Merge pull request #8916 from Staars/mi32

MI-ESP32: add MHO-C401
This commit is contained in:
Theo Arends 2020-07-15 18:20:52 +02:00 committed by GitHub
commit e6a3b675e3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 59 additions and 64 deletions

View File

@ -20,6 +20,8 @@
-------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------
Version yyyymmdd Action Description Version yyyymmdd Action Description
-------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------
0.9.1.1 20200715 changed - add MHO-C401, refactoring
-------
0.9.1.0 20200712 changed - add lights and yeerc, add pure passive mode with decryption, 0.9.1.0 20200712 changed - add lights and yeerc, add pure passive mode with decryption,
lots of refactoring lots of refactoring
------- -------
@ -167,8 +169,8 @@ struct mi_sensor_t{
float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx
union { union {
struct { struct {
float moisture; uint8_t moisture;
float fertility; uint16_t fertility;
char firmware[6]; // actually only for FLORA but hopefully we can add for more devices char firmware[6]; // actually only for FLORA but hopefully we can add for more devices
}; // Flora }; // Flora
struct { struct {
@ -210,8 +212,11 @@ const char kMI32_Commands[] PROGMEM = "Period|Time|Page|Battery|Unit
#define NLIGHT 7 #define NLIGHT 7
#define MJYD2S 8 #define MJYD2S 8
#define YEERC 9 #define YEERC 9
#define MHOC401 10
const uint16_t kMI32DeviceID[9]={ 0x0098, // Flora #define MI_TYPES 10 //count this manually
const uint16_t kMI32DeviceID[MI_TYPES]={ 0x0098, // Flora
0x01aa, // MJ_HT_V1 0x01aa, // MJ_HT_V1
0x045b, // LYWSD02 0x045b, // LYWSD02
0x055b, // LYWSD03 0x055b, // LYWSD03
@ -219,7 +224,8 @@ const uint16_t kMI32DeviceID[9]={ 0x0098, // Flora
0x0576, // CGD1 0x0576, // CGD1
0x03dd, // NLIGHT 0x03dd, // NLIGHT
0x07f6, // MJYD2S 0x07f6, // MJYD2S
0x0153 // yee-rc 0x0153, // yee-rc
0x0387 // MHO-C401
}; };
const char kMI32DeviceType1[] PROGMEM = "Flora"; const char kMI32DeviceType1[] PROGMEM = "Flora";
@ -231,7 +237,8 @@ const char kMI32DeviceType6[] PROGMEM = "CGD1";
const char kMI32DeviceType7[] PROGMEM = "NLIGHT"; const char kMI32DeviceType7[] PROGMEM = "NLIGHT";
const char kMI32DeviceType8[] PROGMEM = "MJYD2S"; const char kMI32DeviceType8[] PROGMEM = "MJYD2S";
const char kMI32DeviceType9[] PROGMEM = "YEERC"; const char kMI32DeviceType9[] PROGMEM = "YEERC";
const char * kMI32DeviceType[] PROGMEM = {kMI32DeviceType1,kMI32DeviceType2,kMI32DeviceType3,kMI32DeviceType4,kMI32DeviceType5,kMI32DeviceType6,kMI32DeviceType7,kMI32DeviceType8,kMI32DeviceType9}; const char kMI32DeviceType10[] PROGMEM ="MHOC401";
const char * kMI32DeviceType[] PROGMEM = {kMI32DeviceType1,kMI32DeviceType2,kMI32DeviceType3,kMI32DeviceType4,kMI32DeviceType5,kMI32DeviceType6,kMI32DeviceType7,kMI32DeviceType8,kMI32DeviceType9,kMI32DeviceType10};
/*********************************************************************************************\ /*********************************************************************************************\
* enumerations * enumerations
@ -330,7 +337,7 @@ void MI32scanEndedCB(NimBLEScanResults results){
