Zigbee refactored storage for devices and data

This commit is contained in:
Stephan Hadinger 2021-04-22 14:49:38 +02:00
parent b8647a9826
commit ed01748b6d
11 changed files with 891 additions and 628 deletions

View File

@ -784,6 +784,7 @@
#define USE_ZIGBEE_ZNP // Enable ZNP protocol, needed for CC2530 based devices
// #define USE_ZIGBEE_EZSP // Enable EZSP protocol, needed for EFR32 EmberZNet based devices, like Sonoff Zigbee bridge
// Note: USE_ZIGBEE_ZNP and USE_ZIGBEE_EZSP are mutually incompatible, you must select exactly one
// #define USE_ZIGBEE_EEPROM // Use the EEPROM from the Sonoff ZBBridge to save Zigbee configuration and data
#define USE_ZIGBEE_CHANNEL 11 // Zigbee Channel (11-26)
#define USE_ZIGBEE_TXRADIO_DBM 20 // Tx Radio power in dBm (only for EZSP, EFR32 can go up to 20 dBm)

View File

@ -607,6 +607,7 @@
#define USE_ZIGBEE
#undef USE_ZIGBEE_ZNP
#define USE_ZIGBEE_EZSP
#define USE_ZIGBEE_EEPROM // EEPROM of Sonoff ZBBridge via I2C
#define USE_TCP_BRIDGE
#define USE_ZIGBEE_CHANNEL 11 // Zigbee Channel (11-26)
#define USE_ZIGBEE_COALESCE_ATTR_TIMER 350 // timer to coalesce attribute values (in ms)

View File

@ -261,7 +261,8 @@ const uint16_t LOG_BUFFER_SIZE = 4000; // Max number of characters in lo
#define TASM_FILE_DRIVER "/.drvset%03d"
#define TASM_FILE_SENSOR "/.snsset%03d"
#define TASM_FILE_TLSKEY "/tlskey" // TLS private key
#define TASM_FILE_ZIGBEE "/zb" // Zigbee settings blob as used by CC2530 on ESP32
#define TASM_FILE_ZIGBEE "/zb" // Zigbee devices information blob
#define TASM_FILE_ZIGBEE_DATA "/zbdata" // Zigbee last known values of devices
#define TASM_FILE_AUTOEXEC "/autoexec.bat" // Commands executed after restart
#define TASM_FILE_CONFIG "/config.sys" // Settings executed after restart

View File

@ -19,9 +19,9 @@
#ifdef USE_ZIGBEE
#ifdef USE_ZIGBEE_EZSP
#ifdef USE_ZIGBEE_EEPROM
#include "Eeprom24C512.h"
#endif // USE_ZIGBEE_EZSP
#endif // USE_ZIGBEE_EEPROM
// channels numbers for Zigbee radio energy scan
#define USE_ZIGBEE_CHANNEL_MIN 11
@ -100,9 +100,9 @@ const uint8_t ZIGBEE_LABEL_UNSUPPORTED_VERSION = 98; // Unsupported ZNP versio
class ZigbeeStatus {
public:
ZigbeeStatus()
#ifdef USE_ZIGBEE_EZSP
#ifdef USE_ZIGBEE_EEPROM
: eeprom(USE_ZIGBEE_ZBBRIDGE_EEPROM)
#endif // USE_ZIGBEE_EZSP
#endif // USE_ZIGBEE_EEPROM
{}
bool active = true; // is Zigbee active for this device, i.e. GPIOs configured
@ -142,9 +142,9 @@ public:
uint16_t ezsp_version = 0;
#endif
#ifdef USE_ZIGBEE_EZSP
#ifdef USE_ZIGBEE_EEPROM
Eeprom24C512 eeprom; // takes only 1 bytes of RAM
#endif // USE_ZIGBEE_EZSP
#endif // USE_ZIGBEE_EEPROM
};
struct ZigbeeStatus zigbee;
SBuffer *zigbee_buffer = nullptr;

