_SENSOR_EXS_ENABLE "|"
D_SENSOR_CLIENT_TX "|" D_SENSOR_CLIENT_RX "|" D_SENSOR_CLIENT_RESET "|" D_SENSOR_CLIENT_RESET "_i|"
D_SENSOR_HPMA_RX "|" D_SENSOR_HPMA_TX "|"
D_SENSOR_GPS_RX "|" D_SENSOR_GPS_TX "|"
D_SENSOR_HM10_RX "|" D_SENSOR_HM10_TX "|"
D_SENSOR_LE01MR_RX "|" D_SENSOR_LE01MR_TX "|"
D_SENSOR_CC1101_GDO0 "|" D_SENSOR_CC1101_GDO2 "|"
D_SENSOR_HRXL_RX "|"
D_SENSOR_ELECTRIQ_MOODL "|"
D_SENSOR_AS3935 "|"
D_SENSOR_ADC_INPUT "|"
D_SENSOR_ADC_TEMP "|"
D_SENSOR_ADC_LIGHT "|"
D_SENSOR_ADC_BUTTON "|" D_SENSOR_ADC_BUTTON "_i|"
D_SENSOR_ADC_RANGE "|"
D_SENSOR_ADC_CT_POWER "|"
D_GPIO_WEBCAM_PWDN "|" D_GPIO_WEBCAM_RESET "|" D_GPIO_WEBCAM_XCLK "|"
D_GPIO_WEBCAM_SIOD "|" D_GPIO_WEBCAM_SIOC "|"
D_GPIO_WEBCAM_DATA "|"
D_GPIO_WEBCAM_VSYNC "|" D_GPIO_WEBCAM_HREF "|" D_GPIO_WEBCAM_PCLK "|"
D_GPIO_WEBCAM_PSCLK "|"
D_GPIO_WEBCAM_HSD "|"
D_GPIO_WEBCAM_PSRCS "|"
D_SENSOR_BOILER_OT_RX "|" D_SENSOR_BOILER_OT_TX "|"
D_SENSOR_WINDMETER_SPEED "|" D_SENSOR_BUTTON "_tc|"
D_SENSOR_BL0940_RX "|"
D_SENSOR_TCP_TXD "|" D_SENSOR_TCP_RXD "|"
D_SENSOR_ETH_PHY_POWER "|" D_SENSOR_ETH_PHY_MDC "|" D_SENSOR_ETH_PHY_MDIO "|"
D_SENSOR_TELEINFO_RX "|" D_SENSOR_TELEINFO_ENABLE "|"
D_SENSOR_LMT01_PULSE "|"
D_SENSOR_IEM3000_TX "|" D_SENSOR_IEM3000_RX "|"
D_SENSOR_ZIGBEE_RST "|"
D_SENSOR_DYP_RX
;
const char kSensorNamesFixed[] PROGMEM =
D_SENSOR_USER;
#define MAX_MAX31865_CS 6
#define MAX_WEBCAM_DATA 8
#define MAX_WEBCAM_HSD 3
const uint16_t kGpioNiceList[] PROGMEM = {
GPIO_NONE, // Not used
AGPIO(GPIO_KEY1) + MAX_KEYS, // Buttons
AGPIO(GPIO_KEY1_NP) + MAX_KEYS,
AGPIO(GPIO_KEY1_INV) + MAX_KEYS,
AGPIO(GPIO_KEY1_INV_NP) + MAX_KEYS,
AGPIO(GPIO_KEY1_TC) + MAX_KEYS, // Touch button
AGPIO(GPIO_SWT1) + MAX_SWITCHES, // User connected external switches
AGPIO(GPIO_SWT1_NP) + MAX_SWITCHES,
#ifdef ROTARY_V1
AGPIO(GPIO_ROT1A) + MAX_ROTARIES, // Rotary A Pin
AGPIO(GPIO_ROT1B) + MAX_ROTARIES, // Rotary B Pin
#endif
AGPIO(GPIO_REL1) + MAX_RELAYS, // Relays
AGPIO(GPIO_REL1_INV) + MAX_RELAYS,
AGPIO(GPIO_LED1) + MAX_LEDS, // Leds
AGPIO(GPIO_LED1_INV) + MAX_LEDS,
#ifdef USE_COUNTER
AGPIO(GPIO_CNTR1) + MAX_COUNTERS, // Counters
AGPIO(GPIO_CNTR1_NP) + MAX_COUNTERS,
#endif
AGPIO(GPIO_PWM1) + MAX_PWMS, // RGB Red or C Cold White
AGPIO(GPIO_PWM1_INV) + MAX_PWMS,
#ifdef USE_BUZZER
AGPIO(GPIO_BUZZER), // Buzzer
AGPIO(GPIO_BUZZER_INV), // Inverted buzzer
#endif
AGPIO(GPIO_LEDLNK), // Link led
AGPIO(GPIO_LEDLNK_INV), // Inverted link led
#ifdef USE_I2C
AGPIO(GPIO_I2C_SCL), // I2C SCL
AGPIO(GPIO_I2C_SDA), // I2C SDA
#endif
#ifdef USE_SPI
AGPIO(GPIO_SPI_MISO), // SPI MISO
AGPIO(GPIO_SPI_MOSI), // SPI MOSI
AGPIO(GPIO_SPI_CLK), // SPI Clk
AGPIO(GPIO_SPI_CS), // SPI Chip Select
AGPIO(GPIO_SPI_DC), // SPI Data Direction
#endif
AGPIO(GPIO_SSPI_MISO), // Software SPI Master Input Client Output
AGPIO(GPIO_SSPI_MOSI), // Software SPI Master Output Client Input
AGPIO(GPIO_SSPI_SCLK), // Software SPI Serial Clock
AGPIO(GPIO_SSPI_CS), // Software SPI Chip Select
AGPIO(GPIO_SSPI_DC), // Software SPI Data or Command
#ifdef USE_DISPLAY
AGPIO(GPIO_BACKLIGHT), // Display backlight control
AGPIO(GPIO_OLED_RESET), // OLED Display Reset
#endif
AGPIO(GPIO_TXD), // Serial interface
AGPIO(GPIO_RXD), // Serial interface
#ifdef USE_DHT
AGPIO(GPIO_DHT11), // DHT11
AGPIO(GPIO_DHT22), // DHT21, DHT22, AM2301, AM2302, AM2321
AGPIO(GPIO_SI7021), // iTead SI7021
AGPIO(GPIO_DHT11_OUT), // Pseudo Single wire DHT11, DHT21, DHT22, AM2301, AM2302, AM2321
#endif
#ifdef USE_DS18x20
AGPIO(GPIO_DSB), // Single wire DS18B20 or DS18S20
AGPIO(GPIO_DSB_OUT), // Pseudo Single wire DS18B20 or DS18S20
#endif
#ifdef USE_LMT01
AGPIO(GPIO_LMT01), // LMT01, count pulses on GPIO
#endif
// Light
#ifdef USE_LIGHT
#ifdef USE_WS2812
AGPIO(GPIO_WS2812), // WS2812 Led string
#endif
#ifdef USE_ARILUX_RF
AGPIO(GPIO_ARIRFRCV), // AriLux RF Receive input
AGPIO(GPIO_ARIRFSEL), // Arilux RF Receive input selected
#endif
#ifdef USE_MY92X1
AGPIO(GPIO_DI), // my92x1 PWM input
AGPIO(GPIO_DCKI), // my92x1 CLK input
#endif // USE_MY92X1
#ifdef USE_SM16716
AGPIO(GPIO_SM16716_CLK), // SM16716 CLOCK
AGPIO(GPIO_SM16716_DAT), // SM16716 DATA
AGPIO(GPIO_SM16716_SEL), // SM16716 SELECT
#endif // USE_SM16716
#ifdef USE_SM2135
AGPIO(GPIO_SM2135_CLK), // SM2135 CLOCK
AGPIO(GPIO_SM2135_DAT), // SM2135 DATA
#endif // USE_SM2135
#ifdef USE_TUYA_MCU
AGPIO(GPIO_TUYA_TX), // Tuya Serial interface
AGPIO(GPIO_TUYA_RX), // Tuya Serial interface
#endif
#ifdef USE_EXS_DIMMER
AGPIO(GPIO_EXS_ENABLE), // EXS MCU Enable
#endif
#ifdef USE_ELECTRIQ_MOODL
AGPIO(GPIO_ELECTRIQ_MOODL_TX),
#endif
#endif // USE_LIGHT
#if defined(USE_IR_REMOTE) || defined(USE_IR_REMOTE_FULL)
AGPIO(GPIO_IRSEND), // IR remote
#if defined(USE_IR_RECEIVE) || defined(USE_IR_REMOTE_FULL)
AGPIO(GPIO_IRRECV), // IR receiver
#endif
#endif
#ifdef USE_RC_SWITCH
AGPIO(GPIO_RFSEND), // RF transmitter
AGPIO(GPIO_RFRECV), // RF receiver
#endif
#ifdef USE_RF_SENSOR
AGPIO(GPIO_RF_SENSOR), // Rf receiver with sensor decoding
#endif
#ifdef USE_SR04
AGPIO(GPIO_SR04_TRIG), // SR04 Tri/TXgger pin
AGPIO(GPIO_SR04_ECHO), // SR04 Ech/RXo pin
#endif
#ifdef USE_TM1638
AGPIO(GPIO_TM16CLK), // TM1638 Clock
AGPIO(GPIO_TM16DIO), // TM1638 Data I/O
AGPIO(GPIO_TM16STB), // TM1638 Strobe
#endif
#ifdef USE_HX711
AGPIO(GPIO_HX711_SCK), // HX711 Load Cell clock
AGPIO(GPIO_HX711_DAT), // HX711 Load Cell data
#endif
// Energy sensors
#ifdef USE_ENERGY_SENSOR
#ifdef USE_HLW8012
AGPIO(GPIO_NRG_SEL), // HLW8012/HLJ-01 Sel output (1 = Voltage)
AGPIO(GPIO_NRG_SEL_INV), // HLW8012/HLJ-01 Sel output (0 = Voltage)
AGPIO(GPIO_NRG_CF1), // HLW8012/HLJ-01 CF1 voltage / current
AGPIO(GPIO_HLW_CF), // HLW8012 CF power
AGPIO(GPIO_HJL_CF), // HJL-01/BL0937 CF power
#endif
#if defined(USE_I2C) && defined(USE_ADE7953)
AGPIO(GPIO_ADE7953_IRQ), // ADE7953 IRQ
#endif
#ifdef USE_CSE7766
AGPIO(GPIO_CSE7766_TX), // CSE7766 Serial interface (S31 and Pow R2)
AGPIO(GPIO_CSE7766_RX), // CSE7766 Serial interface (S31 and Pow R2)
#endif
#ifdef USE_MCP39F501
AGPIO(GPIO_MCP39F5_TX), // MCP39F501 Serial interface (Shelly2)
AGPIO(GPIO_MCP39F5_RX), // MCP39F501 Serial interface (Shelly2)
AGPIO(GPIO_MCP39F5_RST), // MCP39F501 Reset (Shelly2)
#endif
#if defined(USE_PZEM004T) || defined(USE_PZEM_AC) || defined(USE_PZEM_DC)
AGPIO(GPIO_PZEM0XX_TX), // PZEM0XX Serial interface
#endif
#ifdef USE_PZEM004T
AGPIO(GPIO_PZEM004_RX), // PZEM004T Serial interface
#endif
#ifdef USE_PZEM_AC
AGPIO(GPIO_PZEM016_RX), // PZEM-014,016 Serial Modbus interface
#endif
#ifdef USE_PZEM_DC
AGPIO(GPIO_PZEM017_RX), // PZEM-003,017 Serial Modbus interface
#endif
#ifdef USE_SDM120
AGPIO(GPIO_SDM120_TX), // SDM120 Serial interface
AGPIO(GPIO_SDM120_RX), // SDM120 Serial interface
#endif
#ifdef USE_SDM630
AGPIO(GPIO_SDM630_TX), // SDM630 Serial interface
AGPIO(GPIO_SDM630_RX), // SDM630 Serial interface
#endif
#ifdef USE_DDS2382
AGPIO(GPIO_DDS2382_TX), // DDS2382 Serial interface
AGPIO(GPIO_DDS2382_RX), // DDS2382 Serial interface
#endif
#ifdef USE_DDSU666
AGPIO(GPIO_DDSU666_TX), // DDSU666 Serial interface
AGPIO(GPIO_DDSU666_RX), // DDSU666 Serial interface
#endif // USE_DDSU666
#ifdef USE_SOLAX_X1
AGPIO(GPIO_SOLAXX1_TX), // Solax Inverter tx pin
AGPIO(GPIO_SOLAXX1_RX), // Solax Inverter rx pin
#endif // USE_SOLAX_X1
#ifdef USE_LE01MR
AGPIO(GPIO_LE01MR_TX), // F7F LE-01MR energy meter tx pin
AGPIO(GPIO_LE01MR_RX), // F7F LE-01MR energy meter rx pin
#endif // IFDEF:USE_LE01MR
#ifdef USE_BL0940
AGPIO(GPIO_BL0940_RX), // BL0940 Serial interface
#endif
#ifdef USE_IEM3000
AGPIO(GPIO_IEM3000_TX), // IEM3000 Serial interface
AGPIO(GPIO_IEM3000_RX), // IEM3000 Serial interface
#endif
#endif // USE_ENERGY_SENSOR
// Serial
#ifdef USE_SERIAL_BRIDGE