void MI32notifyCB(NimBLERemoteCharacteristic* pRemoteCharacteristic, uint8_t* pData, size_t length, bool isNotify){ void MI32notifyCB(NimBLERemoteCharacteristic* pRemoteCharacteristic, uint8_t* pData, size_t length, bool isNotify){
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Notified length: %u"),length); AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Notified length: %u"),length);
switch(MIBLEsensors[MI32.state.sensor].type){ switch(MIBLEsensors[MI32.state.sensor].type){
case LYWSD03MMC: case LYWSD02: case LYWSD03MMC: case LYWSD02: case MHOC401:
MI32readHT_LY((char*)pData); MI32readHT_LY((char*)pData);
MI32.mode.readingDone = 1; MI32.mode.readingDone = 1;
break; break;
@ -486,7 +493,7 @@ uint32_t MIBLEgetSensorSlot(uint8_t (&_MAC)[6], uint16_t _type, uint8_t counter)
DEBUG_SENSOR_LOG(PSTR("%s: will test ID-type: %x"),D_CMND_MI32, _type); DEBUG_SENSOR_LOG(PSTR("%s: will test ID-type: %x"),D_CMND_MI32, _type);
bool _success = false; bool _success = false;
for (uint32_t i=0;i<9;i++){ // i < sizeof(kMI32DeviceID) gives compiler warning for (uint32_t i=0;i<MI_TYPES;i++){ // i < sizeof(kMI32DeviceID) gives compiler warning
if(_type == kMI32DeviceID[i]){ if(_type == kMI32DeviceID[i]){
DEBUG_SENSOR_LOG(PSTR("MI32: ID is type %u"), i); DEBUG_SENSOR_LOG(PSTR("MI32: ID is type %u"), i);
_type = i+1; _type = i+1;
@ -524,18 +531,18 @@ uint32_t MIBLEgetSensorSlot(uint8_t (&_MAC)[6], uint16_t _type, uint8_t counter)
switch (_type) switch (_type)
{ {
case FLORA: case FLORA:
_newSensor.moisture =NAN; _newSensor.moisture =0xff;
_newSensor.fertility =NAN; _newSensor.fertility =0xffff;
_newSensor.firmware[0]='\0'; _newSensor.firmware[0]='\0';
break; break;
case 2: case 3: case 4: case 5: case 6: case NLIGHT: case MJYD2S:
_newSensor.hum=NAN;
break;
default:
_newSensor.NMT=0; _newSensor.NMT=0;
_newSensor.events=0x00; _newSensor.events=0x00;
_newSensor.eventType=0x00; _newSensor.eventType=0x00;
break; break;
default:
_newSensor.hum=NAN;
break;
} }
MIBLEsensors.push_back(_newSensor); MIBLEsensors.push_back(_newSensor);
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: new %s at slot: %u"),D_CMND_MI32, kMI32DeviceType[_type-1],MIBLEsensors.size()-1); AddLog_P2(LOG_LEVEL_DEBUG,PSTR("%s: new %s at slot: %u"),D_CMND_MI32, kMI32DeviceType[_type-1],MIBLEsensors.size()-1);
@ -685,10 +692,14 @@ void MI32ScanTask(void *pvParameters){
void MI32StartSensorTask(){ void MI32StartSensorTask(){
MI32.mode.willConnect = 1; MI32.mode.willConnect = 1;
if (MIBLEsensors[MI32.state.sensor].type != LYWSD03MMC) { switch(MIBLEsensors[MI32.state.sensor].type){
case LYWSD03MMC: case MHOC401:
break;
default:
MI32.mode.willConnect = 0; MI32.mode.willConnect = 0;
return; return;
} }
xTaskCreatePinnedToCore( xTaskCreatePinnedToCore(
MI32SensorTask, /* Function to implement the task */ MI32SensorTask, /* Function to implement the task */
"MI32SensorTask", /* Name of the task */ "MI32SensorTask", /* Name of the task */
@ -718,7 +729,7 @@ void MI32SensorTask(void *pvParameters){
timer = 150; timer = 150;
switch(MIBLEsensors[MI32.state.sensor].type){ switch(MIBLEsensors[MI32.state.sensor].type){
case LYWSD03MMC: case LYWSD03MMC: case MHOC401:
MI32.mode.readingDone = 0; MI32.mode.readingDone = 0;