View File

@ -1,449 +0,0 @@
/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
// Ensure persistence of devices into Flash
//
// Structure:
// (from file info):
// uint16 - start address in Flash (offset)
// uint16 - length in bytes (makes sure parsing stops)
//
// First byte:
// 0x00 - Empty or V3 format
// 0x01-0xFE - Legacy format
// 0xFF - invalid
//
//
// V1 Legacy
// =========
// File structure:
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
// uint8 - number of endpoints
// [Array of endpoints]
// uint8 - endpoint number
// uint16 - profileID of the endpoint
// Array of uint8 - clusters In codes, 0xFF end marker
// Array of uint8 - clusters Out codes, 0xFF end marker
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
// reserved for extensions
// -- V2 --
// int8_t - zigbee profile of the device
//
// =======================
// v3 with version number
// File structure:
//
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
//
// [Array of endpoints]
// uint8 - endpoint number, 0xFF marks the end of endpoints
// uint8[] - list of configuration bytes, 0xFF marks the end
// i.e. 0xFF-0xFF marks the end of the array of endpoints
//
// Memory footprint
#ifdef ESP8266
const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB
const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000
const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0800;
const static size_t z_block_len = 0x0800; // 2kb
#endif // ESP8266
#ifdef ESP32
uint8_t* z_dev_start;
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0000; // No offset needed
const static size_t z_block_len = 0x1000; // 4kb
#endif // ESP32
// Each entry consumes 8 bytes
class Z_Flashentry {
public:
uint32_t name; // simple 4 letters name. Currently 'zig1', 'zig2'. 0xFFFFFFFF if not entry
uint16_t len; // len of object in bytes, 0xFFFF if no entry
uint16_t start; // address of start, 0xFFFF if empty, must be aligned on 128 bytes boundaries
};
class Z_Flashdirectory {
public:
// 8 bytes header
uint32_t magic; // magic value 'Tsmt' to check that the block is initialized
uint32_t clock; // clock vector to discard entries that are made before this one. This should be incremented by 1 for each new entry (future anti-weavering)
// entries, 14*8 = 112 bytes
Z_Flashentry entries[14];
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
uint16_t len; // len of object
uint16_t reserved; // align on 4 bytes boundary
// link to next entry, none for now, but may be used for anti-weavering
uint16_t next_dir; // 0xFFFF if none
uint16_t reserved1; // must be 0xFFFF
uint32_t reserved2; // must be 0xFFFFFFFF
};
const static uint32_t ZIGB_NAME1 = 0x3167697A; // 'zig1' little endian
const static uint32_t ZIGB_NAME2 = 0x3267697A; // 'zig2' little endian, v2
const static uint32_t ZIGB_DATA2 = 0x32746164; // 'dat2' little endian, v2
const static size_t Z_MAX_FLASH = z_block_len - sizeof(Z_Flashentry); // 2040
bool hibernateDeviceConfiguration(SBuffer & buf, const class Z_Data_Set & data, uint8_t endpoint) {
bool found = false;
for (auto & elt : data) {
if (endpoint == elt.getEndpoint()) {
buf.add8(elt.getConfigByte());
found = true;
}
}
return found;
}
SBuffer hibernateDevicev2(const struct Z_Device &device) {
SBuffer buf(128);
buf.add8(0x00); // overall length, will be updated later
buf.add16(device.shortaddr);
buf.add64(device.longaddr);
char *names[3] = { device.modelId, device.manufacturerId, device.friendlyName };
for (uint32_t i=0; i<nitems(names); i++) {
char *p = names[i];
if (p) {
size_t len = strlen(p);
if (len > 32) { len = 32; } // max 32 chars
buf.addBuffer(p, len);
}
buf.add8(0x00); // end of string marker
}
// check if we need to write fake endpoint 0x00
buf.add8(0x00);
if (hibernateDeviceConfiguration(buf, device.data, 0)) {
buf.add8(0xFF); // end of configuration
} else {
buf.setLen(buf.len()-1); // remove 1 byte header
}
// scan endpoints
for (uint32_t i=0; i<endpoints_max; i++) {
uint8_t endpoint = device.endpoints[i];
if (0x00 == endpoint) { break; }
buf.add8(endpoint);
hibernateDeviceConfiguration(buf, device.data, endpoint);
buf.add8(0xFF); // end of configuration
}
buf.add8(0xFF); // end of endpoints
// update overall length
buf.set8(0, buf.len());
return buf;
}
SBuffer hibernateDevices(void) {
SBuffer buf(2048);
size_t devices_size = zigbee_devices.devicesSize();
#ifdef ESP32
if (devices_size > 48) { devices_size = 48; } // arbitrarily limit to 48 devices on ESP32, we will go beyond when we remove the limit of 2kb buffer
#else
if (devices_size > 32) { devices_size = 32; } // arbitrarily limit to 32 devices, for now
#endif
buf.add8(devices_size); // number of devices
for (uint32_t i = 0; i < devices_size; i++) {
const Z_Device & device = zigbee_devices.devicesAt(i);
const SBuffer buf_device = hibernateDevicev2(device);
buf.addBuffer(buf_device);
}
return buf;
}
// parse a single string from the saved data