AGPIO(GPIO_SBR_TX), // Serial Bridge Serial interface
AGPIO(GPIO_SBR_RX), // Serial Bridge Serial interface
#endif
#ifdef USE_TCP_BRIDGE
AGPIO(GPIO_TCP_TX), // TCP Serial bridge
AGPIO(GPIO_TCP_RX), // TCP Serial bridge
#endif
#ifdef USE_ZIGBEE
AGPIO(GPIO_ZIGBEE_TX), // Zigbee Serial interface
AGPIO(GPIO_ZIGBEE_RX), // Zigbee Serial interface
AGPIO(GPIO_ZIGBEE_RST), // Zigbee reset
#endif
#ifdef USE_MHZ19
AGPIO(GPIO_MHZ_TXD), // MH-Z19 Serial interface
AGPIO(GPIO_MHZ_RXD), // MH-Z19 Serial interface
#endif
#ifdef USE_SENSEAIR
AGPIO(GPIO_SAIR_TX), // SenseAir Serial interface
AGPIO(GPIO_SAIR_RX), // SenseAir Serial interface
#endif
#ifdef USE_NOVA_SDS
AGPIO(GPIO_SDS0X1_TX), // Nova Fitness SDS011 Serial interface
AGPIO(GPIO_SDS0X1_RX), // Nova Fitness SDS011 Serial interface
#endif
#ifdef USE_HPMA
AGPIO(GPIO_HPMA_TX), // Honeywell HPMA115S0 Serial interface
AGPIO(GPIO_HPMA_RX), // Honeywell HPMA115S0 Serial interface
#endif
#ifdef USE_PMS5003
AGPIO(GPIO_PMS5003_TX), // Plantower PMS5003 Serial interface
AGPIO(GPIO_PMS5003_RX), // Plantower PMS5003 Serial interface
#endif
#if defined(USE_TX20_WIND_SENSOR) || defined(USE_TX23_WIND_SENSOR)
AGPIO(GPIO_TX2X_TXD_BLACK), // TX20/TX23 Transmission Pin
#endif
#ifdef USE_WINDMETER
AGPIO(GPIO_WINDMETER_SPEED),
#endif
#ifdef USE_MP3_PLAYER
AGPIO(GPIO_MP3_DFR562), // RB-DFR-562, DFPlayer Mini MP3 Player Serial interface
#endif
#ifdef USE_AZ7798
AGPIO(GPIO_AZ_TXD), // AZ-Instrument 7798 CO2 datalogger Serial interface
AGPIO(GPIO_AZ_RXD), // AZ-Instrument 7798 CO2 datalogger Serial interface
#endif
#ifdef USE_PN532_HSU
AGPIO(GPIO_PN532_TXD), // PN532 HSU Tx
AGPIO(GPIO_PN532_RXD), // PN532 HSU Rx
#endif
#ifdef USE_TASMOTA_CLIENT
AGPIO(GPIO_TASMOTACLIENT_TXD), // Tasmota Client TX
AGPIO(GPIO_TASMOTACLIENT_RXD), // Tasmota Client RX
AGPIO(GPIO_TASMOTACLIENT_RST), // Tasmota Client Reset
AGPIO(GPIO_TASMOTACLIENT_RST_INV), // Tasmota Client Reset Inverted
#endif
#ifdef USE_RDM6300
AGPIO(GPIO_RDM6300_RX),
#endif
#ifdef USE_IBEACON
AGPIO(GPIO_IBEACON_TX),
AGPIO(GPIO_IBEACON_RX),
#endif
#ifdef USE_GPS
AGPIO(GPIO_GPS_TX), // GPS serial interface
AGPIO(GPIO_GPS_RX), // GPS serial interface
#endif
#ifdef USE_HM10
AGPIO(GPIO_HM10_TX), // GPS serial interface
AGPIO(GPIO_HM10_RX), // GPS serial interface
#endif
#ifdef USE_OPENTHERM
AGPIO(GPIO_BOILER_OT_TX),
AGPIO(GPIO_BOILER_OT_RX),
#endif
#ifdef USE_MGC3130
AGPIO(GPIO_MGC3130_XFER),
AGPIO(GPIO_MGC3130_RESET),
#endif
#ifdef USE_MAX31855
AGPIO(GPIO_MAX31855CS), // MAX31855 Serial interface
AGPIO(GPIO_MAX31855CLK), // MAX31855 Serial interface
AGPIO(GPIO_MAX31855DO), // MAX31855 Serial interface
#endif
#ifdef USE_MAX31855
AGPIO(GPIO_SSPI_MAX31865_CS1) + MAX_MAX31865_CS,
#endif
#ifdef USE_HRE
AGPIO(GPIO_HRE_CLOCK),
AGPIO(GPIO_HRE_DATA),
#endif
#ifdef USE_A4988_STEPPER
AGPIO(GPIO_A4988_DIR), // A4988 direction pin
AGPIO(GPIO_A4988_STP), // A4988 step pin
// folowing are not mandatory
AGPIO(GPIO_A4988_ENA), // A4988 enabled pin
AGPIO(GPIO_A4988_MS1), // A4988 microstep pin1
AGPIO(GPIO_A4988_MS2), // A4988 microstep pin2
AGPIO(GPIO_A4988_MS3), // A4988 microstep pin3
#endif
#ifdef USE_DEEPSLEEP
AGPIO(GPIO_DEEPSLEEP),
#endif
#ifdef USE_KEELOQ
AGPIO(GPIO_CC1101_GDO0), // CC1101 pin for RX
AGPIO(GPIO_CC1101_GDO2), // CC1101 pin for RX
#endif
#ifdef USE_HRXL
AGPIO(GPIO_HRXL_RX),
#endif
#ifdef USE_DYP
AGPIO(GPIO_DYP_RX),
#endif
#ifdef USE_AS3935
AGPIO(GPIO_AS3935), // AS3935 IRQ Pin
#endif
#ifdef USE_TELEINFO
AGPIO(GPIO_TELEINFO_RX),
AGPIO(GPIO_TELEINFO_ENABLE),
#endif
#ifdef USE_ADC
AGPIO(GPIO_ADC_INPUT) + MAX_ADCS, // Analog inputs
AGPIO(GPIO_ADC_TEMP) + MAX_ADCS, // Thermistor
AGPIO(GPIO_ADC_LIGHT) + MAX_ADCS, // Light sensor
AGPIO(GPIO_ADC_BUTTON) + MAX_ADCS, // Button
AGPIO(GPIO_ADC_BUTTON_INV) + MAX_ADCS,
AGPIO(GPIO_ADC_RANGE) + MAX_ADCS, // Range
AGPIO(GPIO_ADC_CT_POWER) + MAX_ADCS, // Current
AGPIO(GPIO_ADC_JOY) + MAX_ADCS, // Joystick
#endif
#ifdef USE_WEBCAM
AGPIO(GPIO_WEBCAM_PWDN),
AGPIO(GPIO_WEBCAM_RESET),
AGPIO(GPIO_WEBCAM_XCLK),
AGPIO(GPIO_WEBCAM_SIOD),
AGPIO(GPIO_WEBCAM_SIOC),
AGPIO(GPIO_WEBCAM_DATA) + MAX_WEBCAM_DATA,
AGPIO(GPIO_WEBCAM_VSYNC),
AGPIO(GPIO_WEBCAM_HREF),
AGPIO(GPIO_WEBCAM_PCLK),
AGPIO(GPIO_WEBCAM_PSCLK),
AGPIO(GPIO_WEBCAM_HSD) + MAX_WEBCAM_HSD,
AGPIO(GPIO_WEBCAM_PSRCS),
#endif
#ifdef USE_ETHERNET
AGPIO(GPIO_ETH_PHY_POWER),
AGPIO(GPIO_ETH_PHY_MDC),
AGPIO(GPIO_ETH_PHY_MDIO), // Ethernet
#endif
};
//********************************************************************************************
// User selectable ADC functionality
enum UserSelectableAdc {
ADC_NONE, // Not used
ADC_INPUT, // Analog input
ADC_TEMP, // Thermistor
ADC_LIGHT, // Light sensor
ADC_BUTTON, // Button
ADC_BUTTON_INV,
ADC_RANGE, // Range
ADC_CT_POWER, // Current
ADC_JOY, // Joystick
// ADC_SWITCH, // Switch
// ADC_SWITCH_INV,
ADC_END };
#define MAX_GPIO_PIN 40 // Number of supported GPIO
#define MIN_FLASH_PINS 4 // Number of flash chip pins unusable for configuration (GPIO6, 7, 8 and 11)
#define MAX_USER_PINS 36 // MAX_GPIO_PIN - MIN_FLASH_PINS
#define WEMOS_MODULE 0 // Wemos module
// 0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839
const char PINS_WEMOS[] PROGMEM = "IOTXIORXIOIOflashcFLFLolIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOAOAOIAIAIAIAIAIA";
//********************************************************************************************
typedef struct MYIO {
uint16_t io[MAX_GPIO_PIN];
} myio; // 40 * 2 = 80 bytes
typedef struct MYCFGIO {
uint16_t io[MAX_USER_PINS];
} mycfgio; // 36 * 2 = 72 bytes
#define GPIO_FLAG_USED 0 // Currently no flags used
typedef union {
uint16_t data;
struct {
uint16_t spare00 : 1;
uint16_t spare01 : 1;
uint16_t spare02 : 1;
uint16_t spare03 : 1;
uint16_t spare04 : 1;
uint16_t spare05 : 1;
uint16_t spare06 : 1;
uint16_t spare07 : 1;
uint16_t spare08 : 1;
uint16_t spare09 : 1;
uint16_t spare10 : 1;
uint16_t spare11 : 1;
uint16_t spare12 : 1;
uint16_t spare13 : 1;
uint16_t spare14 : 1;
uint16_t spare15 : 1;
};
} gpio_flag; // 2 bytes
typedef struct MYTMPLT {
mycfgio gp; // 72 bytes
gpio_flag flag; // 2 bytes
} mytmplt; // 74 bytes
/********************************************************************************************/
// Supported hardware modules
enum SupportedModules { WEMOS, ESP32_CAM_AITHINKER, MAXMODULE };
#define USER_MODULE 255
const char kModuleNames[] PROGMEM = "ESP32-DevKit|ESP32 Cam AiThinker";
// Default module settings
const uint8_t kModuleNiceList[MAXMODULE] PROGMEM = { WEMOS, ESP32_CAM_AITHINKER };
const mytmplt kModules PROGMEM =
{ // WEMOS - Espressif ESP32-DevKitC - Any ESP32 device like WeMos and NodeMCU hardware (ESP32)
AGPIO(GPIO_USER), // 0 (I)O GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK
AGPIO(GPIO_USER), // 1 IO TXD0 GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2
AGPIO(GPIO_USER), // 2 IO GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0, SD_DATA0
AGPIO(GPIO_USER), // 3 IO RXD0 GPIO3, U0RXD, CLK_OUT2
AGPIO(GPIO_USER), // 4 IO GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1, SD_DATA1, EMAC_TX_ER
AGPIO(GPIO_USER), // 5 IO GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK
// 6 IO GPIO6, Flash CLK
// 7 IO GPIO7, Flash D0
// 8 IO GPIO8, Flash D1
AGPIO(GPIO_USER), // 9 IO GPIO9, Flash D2, U1RXD
AGPIO(GPIO_USER), // 10 IO GPIO10, Flash D3, U1TXD
// 11 IO GPIO11, Flash CMD
AGPIO(GPIO_USER), // 12 (I)O GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2, SD_DATA2, EMAC_TXD3 (If driven High, flash voltage (VDD_SDIO) is 1.8V not default 3.3V. Has internal pull-down, so unconnected = Low = 3.3V. May prevent flashing and/or booting if 3.3V flash is connected and pulled high. See ESP32 datasheet for more details.)