if(MI32connectLYWSD03forNotification()) timer=0; if(MI32connectLYWSD03forNotification()) timer=0;
break; break;
@ -900,7 +911,7 @@ void MI32StartBatteryTask(){
MI32.mode.canScan = 0; MI32.mode.canScan = 0;
switch (MIBLEsensors[MI32.state.sensor].type){ switch (MIBLEsensors[MI32.state.sensor].type){
case LYWSD03MMC: case MJ_HT_V1: case CGG1: case NLIGHT: case MJYD2S: case YEERC: case LYWSD03MMC: case MJ_HT_V1: case CGG1: case NLIGHT: case MJYD2S: case YEERC: case MHOC401:
MI32.mode.willConnect = 0; MI32.mode.willConnect = 0;
MI32.mode.willReadBatt = 0; MI32.mode.willReadBatt = 0;
return; return;
@ -1018,7 +1029,7 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot, uint16_t _bufSize){
MIBLEsensors[_slot].lastCnt = _beacon.counter; MIBLEsensors[_slot].lastCnt = _beacon.counter;
#ifdef USE_MI_DECRYPTION #ifdef USE_MI_DECRYPTION
switch(MIBLEsensors[_slot].type){ switch(MIBLEsensors[_slot].type){
case LYWSD03MMC: case LYWSD03MMC: case MHOC401:
if (_beacon.frame == 0x5858){ if (_beacon.frame == 0x5858){
int decryptRet = MI32_decryptPacket((char*)&_beacon.productID,_bufSize, LYWSD03MMC); //start with PID int decryptRet = MI32_decryptPacket((char*)&_beacon.productID,_bufSize, LYWSD03MMC); //start with PID
} }
@ -1035,15 +1046,16 @@ void MI32parseMiBeacon(char * _buf, uint32_t _slot, uint16_t _bufSize){
int decryptRet = MI32_decryptPacket((char*)&_beacon.productID,_bufSize,MJYD2S); //start with PID int decryptRet = MI32_decryptPacket((char*)&_beacon.productID,_bufSize,MJYD2S); //start with PID
} }
else{ else{
if(millis()-MIBLEsensors[_slot].lastTime>120000){ // This seems to be some kind of wake-up packet only, as it shows up before all kinds of messages, not only motion
MIBLEsensors[_slot].eventType = 1; // if(millis()-MIBLEsensors[_slot].lastTime>120000){
MIBLEsensors[_slot].events++; // MIBLEsensors[_slot].eventType = 1;
MIBLEsensors[_slot].shallSendMQTT = 1; // MIBLEsensors[_slot].events++;
MIBLEsensors[_slot].lastTime = millis(); // MIBLEsensors[_slot].shallSendMQTT = 1;
AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MI32: MJYD2S secondary PIR")); // MIBLEsensors[_slot].lastTime = millis();
MIBLEsensors[_slot].NMT = 0; // AddLog_P2(LOG_LEVEL_DEBUG,PSTR("MI32: MJYD2S secondary PIR"));
MI32triggerTele(); // MIBLEsensors[_slot].NMT = 0;
} // MI32triggerTele();
// }
} }
break; break;
} }
@ -1093,19 +1105,13 @@ if (MIBLEsensors[_slot].type==NLIGHT){
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 7: U24: %u Lux"), _beacon.lux & 0x00ffffff); // AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 7: U24: %u Lux"), _beacon.lux & 0x00ffffff);
break; break;
case 0x08: case 0x08:
_tempFloat =(float)_beacon.moist; MIBLEsensors[_slot].moisture=_beacon.moist;
if(_tempFloat<100){
MIBLEsensors[_slot].moisture=_tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode 8: moisture updated")); DEBUG_SENSOR_LOG(PSTR("Mode 8: moisture updated"));
}
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 8: U8: %u Moisture"), _beacon.moist); // AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 8: U8: %u Moisture"), _beacon.moist);
break; break;
case 0x09: case 0x09:
_tempFloat=(float)(_beacon.fert); MIBLEsensors[_slot].fertility=_beacon.fert;
if(_tempFloat<65535){ // ???