AGPIO(GPIO_USER), // 13 IO GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3, SD_DATA3, EMAC_RX_ER
AGPIO(GPIO_USER), // 14 IO GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK, SD_CLK, EMAC_TXD2
AGPIO(GPIO_USER), // 15 (I)O GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICS0, RTC_GPIO13, HS2_CMD, SD_CMD, EMAC_RXD3 (If driven Low, silences boot messages from normal boot. Has internal pull-up, so unconnected = High = normal output.)
AGPIO(GPIO_USER), // 16 IO GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT
AGPIO(GPIO_USER), // 17 IO GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180
AGPIO(GPIO_USER), // 18 IO GPIO18, VSPICLK, HS1_DATA7
AGPIO(GPIO_USER), // 19 IO GPIO19, VSPIQ, U0CTS, EMAC_TXD0
0, // 20
AGPIO(GPIO_USER), // 21 IO GPIO21, VSPIHD, EMAC_TX_EN
AGPIO(GPIO_USER), // 22 IO LED GPIO22, VSPIWP, U0RTS, EMAC_TXD1
AGPIO(GPIO_USER), // 23 IO GPIO23, VSPID, HS1_STROBE
0, // 24
AGPIO(GPIO_USER), // 25 IO GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0
AGPIO(GPIO_USER), // 26 IO GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1
AGPIO(GPIO_USER), // 27 IO GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
0, // 28
0, // 29
0, // 30
0, // 31
AGPIO(GPIO_USER), // 32 IO GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4, TOUCH9, RTC_GPIO9
AGPIO(GPIO_USER), // 33 IO GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5, TOUCH8, RTC_GPIO8
AGPIO(GPIO_USER), // 34 I NO PULLUP GPIO34, ADC1_CH6, RTC_GPIO4
AGPIO(GPIO_USER), // 35 I NO PULLUP GPIO35, ADC1_CH7, RTC_GPIO5
AGPIO(GPIO_USER), // 36 I NO PULLUP GPIO36, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPIO0
0, // 37 NO PULLUP
0, // 38 NO PULLUP
AGPIO(GPIO_USER), // 39 I NO PULLUP GPIO39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPIO3
0 // Flag
};
/*********************************************************************************************\
Known templates
{"NAME":"AITHINKER CAM","GPIO":[4992,1,1,1,1,5088,1,1,1,1,1,1,1,1,5089,5090,0,5091,5184,5152,0,5120,5024,5056,0,0,0,0,4928,1,5094,5095,5092,0,0,5093],"FLAG":0,"BASE":1}
{"NAME":"Olimex ESP32-PoE","GPIO":[1,1,1,1,1,1,0,0,5536,1,1,1,1,0,5600,0,0,0,0,5568,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1],"FLAG":0,"BASE":1}
{"NAME":"wESP32","GPIO":[1,1,1,1,1,1,0,0,0,1,1,1,5568,5600,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1],"FLAG":0,"BASE":1}
{"NAME":"Denky (Teleinfo)","GPIO":[1,1,1,1,5664,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1376,1,1,0,0,0,0,1,5632,1,1,1,0,0,1],"FLAG":0,"BASE":1}
\*********************************************************************************************/
#endif // ESP32
#endif // _TASMOTA_TEMPLATE_ESP32_H_

View File

@ -368,16 +368,12 @@ const char HTTP_SCRIPT_CONSOL[] PROGMEM =
"wl(h);"; // Add console command key eventlistener after name has been synced with id (= wl(jd))
#endif //USE_UNISHOX_COMPRESSION
const char HTTP_MODULE_TEMPLATE_REPLACE[] PROGMEM =
"}2%d'>%s (%d}3"; // }2 and }3 are used in below os.replace
const char HTTP_MODULE_TEMPLATE_REPLACE_INDEX[] PROGMEM =
"}2%d'>%s (%d)}3"; // }2 and }3 are used in below os.replace
const char HTTP_MODULE_TEMPLATE_REPLACE_NO_INDEX[] PROGMEM =
"}2%d'>%s}3"; // }2 and }3 are used in below os.replace
#if defined(USE_UNISHOX_COMPRESSION) && defined(ESP32)
// no compression on ESP8266, we would lose 16 bytes
#if defined(USE_UNISHOX_COMPRESSION)
const size_t HTTP_SCRIPT_MODULE_TEMPLATE_SIZE = 602;
const char HTTP_SCRIPT_MODULE_TEMPLATE_COMPRESSED[] PROGMEM = "\x33\xBF\xAC\xF1\xD4\x2B\xC7\x83\x02\xF8\x3A\xDC\xE4\x1B\x3B\xBA\x75\x1A\x8E\xF1"
"\xED\x33\xBF\xAC\x3E\x09\x81\x8B\x1A\xFA\x8E\x81\xFD\xDD\x32\x61\x31\xAF\xA8\xEE"
@ -405,14 +401,6 @@ const char HTTP_SCRIPT_MODULE_TEMPLATE_COMPRESSED[] PROGMEM = "\x33\xBF\xAC\xF1\
#define HTTP_SCRIPT_MODULE_TEMPLATE Decompress(HTTP_SCRIPT_MODULE_TEMPLATE_COMPRESSED,HTTP_SCRIPT_MODULE_TEMPLATE_SIZE).c_str()
#else
const char HTTP_SCRIPT_MODULE_TEMPLATE[] PROGMEM =
#ifdef ESP8266
"var os;"
"function sk(s,g){" // s = value, g = id and name
"var o=os.replace(/}2/g,\"<option value='\").replace(/}3/g,\")</option>\");"
"eb('g'+g).innerHTML=o;"
"eb('g'+g).value=s;"
"}";
#else // ESP32
"var os,hs;"
"function ce(i,q){" // Create index select
"var o=document.createElement('option');"
@ -436,7 +424,6 @@ const char HTTP_SCRIPT_MODULE_TEMPLATE[] PROGMEM =
"eb('g'+g).value=(g<99)?s&0xffe0:s;"
"if(g<99){ot(g,s);}"
"}";
#endif // ESP8266 - ESP32
#endif //USE_UNISHOX_COMPRESSION
#ifdef USE_UNISHOX_COMPRESSION
@ -486,13 +473,12 @@ const char HTTP_SCRIPT_TEMPLATE2[] PROGMEM =
"if(8==i){j=12;}"
"sk(g[i],j);" // Set GPIO
"j++;"
"}"
"g=o.shift();"; // FLAG
"}";
const char HTTP_SCRIPT_TEMPLATE3[] PROGMEM =
"\";"
"sk(g&15," STR(ADC0_PIN) ");" // Set ADC0
"g>>=4;";
"sk(g[13]," STR(ADC0_PIN) ");"; // Set ADC0
const char HTTP_SCRIPT_TEMPLATE4[] PROGMEM =
"g=o.shift();" // FLAG
"for(i=0;i<" STR(GPIO_FLAG_USED) ";i++){"
"p=(g>>i)&1;"
"eb('c'+i).checked=p;" // Set FLAG checkboxes
@ -1795,25 +1781,15 @@ void HandleTemplateConfiguration(void)
WSContentSend_P(HTTP_SCRIPT_TEMPLATE);
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioNiceList); i++) { // GPIO: }2'0'>None (0)}3}2'17'>Button1 (17)}3...