MIBLEsensors[_slot].fertility=_tempFloat;
DEBUG_SENSOR_LOG(PSTR("Mode 9: fertility updated")); DEBUG_SENSOR_LOG(PSTR("Mode 9: fertility updated"));
}
// AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 9: U16: %u Fertility"), _beacon.fert); // AddLog_P2(LOG_LEVEL_DEBUG,PSTR("Mode 9: U16: %u Fertility"), _beacon.fert);
break; break;
case 0x0a: case 0x0a:
@ -1235,7 +1241,7 @@ void MI32readHT_LY(char *_buf){
MIBLEsensors[_slot].hum = _tempFloat; MIBLEsensors[_slot].hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("LYWSD0x: hum updated")); DEBUG_SENSOR_LOG(PSTR("LYWSD0x: hum updated"));
} }
if (MIBLEsensors[_slot].type == LYWSD03MMC){ if (MIBLEsensors[_slot].type == LYWSD03MMC || MIBLEsensors[_slot].type == MHOC401){
MIBLEsensors[_slot].bat = ((float)LYWSD0x_HT.volt-2100.0f)/12.0f; MIBLEsensors[_slot].bat = ((float)LYWSD0x_HT.volt-2100.0f)/12.0f;
} }
} }
@ -1456,7 +1462,6 @@ const char HTTP_MI32[] PROGMEM = "{s}MI ESP32 {m}%u%s / %u{e}";
const char HTTP_MI32_SERIAL[] PROGMEM = "{s}%s %s{m}%02x:%02x:%02x:%02x:%02x:%02x%{e}"; const char HTTP_MI32_SERIAL[] PROGMEM = "{s}%s %s{m}%02x:%02x:%02x:%02x:%02x:%02x%{e}";
const char HTTP_RSSI[] PROGMEM = "{s}%s " D_RSSI "{m}%d dBm{e}"; const char HTTP_RSSI[] PROGMEM = "{s}%s " D_RSSI "{m}%d dBm{e}";
const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u %%{e}"; const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u %%{e}";
const char HTTP_VOLTAGE[] PROGMEM = "{s}%s " D_VOLTAGE "{m}%s V{e}";
const char HTTP_LASTBUTTON[] PROGMEM = "{s}%s Last Button{m}%u {e}"; const char HTTP_LASTBUTTON[] PROGMEM = "{s}%s Last Button{m}%u {e}";
const char HTTP_EVENTS[] PROGMEM = "{s}%s Events{m}%u {e}"; const char HTTP_EVENTS[] PROGMEM = "{s}%s Events{m}%u {e}";
const char HTTP_NMT[] PROGMEM = "{s}%s No motion{m}> %u seconds{e}"; const char HTTP_NMT[] PROGMEM = "{s}%s No motion{m}> %u seconds{e}";
@ -1471,28 +1476,20 @@ void MI32Show(bool json)
} }
for (uint32_t i = 0; i < MIBLEsensors.size(); i++) { for (uint32_t i = 0; i < MIBLEsensors.size(); i++) {
switch(MIBLEsensors[i].type){ switch(MIBLEsensors[i].type){
case YEERC: case NLIGHT: case MJYD2S: case YEERC:
if(MIBLEsensors[i].shallSendMQTT==0) continue; if(MIBLEsensors[i].shallSendMQTT==0) continue;
break; break;
default: default:
if(MI32.mode.triggeredTele) continue; if(MI32.mode.triggeredTele) continue;
break; break;
} }
/*
char slave[33];
snprintf_P(slave, sizeof(slave), PSTR("%s-%02x%02x%02x"),
kMI32DeviceType[MIBLEsensors[i].type-1],MIBLEsensors[i].serial[3],MIBLEsensors[i].serial[4],MIBLEsensors[i].serial[5]);
ResponseAppend_P(PSTR(",\"%s\":{"), slave);
*/
ResponseAppend_P(PSTR(",\"%s-%02x%02x%02x\":{"), ResponseAppend_P(PSTR(",\"%s-%02x%02x%02x\":{"),
kMI32DeviceType[MIBLEsensors[i].type-1], kMI32DeviceType[MIBLEsensors[i].type-1],
MIBLEsensors[i].MAC[3], MIBLEsensors[i].MAC[4], MIBLEsensors[i].MAC[5]); MIBLEsensors[i].MAC[3], MIBLEsensors[i].MAC[4], MIBLEsensors[i].MAC[5]);
if (MIBLEsensors[i].rssi!=0xffff) { // this is the error code -> no valid value ResponseAppend_P(PSTR("\"RSSI\":%d"), MIBLEsensors[i].rssi);
ResponseAppend_P(PSTR("\"RSSI\":%d"), MIBLEsensors[i].rssi); // all sensors have rssi
} else {
ResponseAppend_P(PSTR("\"RSSI\":null")); // to know that it is sometimes out of range
}
if (MIBLEsensors[i].type == FLORA) { if (MIBLEsensors[i].type == FLORA) {
if (!isnan(MIBLEsensors[i].temp)) { if (!isnan(MIBLEsensors[i].temp)) {
char temperature[FLOATSZ]; // all sensors have temperature char temperature[FLOATSZ]; // all sensors have temperature
@ -1502,11 +1499,11 @@ void MI32Show(bool json)
if (MIBLEsensors[i].lux!=0x0ffffff) { // this is the error code -> no lux if (MIBLEsensors[i].lux!=0x0ffffff) { // this is the error code -> no lux
ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%u"), MIBLEsensors[i].lux); ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%u"), MIBLEsensors[i].lux);
} }
if (!isnan(MIBLEsensors[i].moisture)) { if (MIBLEsensors[i].moisture!=0xff) {
ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%f"), MIBLEsensors[i].moisture); ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%u"), MIBLEsensors[i].moisture);
} }
if (!isnan(MIBLEsensors[i].fertility)) { if (MIBLEsensors[i].fertility!=0xffff) {
ResponseAppend_P(PSTR(",\"Fertility\":%f"), MIBLEsensors[i].fertility); ResponseAppend_P(PSTR(",\"Fertility\":%u"), MIBLEsensors[i].fertility);
} }
if (MIBLEsensors[i].firmware[0] != '\0') { // this is the error code -> no firmware if (MIBLEsensors[i].firmware[0] != '\0') { // this is the error code -> no firmware
ResponseAppend_P(PSTR(",\"Firmware\":\"%s\""), MIBLEsensors[i].firmware); ResponseAppend_P(PSTR(",\"Firmware\":\"%s\""), MIBLEsensors[i].firmware);
@ -1520,7 +1517,7 @@ void MI32Show(bool json)
} }
#ifdef USE_MI_DECRYPTION #ifdef USE_MI_DECRYPTION
if (MIBLEsensors[i].type == MJYD2S){ if (MIBLEsensors[i].type == MJYD2S){
ResponseAppend_P(PSTR("\"Events\":%u"),MIBLEsensors[i].events); ResponseAppend_P(PSTR(",\"Events\":%u"),MIBLEsensors[i].events);
if(MIBLEsensors[i].shallSendMQTT && MIBLEsensors[i].eventType<3) ResponseAppend_P(PSTR(",\"PIR\":%u"), 2 - MIBLEsensors[i].eventType); if(MIBLEsensors[i].shallSendMQTT && MIBLEsensors[i].eventType<3) ResponseAppend_P(PSTR(",\"PIR\":%u"), 2 - MIBLEsensors[i].eventType);
if(MIBLEsensors[i].eventType==3) ResponseAppend_P(PSTR(",\"NMT\":%u"), MIBLEsensors[i].NMT); if(MIBLEsensors[i].eventType==3) ResponseAppend_P(PSTR(",\"NMT\":%u"), MIBLEsensors[i].NMT);
MIBLEsensors[i].eventType=0; MIBLEsensors[i].eventType=0;
@ -1528,11 +1525,11 @@ void MI32Show(bool json)
} }
#endif //USE_MI_DECRYPTION #endif //USE_MI_DECRYPTION
if (MIBLEsensors[i].type == NLIGHT){ if (MIBLEsensors[i].type == NLIGHT){
ResponseAppend_P(PSTR("\"Events\":%u"),MIBLEsensors[i].events); ResponseAppend_P(PSTR(",\"Events\":%u"),MIBLEsensors[i].events);