#ifdef ESP8266
if (1 == i) {
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, AGPIO(GPIO_USER), D_SENSOR_USER, AGPIO(GPIO_USER)); // }2'255'>User (255)}3
}
uint32_t midx = pgm_read_byte(kGpioNiceList + i);
uint32_t ridx = midx;
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, ridx, GetTextIndexed(stemp, sizeof(stemp), midx, kSensorNames), ridx);
#else // ESP32
if (1 == i) {
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_NO_INDEX, AGPIO(GPIO_USER), D_SENSOR_USER); // }2'255'>User}3
}
uint32_t ridx = pgm_read_word(kGpioNiceList + i) & 0xFFE0;
uint32_t midx = BGPIO(ridx);
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_NO_INDEX, ridx, GetTextIndexed(stemp, sizeof(stemp), midx, kSensorNames));
#endif // ESP8266 - ESP32
}
WSContentSend_P(PSTR("\";"));
#ifdef ESP32
WSContentSend_P(PSTR("hs=["));
bool first_done = false;
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioNiceList); i++) { // hs=[36,68,100,132,168,200,232,264,292,324,356,388,421,453];
@ -1825,17 +1801,18 @@ void HandleTemplateConfiguration(void)
}
}
WSContentSend_P(PSTR("];"));
#endif // ESP32
WSContentSend_P(HTTP_SCRIPT_TEMPLATE2);
#ifdef ESP8266
WSContentSend_P(PSTR("os=\""));
for (uint32_t i = 0; i < ADC0_END; i++) { // FLAG: }2'0'>None (0)}3}2'17'>Analog (17)}3...
for (uint32_t i = 0; i < ARRAY_SIZE(kAdcNiceList); i++) { // FLAG: }2'0'>None}3}2'17'>Analog}3...
if (1 == i) {
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, ADC0_USER, D_SENSOR_USER, ADC0_USER); // }2'15'>User (15)}3
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_NO_INDEX, AGPIO(GPIO_USER), D_SENSOR_USER); // }2'15'>User}3
}
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, i, GetTextIndexed(stemp, sizeof(stemp), i, kAdc0Names), i);
uint32_t ridx = pgm_read_word(kAdcNiceList + i) & 0xFFE0;
uint32_t midx = BGPIO(ridx);
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_NO_INDEX, ridx, GetTextIndexed(stemp, sizeof(stemp), midx, kSensorNames));
}
WSContentSend_P(HTTP_SCRIPT_TEMPLATE3);
#endif // ESP8266
@ -1843,11 +1820,7 @@ void HandleTemplateConfiguration(void)
WSContentSend_P(HTTP_SCRIPT_TEMPLATE4);
for (uint32_t i = 0; i < sizeof(kModuleNiceList); i++) { // "}2'%d'>%s (%d)}3" - "}2'0'>Sonoff Basic (1)}3"
uint32_t midx = pgm_read_byte(kModuleNiceList + i);
#ifdef ESP8266
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, midx, AnyModuleName(midx).c_str(), midx +1);
#else // ESP32
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_INDEX, midx, AnyModuleName(midx).c_str(), midx +1);
#endif // ESP8266 - ESP32
}
WSContentSend_P(HTTP_SCRIPT_TEMPLATE5);
@ -1861,27 +1834,22 @@ void HandleTemplateConfiguration(void)
WSContentSend_P(HTTP_TABLE100);
for (uint32_t i = 0; i < MAX_GPIO_PIN; i++) {
if (!FlashPin(i)) {
#ifdef ESP8266
WSContentSend_P(PSTR("<tr><td><b><font color='#%06x'>" D_GPIO "%d</font></b></td><td%s><select id='g%d'></select></td></tr>"),
((9==i)||(10==i)) ? WebColor(COL_TEXT_WARNING) : WebColor(COL_TEXT), i, (0==i) ? " style='width:200px'" : "", i);
#else // ESP32
//#ifdef ESP8266
// WSContentSend_P(PSTR("<tr><td><b><font color='#%06x'>%s%d</font></b></td><td%s><select id='g%d' onchange='ot(%d,this.value)'></select></td>"),
// ((9==i)||(10==i)) ? WebColor(COL_TEXT_WARNING) : WebColor(COL_TEXT),
// (ADC0_PIN==i) ? PSTR(D_ADC) : PSTR(D_GPIO), (ADC0_PIN==i) ? 0 : i,
// (0==i) ? " style='width:150px'" : "", i, i);
//#else // ESP32
WSContentSend_P(PSTR("<tr><td><b><font color='#%06x'>" D_GPIO "%d</font></b></td><td%s><select id='g%d' onchange='ot(%d,this.value)'></select></td>"),
((9==i)||(10==i)) ? WebColor(COL_TEXT_WARNING) : WebColor(COL_TEXT), i, (0==i) ? " style='width:150px'" : "", i, i);
//#endif // ESP8266
WSContentSend_P(PSTR("<td style='width:50px'><select id='h%d'></select></td></tr>"), i);
#endif // ESP8266
}
}
#ifdef ESP8266
WSContentSend_P(PSTR("<tr><td><b><font color='#%06x'>" D_ADC "0</font></b></td><td><select id='g17'></select></td></tr>"), WebColor(COL_TEXT));
#endif
WSContentSend_P(PSTR("</table>"));
gpio_flag flag = ModuleFlag();
#ifdef ESP8266
if (flag.data > ADC0_USER) {
#else // ESP32
if (flag.data) {
#endif // ESP32
WSContentSend_P(HTTP_FORM_TEMPLATE_FLAG);
}
@ -1906,27 +1874,20 @@ void TemplateSaveSettings(void)
snprintf_P(webindex, sizeof(webindex), PSTR("g%d"), j);
WebGetArg(webindex, tmp, sizeof(tmp)); // GPIO
uint32_t gpio = atoi(tmp);
#ifdef ESP32
char tmp2[8]; // WebGetArg numbers only
char webindex2[5]; // WebGetArg name
snprintf_P(webindex2, sizeof(webindex2), PSTR("h%d"), j);
WebGetArg(webindex2, tmp2, sizeof(tmp2));
uint32_t value2 = (!strlen(tmp2)) ? 0 : atoi(tmp2) -1;
gpio += value2;
#endif // ESP32
snprintf_P(svalue, sizeof(svalue), PSTR("%s%s%d"), svalue, (i>0)?",":"", gpio);
j++;
}
#ifdef ESP8266
WebGetArg("g" STR(ADC0_PIN), tmp, sizeof(tmp)); // FLAG - ADC0
uint32_t flag = atoi(tmp);
#else // ESP32
uint32_t flag = 0;
#endif // ESP32
for (uint32_t i = 0; i < GPIO_FLAG_USED; i++) {
snprintf_P(webindex, sizeof(webindex), PSTR("c%d"), i);
uint32_t state = Webserver->hasArg(webindex) << i +4; // FLAG
uint32_t state = Webserver->hasArg(webindex) << i; // FLAG
flag += state;
}
WebGetArg("g99", tmp, sizeof(tmp)); // BASE
@ -1968,31 +1929,18 @@ void HandleModuleConfiguration(void)
midx = pgm_read_byte(kModuleNiceList + i -1);
vidx = midx +1;
}
#ifdef ESP8266
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, midx, AnyModuleName(midx).c_str(), vidx);
#else // ESP32
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_INDEX, midx, AnyModuleName(midx).c_str(), vidx);
#endif // ESP8266 - ESP32
}
WSContentSend_P(PSTR("\";sk(%d,99);os=\""), Settings.module);
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioNiceList); i++) {
#ifdef ESP8266
midx = pgm_read_byte(kGpioNiceList + i);
uint32_t ridx = midx;
if (!GetUsedInModule(midx, cmodule.io)) {
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, ridx, GetTextIndexed(stemp, sizeof(stemp), midx, kSensorNames), ridx);
}
#else // ESP32
uint32_t ridx = pgm_read_word(kGpioNiceList + i) & 0xFFE0;
midx = BGPIO(ridx);
if (!GetUsedInModule(midx, cmodule.io)) {
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_NO_INDEX, ridx, GetTextIndexed(stemp, sizeof(stemp), midx, kSensorNames));
}
#endif // ESP8266 - ESP32
}
WSContentSend_P(PSTR("\";"));
#ifdef ESP32
WSContentSend_P(PSTR("hs=["));
bool first_done = false;
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioNiceList); i++) { // hs=[36,68,100,132,168,200,232,264,292,324,356,388,421,453];
@ -2004,7 +1952,6 @@ void HandleModuleConfiguration(void)
}
}
WSContentSend_P(PSTR("];"));
#endif // ESP32
for (uint32_t i = 0; i < ARRAY_SIZE(cmodule.io); i++) {
if (ValidGPIO(i, cmodule.io[i])) {
@ -2015,10 +1962,12 @@ void HandleModuleConfiguration(void)
#ifdef ESP8266
#ifndef USE_ADC_VCC
WSContentSend_P(PSTR("os=\""));
for (uint32_t j = 0; j < ADC0_END; j++) {
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE, j, GetTextIndexed(stemp, sizeof(stemp), j, kAdc0Names), j);
for (uint32_t i = 0; i < ARRAY_SIZE(kAdcNiceList); i++) { // FLAG: }2'0'>None}3}2'17'>Analog}3...