if(MIBLEsensors[i].shallSendMQTT) ResponseAppend_P(PSTR(",\"PIR\":1")); if(MIBLEsensors[i].shallSendMQTT) ResponseAppend_P(PSTR(",\"PIR\":1"));
} }
if (MIBLEsensors[i].type == YEERC){ if (MIBLEsensors[i].type == YEERC){
if(MIBLEsensors[i].shallSendMQTT) ResponseAppend_P(PSTR("\"Btn\":%u"),MIBLEsensors[i].Btn); if(MIBLEsensors[i].shallSendMQTT) ResponseAppend_P(PSTR(",\"Btn\":%u"),MIBLEsensors[i].Btn);
} }
if (MIBLEsensors[i].bat != 0x00) { // this is the error code -> no battery if (MIBLEsensors[i].bat != 0x00) { // this is the error code -> no battery
ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors[i].bat); ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors[i].bat);
@ -1560,20 +1557,18 @@ void MI32Show(bool json)
for (i; i<j; i++) { for (i; i<j; i++) {
WSContentSend_PD(HTTP_MI32_HL); WSContentSend_PD(HTTP_MI32_HL);
WSContentSend_PD(HTTP_MI32_SERIAL, kMI32DeviceType[MIBLEsensors[i].type-1], D_MAC_ADDRESS, MIBLEsensors[i].MAC[0], MIBLEsensors[i].MAC[1],MIBLEsensors[i].MAC[2],MIBLEsensors[i].MAC[3],MIBLEsensors[i].MAC[4],MIBLEsensors[i].MAC[5]); WSContentSend_PD(HTTP_MI32_SERIAL, kMI32DeviceType[MIBLEsensors[i].type-1], D_MAC_ADDRESS, MIBLEsensors[i].MAC[0], MIBLEsensors[i].MAC[1],MIBLEsensors[i].MAC[2],MIBLEsensors[i].MAC[3],MIBLEsensors[i].MAC[4],MIBLEsensors[i].MAC[5]);
if (MIBLEsensors[i].rssi!=0xffff) { // this is the error code -> no valid value
WSContentSend_PD(HTTP_RSSI, kMI32DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].rssi); WSContentSend_PD(HTTP_RSSI, kMI32DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].rssi);
}
if (MIBLEsensors[i].type==FLORA) { if (MIBLEsensors[i].type==FLORA) {
if (!isnan(MIBLEsensors[i].temp)) { if (!isnan(MIBLEsensors[i].temp)) {
char temperature[FLOATSZ]; char temperature[FLOATSZ];
dtostrfd(MIBLEsensors[i].temp, Settings.flag2.temperature_resolution, temperature); dtostrfd(MIBLEsensors[i].temp, Settings.flag2.temperature_resolution, temperature);
WSContentSend_PD(HTTP_SNS_TEMP, kMI32DeviceType[MIBLEsensors[i].type-1], temperature, TempUnit()); WSContentSend_PD(HTTP_SNS_TEMP, kMI32DeviceType[MIBLEsensors[i].type-1], temperature, TempUnit());
} }
if (!isnan(MIBLEsensors[i].moisture)) { if (MIBLEsensors[i].moisture!=0xff) {
WSContentSend_PD(HTTP_SNS_MOISTURE, kMI32DeviceType[MIBLEsensors[i].type-1], int(MIBLEsensors[i].moisture)); WSContentSend_PD(HTTP_SNS_MOISTURE, kMI32DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].moisture);
} }
if (!isnan(MIBLEsensors[i].fertility)) { if (MIBLEsensors[i].fertility!=0xffff) {
WSContentSend_PD(HTTP_MI32_FLORA_DATA, kMI32DeviceType[MIBLEsensors[i].type-1], int(MIBLEsensors[i].fertility)); WSContentSend_PD(HTTP_MI32_FLORA_DATA, kMI32DeviceType[MIBLEsensors[i].type-1], MIBLEsensors[i].fertility);
} }
} }
if (MIBLEsensors[i].type>FLORA) { // everything "above" Flora if (MIBLEsensors[i].type>FLORA) { // everything "above" Flora