uint32_t ridx = pgm_read_word(kAdcNiceList + i) & 0xFFE0;
uint32_t midx = BGPIO(ridx);
WSContentSend_P(HTTP_MODULE_TEMPLATE_REPLACE_NO_INDEX, ridx, GetTextIndexed(stemp, sizeof(stemp), midx, kSensorNames));
}
WSContentSend_P(PSTR("\";sk(%d," STR(ADC0_PIN) ");"), Settings.my_adc0);
WSContentSend_P(PSTR("\";sk(%d," STR(ADC0_PIN) ");"), Settings.my_gp.io[(sizeof(myio) / 2) -1]);
#endif // USE_ADC_VCC
#endif // ESP8266
@ -2029,25 +1978,18 @@ void HandleModuleConfiguration(void)
for (uint32_t i = 0; i < ARRAY_SIZE(cmodule.io); i++) {
if (ValidGPIO(i, cmodule.io[i])) {
snprintf_P(stemp, 3, PINS_WEMOS +i*2);
#ifdef ESP8266
char sesp8285[40];
snprintf_P(sesp8285, sizeof(sesp8285), PSTR("<font color='#%06x'>ESP8285</font>"), WebColor(COL_TEXT_WARNING));
WSContentSend_P(PSTR("<tr><td style='width:190px'>%s <b>" D_GPIO "%d</b> %s</td><td style='width:176px'><select id='g%d'></select></td></tr>"),
(WEMOS==my_module_type)?stemp:"", i, (0==i)? D_SENSOR_BUTTON "1":(1==i)? D_SERIAL_OUT :(3==i)? D_SERIAL_IN :((9==i)||(10==i))? sesp8285 :(12==i)? D_SENSOR_RELAY "1":(13==i)? D_SENSOR_LED "1i":(14==i)? D_SENSOR :"", i);
#else // ESP32
//#ifdef ESP8266
// WSContentSend_P(PSTR("<tr><td style='width:116px'>%s <b>%s%d</b></td><td style='width:150px'><select id='g%d' onchange='ot(%d,this.value)'></select></td>"),
// (WEMOS==my_module_type)?stemp:"",
// (ADC0_PIN==i) ? PSTR(D_ADC) : PSTR(D_GPIO), (ADC0_PIN==i) ? 0 : i,
// i, i);
//#else // ESP32
WSContentSend_P(PSTR("<tr><td style='width:116px'>%s <b>" D_GPIO "%d</b></td><td style='width:150px'><select id='g%d' onchange='ot(%d,this.value)'></select></td>"),
(WEMOS==my_module_type)?stemp:"", i, i, i);
//#endif
WSContentSend_P(PSTR("<td style='width:50px'><select id='h%d'></select></td></tr>"), i);
#endif // ESP8266
}
}
#ifdef ESP8266
#ifndef USE_ADC_VCC
if (ValidAdc()) {
WSContentSend_P(PSTR("<tr><td>%s <b>" D_ADC "0</b></td><td style='width:176px'><select id='g17'></select></td></tr>"), (WEMOS==my_module_type)?"A0":"");
}
#endif // USE_ADC_VCC
#endif // ESP8266
WSContentSend_P(PSTR("</table>"));
WSContentSend_P(HTTP_FORM_END);
WSContentSpaceButton(BUTTON_CONFIGURATION);
@ -2075,26 +2017,17 @@ void ModuleSaveSettings(void)
snprintf_P(webindex, sizeof(webindex), PSTR("g%d"), i);
WebGetArg(webindex, tmp, sizeof(tmp));
uint32_t value = (!strlen(tmp)) ? 0 : atoi(tmp);
#ifdef ESP32
char tmp2[8]; // WebGetArg numbers only
char webindex2[5]; // WebGetArg name
snprintf_P(webindex2, sizeof(webindex2), PSTR("h%d"), i);
WebGetArg(webindex2, tmp2, sizeof(tmp2));
uint32_t value2 = (!strlen(tmp2)) ? 0 : atoi(tmp2) -1;
value += value2;
#endif // ESP8266 - ESP32
Settings.my_gp.io[i] = value;
gpios += F(", " D_GPIO ); gpios += String(i); gpios += F(" "); gpios += String(value);
}
}
}
#ifdef ESP8266
#ifndef USE_ADC_VCC
WebGetArg("g" STR(ADC0_PIN), tmp, sizeof(tmp));
Settings.my_adc0 = (!strlen(tmp)) ? 0 : atoi(tmp);
gpios += F(", " D_ADC "0 "); gpios += String(Settings.my_adc0);
#endif // USE_ADC_VCC
#endif // ESP8266
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_MODULE "%s " D_CMND_MODULE "%s"), ModuleName().c_str(), gpios.c_str());
}

View File

@ -1,5 +1,5 @@
/*
xsns_02_analog.ino - ESP8266 ADC support for Tasmota
xsns_02_analog.ino - ADC support for Tasmota
Copyright (C) 2020 Theo Arends
@ -17,14 +17,16 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP8266
#ifndef USE_ADC_VCC
#ifdef USE_ADC
/*********************************************************************************************\
* ADC support
* ADC support for up to 8 channels on GPIO32 to GPIO39
\*********************************************************************************************/
#define XSNS_02 2
#define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023
#define ANALOG_RANGE 4095 // 4095 = 12, 2047 = 11, 1023 = 10
#define TO_CELSIUS(x) ((x) - 273.15)
#define TO_KELVIN(x) ((x) + 273.15)
@ -57,62 +59,161 @@
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1
#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
// Odroid joysticks
// ---- Up
// 3V3 ---| |------------
// |
// ---- Dn |--- R10k --- Gnd
// 3V3 ---| |--- R10k ---|
// |
// ADC
// Press "Up" will raise ADC to ANALOG_RANGE, Press "Dn" will raise ADC to ANALOG_RANGE/2
#define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance
struct {
uint8_t present = 0;
uint8_t type = 0;
} Adcs;
struct {
float temperature = 0;
float current = 0;
float energy = 0;
uint32_t param1 = 0;
uint32_t param2 = 0;
int param3 = 0;
int param4 = 0;
uint32_t previous_millis = 0;
uint16_t last_value = 0;
} Adc;
uint8_t type = 0;
uint8_t pin = 0;
} Adc[MAX_ADCS];
void AdcInit(void)
{
if ((Settings.adc_param_type != my_adc0) || (Settings.adc_param1 > 1000000)) {
if (ADC0_TEMP == my_adc0) {
#ifdef ESP8266
bool adcAttachPin(uint8_t pin) {
return (ADC0_PIN == pin);
}
#endif
void AdcSaveSettings(uint32_t idx) {
char parameters[32];
snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"),
Adc[idx].type, Adc[idx].param1, Adc[idx].param2, Adc[idx].param3, Adc[idx].param4);
SettingsUpdateText(SET_ADC_PARAM1 + idx, parameters);
}
void AdcGetSettings(uint32_t idx) {
char parameters[32];
Adcs.type = 0;
Adc[idx].param1 = 0;
Adc[idx].param2 = 0;
Adc[idx].param3 = 0;
Adc[idx].param4 = 0;
if (strstr(SettingsText(SET_ADC_PARAM1 + idx), ",") != nullptr) {
Adcs.type = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 1));
Adc[idx].param1 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 2));
Adc[idx].param2 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 3));
Adc[idx].param3 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 4));
Adc[idx].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 5));
}
}
void AdcInitParams(uint8_t idx) {
if ((Adcs.type != Adc[idx].type) || (Adc[idx].param1 > 1000000)) {
if (ADC_TEMP == Adc[idx].type) {
// Default Shelly 2.5 and 1PM parameters
Settings.adc_param_type = ADC0_TEMP;
Settings.adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_NTC_RESISTANCE;
Settings.adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
Adc[idx].param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
Adc[idx].param2 = ANALOG_NTC_RESISTANCE;
Adc[idx].param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
}
else if (ADC0_LIGHT == my_adc0) {
Settings.adc_param_type = ADC0_LIGHT;
Settings.adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR;
Settings.adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
else if (ADC_LIGHT == Adc[idx].type) {
Adc[idx].param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
Adc[idx].param2 = ANALOG_LDR_LUX_CALC_SCALAR;
Adc[idx].param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
}
else if (ADC0_RANGE == my_adc0) {
Settings.adc_param_type = ADC0_RANGE;
Settings.adc_param1 = 0;
Settings.adc_param2 = 1023;
Settings.adc_param3 = 0;
Settings.adc_param4 = 100;
else if (ADC_RANGE == Adc[idx].type) {
Adc[idx].param1 = 0;
Adc[idx].param2 = ANALOG_RANGE;
Adc[idx].param3 = 0;
Adc[idx].param4 = 100;
}
else if (ADC0_CT_POWER == my_adc0) {
Settings.adc_param_type = ADC0_CT_POWER;
Settings.adc_param1 = ANALOG_CT_FLAGS; //(uint32_t) 0
Settings.adc_param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000
Settings.adc_param3 = ANALOG_CT_VOLTAGE; //(int) 10
else if (ADC_CT_POWER == Adc[idx].type) {
Adc[idx].param1 = ANALOG_CT_FLAGS; // (uint32_t) 0
Adc[idx].param2 = ANALOG_CT_MULTIPLIER; // (uint32_t) 100000
Adc[idx].param3 = ANALOG_CT_VOLTAGE; // (int) 10
}
else if (ADC_JOY == Adc[idx].type) {
Adc[idx].param1 = ANALOG_JOYSTICK;
}
}
}
uint16_t AdcRead(uint8_t factor)
{
void AdcAttach(uint8_t pin, uint8_t type) {
Adc[Adcs.present].pin = pin;
if (adcAttachPin(Adc[Adcs.present].pin)) {
Adc[Adcs.present].type = type;
// analogSetPinAttenuation(Adc[Adcs.present].pin, ADC_11db); // Default
Adcs.present++;
}
}
void AdcInit(void) {
Adcs.present = 0;
for (uint32_t i = 0; i < MAX_ADCS; i++) {
if (PinUsed(GPIO_ADC_INPUT, i)) {
AdcAttach(Pin(GPIO_ADC_INPUT, i), ADC_INPUT);
}
if (PinUsed(GPIO_ADC_TEMP, i)) {
AdcAttach(Pin(GPIO_ADC_TEMP, i), ADC_TEMP);
}
if (PinUsed(GPIO_ADC_LIGHT, i)) {
AdcAttach(Pin(GPIO_ADC_LIGHT, i), ADC_LIGHT);
}
if (PinUsed(GPIO_ADC_BUTTON, i)) {
AdcAttach(Pin(GPIO_ADC_BUTTON, i), ADC_BUTTON);
}
if (PinUsed(GPIO_ADC_BUTTON_INV, i)) {
AdcAttach(Pin(GPIO_ADC_BUTTON_INV, i), ADC_BUTTON_INV);
}
if (PinUsed(GPIO_ADC_RANGE, i)) {
AdcAttach(Pin(GPIO_ADC_RANGE, i), ADC_RANGE);
}
if (PinUsed(GPIO_ADC_CT_POWER, i)) {
AdcAttach(Pin(GPIO_ADC_CT_POWER, i), ADC_CT_POWER);
}
if (PinUsed(GPIO_ADC_JOY, i)) {
AdcAttach(Pin(GPIO_ADC_JOY, i), ADC_JOY);
}
}
if (Adcs.present) {
#ifdef ESP32
analogSetClockDiv(1); // Default 1
analogSetWidth(ANALOG_RESOLUTION); // Default 12 bits (0 - 4095)
analogSetAttenuation(ADC_11db); // Default 11db
#endif
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
AdcGetSettings(idx);
AdcInitParams(idx);
AdcSaveSettings(idx);
}
}
}
uint16_t AdcRead(uint32_t pin, uint32_t factor) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
uint32_t samples = 1 << factor;
uint32_t analog = 0;
for (uint32_t i = 0; i < samples; i++) {
analog += analogRead(A0);
analog += analogRead(pin);
delay(1);
}
analog >>= factor;
@ -120,44 +221,72 @@ uint16_t AdcRead(uint8_t factor)
}
#ifdef USE_RULES
void AdcEvery250ms(void)
{
if (ADC0_INPUT == my_adc0) {
uint16_t new_value = AdcRead(5);
if ((new_value < Adc.last_value -10) || (new_value > Adc.last_value +10)) {
Adc.last_value = new_value;
uint16_t value = Adc.last_value / 10;
Response_P(PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value);
XdrvRulesProcess();
void AdcEvery250ms(void) {
char adc_idx[3] = { 0 };
uint32_t offset = 0;
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
#ifdef ESP32
snprintf_P(adc_idx, sizeof(adc_idx), PSTR("%d"), idx +1);
offset = 1;
#endif
if (ADC_INPUT == Adc[idx].type) {
uint16_t new_value = AdcRead(Adc[idx].pin, 5);
if ((new_value < Adc[idx].last_value -10) || (new_value > Adc[idx].last_value +10)) {
Adc[idx].last_value = new_value;
uint16_t value = Adc[idx].last_value / 10;
Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), idx + offset, (value > 99) ? 100 : value);
XdrvRulesProcess();
}
}
else if (ADC_JOY == Adc[idx].type) {
uint16_t new_value = AdcRead(Adc[idx].pin, 1);
if (new_value && (new_value != Adc[idx].last_value)) {
Adc[idx].last_value = new_value;
uint16_t value = new_value / Adc[idx].param1;
Response_P(PSTR("{\"ANALOG\":{\"Joy%s\":%d}}"), adc_idx, value);
XdrvRulesProcess();
} else {
Adc[idx].last_value = 0;
}
}
}
}
#endif // USE_RULES
uint16_t AdcGetLux(void)
{
int adc = AdcRead(2);
bool AdcButtonPresent(uint32_t idx) {
return ((ADC_BUTTON == Adc[idx].type) || (ADC_BUTTON_INV == Adc[idx].type));
}
uint8_t AdcGetButton(uint32_t idx) {
if (ADC_BUTTON_INV == Adc[idx].type) {
return (AdcRead(Adc[idx].pin, 1) < 128);
}
else if (ADC_BUTTON == Adc[idx].type) {
return (AdcRead(Adc[idx].pin, 1) > 128);
}
}
uint16_t AdcGetLux(uint32_t idx) {
int adc = AdcRead(Adc[idx].pin, 2);
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
double resistorVoltage = ((double)adc / 1023) * ANALOG_V33;
double resistorVoltage = ((double)adc / ANALOG_RANGE) * ANALOG_V33;
double ldrVoltage = ANALOG_V33 - resistorVoltage;
double ldrResistance = ldrVoltage / resistorVoltage * (double)Settings.adc_param1;
double ldrLux = (double)Settings.adc_param2 * FastPrecisePow(ldrResistance, (double)Settings.adc_param3 / 10000);
double ldrResistance = ldrVoltage / resistorVoltage * (double)Adc[idx].param1;
double ldrLux = (double)Adc[idx].param2 * FastPrecisePow(ldrResistance, (double)Adc[idx].param3 / 10000);
return (uint16_t)ldrLux;
}
uint16_t AdcGetRange(void)
{
uint16_t AdcGetRange(uint32_t idx) {
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
// Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
int adc = AdcRead(2);
double adcrange = ( ((double)Settings.adc_param2 - (double)adc) / ( ((double)Settings.adc_param2 - (double)Settings.adc_param1)) * ((double)Settings.adc_param3 - (double)Settings.adc_param4) + (double)Settings.adc_param4 );
int adc = AdcRead(Adc[idx].pin, 2);
double adcrange = ( ((double)Adc[idx].param2 - (double)adc) / ( ((double)Adc[idx].param2 - (double)Adc[idx].param1)) * ((double)Adc[idx].param3 - (double)Adc[idx].param4) + (double)Adc[idx].param4 );
return (uint16_t)adcrange;
}
void AdcGetCurrentPower(uint8_t factor)
{
void AdcGetCurrentPower(uint8_t idx, uint8_t factor) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
@ -165,12 +294,12 @@ void AdcGetCurrentPower(uint8_t factor)
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
uint16_t analog_min = 1023;
uint16_t analog_min = ANALOG_RANGE;
uint16_t analog_max = 0;
if (0 == Settings.adc_param1) {
if (0 == Adc[idx].param1) {
for (uint32_t i = 0; i < samples; i++) {
analog = analogRead(A0);
analog = analogRead(Adc[idx].pin);
if (analog < analog_min) {
analog_min = analog;
}
@ -179,138 +308,181 @@ void AdcGetCurrentPower(uint8_t factor)
}
delay(1);
}
Adc.current = (float)(analog_max-analog_min) * ((float)(Settings.adc_param2) / 100000);
Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Adc[idx].param2) / 100000);
}
else {
analog = AdcRead(5);
if (analog > Settings.adc_param1) {
Adc.current = ((float)(analog) - (float)Settings.adc_param1) * ((float)(Settings.adc_param2) / 100000);
analog = AdcRead(Adc[idx].pin, 5);
if (analog > Adc[idx].param1) {
Adc[idx].current = ((float)(analog) - (float)Adc[idx].param1) * ((float)(Adc[idx].param2) / 100000);
}
else {
Adc.current = 0;
Adc[idx].current = 0;
}
}
float power = Adc.current * (float)(Settings.adc_param3) / 10;
float power = Adc[idx].current * (float)(Adc[idx].param3) / 10;
uint32_t current_millis = millis();
Adc.energy = Adc.energy + ((power * (current_millis - Adc.previous_millis)) / 3600000000);
Adc.previous_millis = current_millis;
Adc[idx].energy = Adc[idx].energy + ((power * (current_millis - Adc[idx].previous_millis)) / 3600000000);
Adc[idx].previous_millis = current_millis;
}
void AdcEverySecond(void)
{
if (ADC0_TEMP == my_adc0) {
int adc = AdcRead(2);
// Steinhart-Hart equation for thermistor as temperature sensor
double Rt = (adc * Settings.adc_param1) / (1024.0 * ANALOG_V33 - (double)adc);
double BC = (double)Settings.adc_param3 / 10000;
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Settings.adc_param2));
Adc.temperature = ConvertTemp(TO_CELSIUS(T));
}
else if (ADC0_CT_POWER == my_adc0) {
AdcGetCurrentPower(5);
}
}
void AdcShow(bool json)
{
if (ADC0_INPUT == my_adc0) {
uint16_t analog = AdcRead(5);
if (json) {
ResponseAppend_P(PSTR(",\"ANALOG\":{\"A0\":%d}"), analog);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ANALOG, "", 0, analog);
#endif // USE_WEBSERVER
void AdcEverySecond(void) {
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
if (ADC_TEMP == Adc[idx].type) {
int adc = AdcRead(Adc[idx].pin, 2);
// Steinhart-Hart equation for thermistor as temperature sensor
double Rt = (adc * Adc[idx].param1) / (1024.0 * ANALOG_V33 - (double)adc);
double BC = (double)Adc[idx].param3 / 10000;
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Adc[idx].param2));
Adc[idx].temperature = ConvertTemp(TO_CELSIUS(T));
}
else if (ADC_CT_POWER == Adc[idx].type) {
AdcGetCurrentPower(idx, 5);
}
}
}
else if (ADC0_TEMP == my_adc0) {
char temperature[33];
dtostrfd(Adc.temperature, Settings.flag2.temperature_resolution, temperature);
void AdcShowContinuation(bool *jsonflg) {
if (*jsonflg) {
ResponseAppend_P(PSTR(","));
} else {
ResponseAppend_P(PSTR(",\"ANALOG\":{"));
*jsonflg = true;
}
}
if (json) {
ResponseAppend_P(JSON_SNS_TEMP, "ANALOG", temperature);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_TEMP, temperature);
void AdcShow(bool json) {
bool domo_flag[ADC_END] = { false };
char adc_name[10] = { 0 }; // ANALOG8
char adc_idx[3] = { 0 };
uint32_t offset = 0;
bool jsonflg = false;
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
#ifdef ESP32
snprintf_P(adc_name, sizeof(adc_name), PSTR("Analog%d"), idx +1);
snprintf_P(adc_idx, sizeof(adc_idx), PSTR("%d"), idx +1);
offset = 1;
#endif
switch (Adc[idx].type) {
case ADC_INPUT: {
uint16_t analog = AdcRead(Adc[idx].pin, 5);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"A%d\":%d"), idx + offset, analog);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ANALOG, "", idx + offset, analog);
#endif // USE_WEBSERVER
}
break;
}
case ADC_TEMP: {
char temperature[33];
dtostrfd(Adc[idx].temperature, Settings.flag2.temperature_resolution, temperature);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "%s\":%s"), adc_idx, temperature);
if ((0 == tele_period) && (!domo_flag[ADC_TEMP])) {
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_TEMP, temperature);
domo_flag[ADC_TEMP] = true;
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (0 == tele_period) {
KnxSensor(KNX_TEMPERATURE, Adc.temperature);
}
KnxSensor(KNX_TEMPERATURE, Adc[idx].temperature);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, "", temperature, TempUnit());
} else {
WSContentSend_PD(HTTP_SNS_TEMP, adc_name, temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
else if (ADC0_LIGHT == my_adc0) {
uint16_t adc_light = AdcGetLux();
if (json) {
ResponseAppend_P(JSON_SNS_ILLUMINANCE, "ANALOG", adc_light);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_ILLUMINANCE, adc_light);
}
break;
}
case ADC_LIGHT: {
uint16_t adc_light = AdcGetLux(idx);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"" D_JSON_ILLUMINANCE "%s\":%d"), adc_idx, adc_light);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (!domo_flag[ADC_LIGHT])) {
DomoticzSensor(DZ_ILLUMINANCE, adc_light);
domo_flag[ADC_LIGHT] = true;
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, "", adc_light);
} else {
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, adc_name, adc_light);
#endif // USE_WEBSERVER
}
}
else if (ADC0_RANGE == my_adc0) {
uint16_t adc_range = AdcGetRange();
if (json) {
ResponseAppend_P(JSON_SNS_RANGE, "ANALOG", adc_range);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_RANGE, "", adc_range);
#endif // USE_WEBSERVER
}
}
else if (ADC0_CT_POWER == my_adc0) {
AdcGetCurrentPower(5);
float voltage = (float)(Settings.adc_param3) / 10;
char voltage_chr[FLOATSZ];
dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr);
char current_chr[FLOATSZ];
dtostrfd(Adc.current, Settings.flag2.current_resolution, current_chr);
char power_chr[FLOATSZ];
dtostrfd(voltage * Adc.current, Settings.flag2.wattage_resolution, power_chr);
char energy_chr[FLOATSZ];
dtostrfd(Adc.energy, Settings.flag2.energy_resolution, energy_chr);
if (json) {
ResponseAppend_P(PSTR(",\"ANALOG\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
energy_chr, power_chr, voltage_chr, current_chr);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_POWER_ENERGY, power_chr);
DomoticzSensor(DZ_VOLTAGE, voltage_chr);
DomoticzSensor(DZ_CURRENT, current_chr);
}
break;
}
case ADC_RANGE: {
uint16_t adc_range = AdcGetRange(idx);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"" D_JSON_RANGE "%s\":%d"), adc_idx, adc_range);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_RANGE, adc_name, adc_range);
#endif // USE_WEBSERVER
}
break;
}
case ADC_CT_POWER: {
AdcGetCurrentPower(idx, 5);
float voltage = (float)(Adc[idx].param3) / 10;
char voltage_chr[FLOATSZ];
dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr);
char current_chr[FLOATSZ];
dtostrfd(Adc[idx].current, Settings.flag2.current_resolution, current_chr);
char power_chr[FLOATSZ];
dtostrfd(voltage * Adc[idx].current, Settings.flag2.wattage_resolution, power_chr);
char energy_chr[FLOATSZ];
dtostrfd(Adc[idx].energy, Settings.flag2.energy_resolution, energy_chr);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"CTEnergy%s\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
adc_idx, energy_chr, power_chr, voltage_chr, current_chr);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (!domo_flag[ADC_CT_POWER])) {
DomoticzSensor(DZ_POWER_ENERGY, power_chr);
DomoticzSensor(DZ_VOLTAGE, voltage_chr);
DomoticzSensor(DZ_CURRENT, current_chr);
domo_flag[ADC_CT_POWER] = true;
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr);
WSContentSend_PD(HTTP_SNS_CURRENT, current_chr);
WSContentSend_PD(HTTP_SNS_POWER, power_chr);
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr);
} else {
WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr);
WSContentSend_PD(HTTP_SNS_CURRENT, current_chr);
WSContentSend_PD(HTTP_SNS_POWER, power_chr);
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr);
#endif // USE_WEBSERVER
}
break;
}
case ADC_JOY: {
uint16_t new_value = AdcRead(Adc[idx].pin, 1);
uint16_t value = new_value / Adc[idx].param1;
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"Joy%s\":%d"), adc_idx, value);
}
break;
}
}
}
if (jsonflg) {
ResponseJsonEnd();
}
}
/*********************************************************************************************\
@ -318,118 +490,94 @@ void AdcShow(bool json)
\*********************************************************************************************/
const char kAdcCommands[] PROGMEM = "|" // No prefix
#ifdef ESP8266
D_CMND_ADC "|" D_CMND_ADCS "|"
#endif // ESP8266
D_CMND_ADCPARAM;
void (* const AdcCommand[])(void) PROGMEM = {
#ifdef ESP8266
&CmndAdc, &CmndAdcs,
#endif // ESP8266
&CmndAdcParam };
#ifdef ESP8266
void CmndAdc(void)
{
if (ValidAdc() && (XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < ADC0_END)) {
Settings.my_adc0 = XdrvMailbox.payload;
restart_flag = 2;
}
char stemp1[TOPSZ];
Response_P(PSTR("{\"" D_CMND_ADC "0\":{\"%d\":\"%s\"}}"), Settings.my_adc0, GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_adc0, kAdc0Names));
}
void CmndAdcs(void)
{
Response_P(PSTR("{\"" D_CMND_ADCS "\":{"));
bool jsflg = false;
char stemp1[TOPSZ];
for (uint32_t i = 0; i < ADC0_END; i++) {
if (jsflg) {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
ResponseAppend_P(PSTR("\"%d\":\"%s\""), i, GetTextIndexed(stemp1, sizeof(stemp1), i, kAdc0Names));
}
ResponseJsonEndEnd();
}
#endif // ESP8266
void CmndAdcParam(void)
{
if (XdrvMailbox.data_len) {
if ((ADC0_TEMP == XdrvMailbox.payload) ||
(ADC0_LIGHT == XdrvMailbox.payload) ||
(ADC0_RANGE == XdrvMailbox.payload) ||
(ADC0_CT_POWER == XdrvMailbox.payload)) {
if (strstr(XdrvMailbox.data, ",") != nullptr) { // Process parameter entry
char sub_string[XdrvMailbox.data_len +1];
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, 1023, 0, 100
Settings.adc_param_type = XdrvMailbox.payload;
Settings.adc_param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
Settings.adc_param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
if (ADC0_RANGE == XdrvMailbox.payload) {
Settings.adc_param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
Settings.adc_param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
} else {
Settings.adc_param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
}
if (ADC0_CT_POWER == XdrvMailbox.payload) {
if (((1 == Settings.adc_param1) & CT_FLAG_ENERGY_RESET) > 0) {
Adc.energy = 0;
Settings.adc_param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
void CmndAdcParam(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) {
uint8_t idx = XdrvMailbox.index -1;
if (XdrvMailbox.data_len) {
if ((ADC_TEMP == XdrvMailbox.payload) ||
(ADC_LIGHT == XdrvMailbox.payload) ||
(ADC_RANGE == XdrvMailbox.payload) ||
(ADC_CT_POWER == XdrvMailbox.payload) ||
(ADC_JOY == XdrvMailbox.payload)) {
AdcGetSettings(idx);
if (ChrCount(XdrvMailbox.data, ",") > 2) { // Process parameter entry
char sub_string[XdrvMailbox.data_len +1];
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, ANALOG_RANGE, 0, 100
// AdcParam 7, 0, 2146, 0.23
// AdcParam 8, 1000, 0, 0
Adc[idx].type = XdrvMailbox.payload;
Adc[idx].param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
Adc[idx].param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
if (ADC_RANGE == XdrvMailbox.payload) {
Adc[idx].param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
Adc[idx].param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
} else {
Adc[idx].param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
}
if (ADC_CT_POWER == XdrvMailbox.payload) {
if (((1 == Adc[idx].param1) & CT_FLAG_ENERGY_RESET) > 0) {
for (uint32_t idx = 0; idx < MAX_ADCS; idx++) {
Adc[idx].energy = 0;
}
Adc[idx].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
}
}
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
// AdcParam 8
Adcs.type = 0;
AdcInitParams(idx);
}
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
Settings.adc_param_type = 0;
AdcInit();
AdcSaveSettings(idx);
}
}
}
// AdcParam
Response_P(PSTR("{\"" D_CMND_ADCPARAM "\":[%d,%d,%d"), Settings.adc_param_type, Settings.adc_param1, Settings.adc_param2);
if (ADC0_RANGE == my_adc0) {
ResponseAppend_P(PSTR(",%d,%d"), Settings.adc_param3, Settings.adc_param4);
} else {
int value = Settings.adc_param3;
uint8_t precision;
for (precision = 4; precision > 0; precision--) {
if (value % 10) { break; }
value /= 10;
// AdcParam
AdcGetSettings(idx);
Response_P(PSTR("{\"" D_CMND_ADCPARAM "%d\":[%d,%d,%d"), idx +1, Adcs.type, Adc[idx].param1, Adc[idx].param2);
if (ADC_RANGE == Adc[idx].type) {
ResponseAppend_P(PSTR(",%d,%d"), Adc[idx].param3, Adc[idx].param4);
} else {
int value = Adc[idx].param3;
uint8_t precision;
for (precision = 4; precision > 0; precision--) {
if (value % 10) { break; }
value /= 10;
}
char param3[33];
dtostrfd(((double)Adc[idx].param3)/10000, precision, param3);
ResponseAppend_P(PSTR(",%s"), param3);
}
char param3[33];
dtostrfd(((double)Settings.adc_param3)/10000, precision, param3);
ResponseAppend_P(PSTR(",%s"), param3);
ResponseAppend_P(PSTR("]}"));
}
ResponseAppend_P(PSTR("]}"));
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns02(uint8_t function)
{
bool Xsns02(uint8_t function) {
bool result = false;
switch (function) {
case FUNC_COMMAND:
result = DecodeCommand(kAdcCommands, AdcCommand);
break;
case FUNC_INIT:
AdcInit();
break;
default:
if ((ADC0_INPUT == my_adc0) ||
(ADC0_TEMP == my_adc0) ||
(ADC0_LIGHT == my_adc0) ||
(ADC0_RANGE == my_adc0) ||
(ADC0_CT_POWER == my_adc0)) {
if (Adcs.present) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
@ -439,9 +587,6 @@ bool Xsns02(uint8_t function)
case FUNC_EVERY_SECOND:
AdcEverySecond();
break;
case FUNC_INIT:
AdcInit();
break;
case FUNC_JSON_APPEND:
AdcShow(1);
break;
@ -456,5 +601,4 @@ bool Xsns02(uint8_t function)
return result;
}
#endif // USE_ADC_VCC
#endif // ESP8266
#endif // USE_ADC

View File

@ -1,573 +0,0 @@
/*
xsns_02_analog_esp32.ino - ESP32 ADC support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP32
#ifdef USE_ADC
/*********************************************************************************************\
* ADC support for up to 8 channels on GPIO32 to GPIO39
\*********************************************************************************************/
#define XSNS_02 2
#define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023
#define ANALOG_RANGE 4095 // 4095 = 12, 2047 = 11, 1023 = 10
#define TO_CELSIUS(x) ((x) - 273.15)
#define TO_KELVIN(x) ((x) + 273.15)
// Parameters for equation
#define ANALOG_V33 3.3 // ESP8266 Analog voltage
#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15)
// Shelly 2.5 NTC Thermistor
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
// |
// ADC0
#define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
#define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
#define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
// LDR parameters
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
// |
// ADC0
#define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
#define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
#define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
// CT Based Apparrent Power Measurement Parameters
// 3V3 --- R1 ----v--- R1 --- Gnd
// |
// CT+ CT-
// |
// ADC0
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1
#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
// Odroid joysticks
// ---- Up
// 3V3 ---| |------------
// |
// ---- Dn |--- R10k --- Gnd
// 3V3 ---| |--- R10k ---|
// |
// ADC
// Press "Up" will raise ADC to ANALOG_RANGE, Press "Dn" will raise ADC to ANALOG_RANGE/2
#define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance
struct {
uint8_t present = 0;
uint8_t type = 0;
} Adcs;
struct {
float temperature = 0;
float current = 0;
float energy = 0;
uint32_t param1 = 0;
uint32_t param2 = 0;
int param3 = 0;
int param4 = 0;
uint32_t previous_millis = 0;
uint16_t last_value = 0;
uint8_t type = 0;
uint8_t pin = 0;
} Adc[MAX_ADCS];
void AdcSaveSettings(uint32_t idx) {
char parameters[32];
snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"),
Adc[idx].type, Adc[idx].param1, Adc[idx].param2, Adc[idx].param3, Adc[idx].param4);
SettingsUpdateText(SET_ADC_PARAM1 + idx, parameters);
}
void AdcGetSettings(uint32_t idx) {
char parameters[32];
Adcs.type = 0;
Adc[idx].param1 = 0;
Adc[idx].param2 = 0;
Adc[idx].param3 = 0;
Adc[idx].param4 = 0;
if (strstr(SettingsText(SET_ADC_PARAM1 + idx), ",") != nullptr) {
Adcs.type = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 1));
Adc[idx].param1 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 2));
Adc[idx].param2 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 3));
Adc[idx].param3 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 4));
Adc[idx].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 5));
}
}
void AdcInitParams(uint8_t idx) {
if ((Adcs.type != Adc[idx].type) || (Adc[idx].param1 > 1000000)) {
if (ADC_TEMP == Adc[idx].type) {
// Default Shelly 2.5 and 1PM parameters
Adc[idx].param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
Adc[idx].param2 = ANALOG_NTC_RESISTANCE;
Adc[idx].param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
}
else if (ADC_LIGHT == Adc[idx].type) {
Adc[idx].param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
Adc[idx].param2 = ANALOG_LDR_LUX_CALC_SCALAR;
Adc[idx].param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
}
else if (ADC_RANGE == Adc[idx].type) {
Adc[idx].param1 = 0;
Adc[idx].param2 = ANALOG_RANGE;
Adc[idx].param3 = 0;
Adc[idx].param4 = 100;
}
else if (ADC_CT_POWER == Adc[idx].type) {
Adc[idx].param1 = ANALOG_CT_FLAGS; // (uint32_t) 0
Adc[idx].param2 = ANALOG_CT_MULTIPLIER; // (uint32_t) 100000
Adc[idx].param3 = ANALOG_CT_VOLTAGE; // (int) 10
}
else if (ADC_JOY == Adc[idx].type) {
Adc[idx].param1 = ANALOG_JOYSTICK;
}
}
}
void AdcAttach(uint8_t pin, uint8_t type) {
Adc[Adcs.present].pin = pin;
if (adcAttachPin(Adc[Adcs.present].pin)) {
Adc[Adcs.present].type = type;
// analogSetPinAttenuation(Adc[Adcs.present].pin, ADC_11db); // Default
Adcs.present++;
}
}
void AdcInit(void) {
Adcs.present = 0;
for (uint32_t i = 0; i < MAX_ADCS; i++) {
if (PinUsed(GPIO_ADC_INPUT, i)) {
AdcAttach(Pin(GPIO_ADC_INPUT, i), ADC_INPUT);
}
if (PinUsed(GPIO_ADC_TEMP, i)) {
AdcAttach(Pin(GPIO_ADC_TEMP, i), ADC_TEMP);
}
if (PinUsed(GPIO_ADC_LIGHT, i)) {
AdcAttach(Pin(GPIO_ADC_LIGHT, i), ADC_LIGHT);
}
if (PinUsed(GPIO_ADC_BUTTON, i)) {
AdcAttach(Pin(GPIO_ADC_BUTTON, i), ADC_BUTTON);
}
if (PinUsed(GPIO_ADC_BUTTON_INV, i)) {
AdcAttach(Pin(GPIO_ADC_BUTTON_INV, i), ADC_BUTTON_INV);
}
if (PinUsed(GPIO_ADC_RANGE, i)) {
AdcAttach(Pin(GPIO_ADC_RANGE, i), ADC_RANGE);
}
if (PinUsed(GPIO_ADC_CT_POWER, i)) {
AdcAttach(Pin(GPIO_ADC_CT_POWER, i), ADC_CT_POWER);
}
if (PinUsed(GPIO_ADC_JOY, i)) {
AdcAttach(Pin(GPIO_ADC_JOY, i), ADC_JOY);
}
}
if (Adcs.present) {
analogSetClockDiv(1); // Default 1
analogSetWidth(ANALOG_RESOLUTION); // Default 12 bits (0 - 4095)
analogSetAttenuation(ADC_11db); // Default 11db
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
AdcGetSettings(idx);
AdcInitParams(idx);
AdcSaveSettings(idx);
}
}
}
uint16_t AdcRead(uint32_t pin, uint32_t factor) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint32_t samples = 1 << factor;
uint32_t analog = 0;
for (uint32_t i = 0; i < samples; i++) {
analog += analogRead(pin);
delay(1);
}
analog >>= factor;
return analog;
}
#ifdef USE_RULES
void AdcEvery250ms(void) {
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
if (ADC_INPUT == Adc[idx].type) {
uint16_t new_value = AdcRead(Adc[idx].pin, 5);
if ((new_value < Adc[idx].last_value -10) || (new_value > Adc[idx].last_value +10)) {
Adc[idx].last_value = new_value;
uint16_t value = Adc[idx].last_value / 10;
Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), idx +1, (value > 99) ? 100 : value);
XdrvRulesProcess();
}
}
else if (ADC_JOY == Adc[idx].type) {
uint16_t new_value = AdcRead(Adc[idx].pin, 1);
if (new_value && (new_value != Adc[idx].last_value)) {
Adc[idx].last_value = new_value;
uint16_t value = new_value / Adc[idx].param1;
Response_P(PSTR("{\"ANALOG\":{\"Joy%d\":%d}}"), idx +1, value);
XdrvRulesProcess();
} else {
Adc[idx].last_value = 0;
}
}
}
}
#endif // USE_RULES
uint16_t AdcGetLux(uint32_t idx) {
int adc = AdcRead(Adc[idx].pin, 2);
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
double resistorVoltage = ((double)adc / ANALOG_RANGE) * ANALOG_V33;
double ldrVoltage = ANALOG_V33 - resistorVoltage;
double ldrResistance = ldrVoltage / resistorVoltage * (double)Adc[idx].param1;
double ldrLux = (double)Adc[idx].param2 * FastPrecisePow(ldrResistance, (double)Adc[idx].param3 / 10000);
return (uint16_t)ldrLux;
}
uint16_t AdcGetRange(uint32_t idx) {
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
// Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
int adc = AdcRead(Adc[idx].pin, 2);
double adcrange = ( ((double)Adc[idx].param2 - (double)adc) / ( ((double)Adc[idx].param2 - (double)Adc[idx].param1)) * ((double)Adc[idx].param3 - (double)Adc[idx].param4) + (double)Adc[idx].param4 );
return (uint16_t)adcrange;
}
void AdcGetCurrentPower(uint8_t idx, uint8_t factor) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
uint16_t analog_min = ANALOG_RANGE;
uint16_t analog_max = 0;
if (0 == Adc[idx].param1) {
for (uint32_t i = 0; i < samples; i++) {
analog = analogRead(Adc[idx].pin);
if (analog < analog_min) {
analog_min = analog;
}
if (analog > analog_max) {
analog_max = analog;
}
delay(1);
}
Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Adc[idx].param2) / 100000);
}
else {
analog = AdcRead(Adc[idx].pin, 5);
if (analog > Adc[idx].param1) {
Adc[idx].current = ((float)(analog) - (float)Adc[idx].param1) * ((float)(Adc[idx].param2) / 100000);
}
else {
Adc[idx].current = 0;
}
}
float power = Adc[idx].current * (float)(Adc[idx].param3) / 10;
uint32_t current_millis = millis();
Adc[idx].energy = Adc[idx].energy + ((power * (current_millis - Adc[idx].previous_millis)) / 3600000000);
Adc[idx].previous_millis = current_millis;
}
void AdcEverySecond(void) {
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
if (ADC_TEMP == Adc[idx].type) {
int adc = AdcRead(Adc[idx].pin, 2);
// Steinhart-Hart equation for thermistor as temperature sensor
double Rt = (adc * Adc[idx].param1) / (1024.0 * ANALOG_V33 - (double)adc);
double BC = (double)Adc[idx].param3 / 10000;
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Adc[idx].param2));
Adc[idx].temperature = ConvertTemp(TO_CELSIUS(T));
}
else if (ADC_CT_POWER == Adc[idx].type) {
AdcGetCurrentPower(idx, 5);
}
}
}
void AdcShowContinuation(bool *jsonflg) {
if (*jsonflg) {
ResponseAppend_P(PSTR(","));
} else {
ResponseAppend_P(PSTR(",\"ANALOG\":{"));
*jsonflg = true;
}
}
void AdcShow(bool json) {
bool domo_flag[ADC_END] = { false };
char adc_name[10]; // ANALOG8
bool jsonflg = false;
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
snprintf_P(adc_name, sizeof(adc_name), PSTR("Analog%d"), idx +1);
switch (Adc[idx].type) {
case ADC_INPUT: {
uint16_t analog = AdcRead(Adc[idx].pin, 5);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"A%d\":%d"), idx +1, analog);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ANALOG, "", idx +1, analog);
#endif // USE_WEBSERVER
}
break;
}
case ADC_TEMP: {
char temperature[33];
dtostrfd(Adc[idx].temperature, Settings.flag2.temperature_resolution, temperature);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "%d\":%s"), idx +1, temperature);
if ((0 == tele_period) && (!domo_flag[ADC_TEMP])) {
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_TEMP, temperature);
domo_flag[ADC_TEMP] = true;
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, Adc[idx].temperature);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, adc_name, temperature, TempUnit());
#endif // USE_WEBSERVER
}
break;
}
case ADC_LIGHT: {
uint16_t adc_light = AdcGetLux(idx);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"" D_JSON_ILLUMINANCE "%d\":%d"), idx +1, adc_light);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (!domo_flag[ADC_LIGHT])) {
DomoticzSensor(DZ_ILLUMINANCE, adc_light);
domo_flag[ADC_LIGHT] = true;
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, adc_name, adc_light);
#endif // USE_WEBSERVER
}
break;
}
case ADC_RANGE: {
uint16_t adc_range = AdcGetRange(idx);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"" D_JSON_RANGE "%d\":%d"), idx +1, adc_range);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_RANGE, adc_name, adc_range);
#endif // USE_WEBSERVER
}
break;
}
case ADC_CT_POWER: {
AdcGetCurrentPower(idx, 5);
float voltage = (float)(Adc[idx].param3) / 10;
char voltage_chr[FLOATSZ];
dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr);
char current_chr[FLOATSZ];
dtostrfd(Adc[idx].current, Settings.flag2.current_resolution, current_chr);
char power_chr[FLOATSZ];
dtostrfd(voltage * Adc[idx].current, Settings.flag2.wattage_resolution, power_chr);
char energy_chr[FLOATSZ];
dtostrfd(Adc[idx].energy, Settings.flag2.energy_resolution, energy_chr);
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"CTEnergy%d\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
idx +1, energy_chr, power_chr, voltage_chr, current_chr);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (!domo_flag[ADC_CT_POWER])) {
DomoticzSensor(DZ_POWER_ENERGY, power_chr);
DomoticzSensor(DZ_VOLTAGE, voltage_chr);
DomoticzSensor(DZ_CURRENT, current_chr);
domo_flag[ADC_CT_POWER] = true;
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr);
WSContentSend_PD(HTTP_SNS_CURRENT, current_chr);
WSContentSend_PD(HTTP_SNS_POWER, power_chr);
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr);
#endif // USE_WEBSERVER
}
break;
}
case ADC_JOY: {
uint16_t new_value = AdcRead(Adc[idx].pin, 1);
uint16_t value = new_value / Adc[idx].param1;
if (json) {
AdcShowContinuation(&jsonflg);
ResponseAppend_P(PSTR("\"Joy%d\":%d"), idx +1, value);
}
break;
}
}
}
if (jsonflg) {
ResponseJsonEnd();
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
const char kAdcCommands[] PROGMEM = "|" // No prefix
D_CMND_ADCPARAM;
void (* const AdcCommand[])(void) PROGMEM = {
&CmndAdcParam };
void CmndAdcParam(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) {
uint8_t idx = XdrvMailbox.index -1;
if (XdrvMailbox.data_len) {
if ((ADC_TEMP == XdrvMailbox.payload) ||
(ADC_LIGHT == XdrvMailbox.payload) ||
(ADC_RANGE == XdrvMailbox.payload) ||
(ADC_CT_POWER == XdrvMailbox.payload) ||
(ADC_JOY == XdrvMailbox.payload)) {
AdcGetSettings(idx);
if (ChrCount(XdrvMailbox.data, ",") > 2) { // Process parameter entry
char sub_string[XdrvMailbox.data_len +1];
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, ANALOG_RANGE, 0, 100
// AdcParam 7, 0, 2146, 0.23
// AdcParam 8, 1000, 0, 0
Adc[idx].type = XdrvMailbox.payload;
Adc[idx].param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
Adc[idx].param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
if (ADC_RANGE == XdrvMailbox.payload) {
Adc[idx].param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
Adc[idx].param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
} else {
Adc[idx].param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
}
if (ADC_CT_POWER == XdrvMailbox.payload) {
if (((1 == Adc[idx].param1) & CT_FLAG_ENERGY_RESET) > 0) {
for (uint32_t idx = 0; idx < MAX_ADCS; idx++) {
Adc[idx].energy = 0;
}
Adc[idx].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
}
}
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
// AdcParam 8
Adcs.type = 0;
AdcInitParams(idx);
}
AdcSaveSettings(idx);
}
}
// AdcParam
AdcGetSettings(idx);
Response_P(PSTR("{\"" D_CMND_ADCPARAM "%d\":[%d,%d,%d"), idx +1, Adcs.type, Adc[idx].param1, Adc[idx].param2);
if (ADC_RANGE == Adc[idx].type) {
ResponseAppend_P(PSTR(",%d,%d"), Adc[idx].param3, Adc[idx].param4);
} else {
int value = Adc[idx].param3;
uint8_t precision;
for (precision = 4; precision > 0; precision--) {
if (value % 10) { break; }
value /= 10;
}
char param3[33];
dtostrfd(((double)Adc[idx].param3)/10000, precision, param3);
ResponseAppend_P(PSTR(",%s"), param3);
}
ResponseAppend_P(PSTR("]}"));
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns02(uint8_t function) {
bool result = false;
switch (function) {
case FUNC_COMMAND:
result = DecodeCommand(kAdcCommands, AdcCommand);
break;
case FUNC_INIT:
AdcInit();
break;
default:
if (Adcs.present) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
AdcEvery250ms();
break;
#endif // USE_RULES
case FUNC_EVERY_SECOND:
AdcEverySecond();
break;
case FUNC_JSON_APPEND:
AdcShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
AdcShow(0);
break;
#endif // USE_WEBSERVER
}
}
}
return result;
}
#endif // USE_ADC
#endif // ESP32