// if something wrong happens, returns nullptr to ignore the string
// Index d is incremented to just after the string
const char * hydrateSingleString(const SBuffer & buf, uint32_t *d) {
size_t s_len = buf.strlen(*d);
const char * ptr = s_len ? buf.charptr(*d) : "";
*d += s_len + 1;
return ptr;
}
void hydrateSingleDevice(const SBuffer & buf_d, uint32_t version = 2) {
uint32_t d = 1; // index in device buffer
uint16_t shortaddr = buf_d.get16(d); d += 2;
uint64_t longaddr = buf_d.get64(d); d += 8;
size_t buf_len = buf_d.len();
Z_Device & device = zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses
if (1 == version) {
uint32_t endpoints = buf_d.get8(d++);
for (uint32_t j = 0; j < endpoints; j++) {
uint8_t ep = buf_d.get8(d++);
// uint16_t ep_profile = buf_d.get16(d); d += 2;
device.addEndpoint(ep);
// in clusters
while (d < buf_len) { // safe guard against overflow
uint8_t ep_cluster = buf_d.get8(d++);
if (0xFF == ep_cluster) { break; } // end of block
// ignore
}
// out clusters
while (d < buf_len) { // safe guard against overflow
uint8_t ep_cluster = buf_d.get8(d++);
if (0xFF == ep_cluster) { break; } // end of block
// ignore
}
}
}
// ModelId
device.setModelId(hydrateSingleString(buf_d, &d));
// ManufID
device.setManufId(hydrateSingleString(buf_d, &d));
// FriendlyName
device.setFriendlyName(hydrateSingleString(buf_d, &d));
if (d >= buf_len) { return; }
// Hue bulbtype - if present
if (1 == version) {
device.setLightChannels(buf_d.get8(d));
d++;
} else if (2 == version) {
// v2 parser
while (d < buf_len) {
uint8_t ep = buf_d.get8(d++);
if (0xFF == ep) { break; } // ep 0xFF marks the end of the endpoints
if (ep > 240) { ep = 0xFF; } // ep == 0xFF means ignore
device.addEndpoint(ep); // it will ignore invalid endpoints
while (d < buf_len) {
uint8_t config_type = buf_d.get8(d++);
if (0xFF == config_type) { break; } // 0xFF marks the end of congiguration
uint8_t config = config_type & 0x0F;
Z_Data_Type type = (Z_Data_Type) (config_type >> 4);
// set the configuration
if (ep != 0xFF) {
Z_Data & z_data = device.data.getByType(type, ep);
if (&z_data != nullptr) {
z_data.setConfig(config);
Z_Data_Set::updateData(z_data);
}
}
}
}
}
}
void hydrateDevices(const SBuffer &buf, uint32_t version) {
uint32_t buf_len = buf.len();
if (buf_len <= 10) { return; }
uint32_t k = 0; // byte index in global buffer
uint32_t num_devices = buf.get8(k++);
for (uint32_t i = 0; (i < num_devices) && (k < buf_len); i++) {
uint32_t dev_record_len = buf.get8(k);
SBuffer buf_d = buf.subBuffer(k, dev_record_len);
hydrateSingleDevice(buf_d, version);
// next iteration
k += dev_record_len;
}
}
// dump = true, only dump to logs, don't actually load
void loadZigbeeDevices(bool dump_only = false) {
#ifdef USE_ZIGBEE_EZSP
if (loadZigbeeDevicesFromEEPROM()) {
return; // we succesfully loaded from EEPROM, skip the read from Flash
}
#endif
#ifdef ESP32
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
#ifdef USE_UFILESYS
TfsLoadFile(TASM_FILE_ZIGBEE, spi_buffer, z_spi_len);
#endif
z_dev_start = spi_buffer;
#endif // ESP32
Z_Flashentry flashdata;
memcpy_P(&flashdata, z_dev_start, sizeof(Z_Flashentry));
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Memory %d"), ESP_getFreeHeap());
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len);
// Check the signature
if ( ((flashdata.name == ZIGB_NAME1) || (flashdata.name == ZIGB_NAME2))
&& (flashdata.len > 0)) {
uint16_t buf_len = flashdata.len;
uint32_t version = (flashdata.name == ZIGB_NAME2) ? 2 : 1;
// parse what seems to be a valid entry
SBuffer buf(buf_len);
buf.addBuffer(z_dev_start + sizeof(Z_Flashentry), buf_len);
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information in %s (%d bytes)"), PSTR("Flash"), buf_len);
if (dump_only) {
size_t buf_len = buf.len();
if (buf_len > 192) { buf_len = 192; }
AddLogBuffer(LOG_LEVEL_INFO, buf.getBuffer(), buf_len);
// Serial.printf(">> Buffer=");
// for (uint32_t i=0; i<buf.len(); i++) Serial.printf("%02X ", buf.get8(i));
// Serial.printf("\n");
} else {
hydrateDevices(buf, version);
zigbee_devices.clean(); // don't write back to Flash what we just loaded
}
} else {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information in %s"), PSTR("Flash"));
}
#ifdef ESP32
free(spi_buffer);
#endif // ESP32
}
void saveZigbeeDevices(void) {
#ifdef USE_ZIGBEE_EZSP
if (zigbee.eeprom_ready) {
if (hibernateDevicesInEEPROM()) {
return; // saved in EEPROM successful, non need to write in Flash
}
}
#endif
SBuffer buf = hibernateDevices();
size_t buf_len = buf.len();
if (buf_len > 2040) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Buffer too big to fit in Flash (%d bytes)"), buf_len);
return;
}
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
#ifdef ESP8266
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
#endif // ESP8266
#ifdef ESP32
#ifdef USE_UFILESYS
TfsLoadFile(TASM_FILE_ZIGBEE, spi_buffer, z_spi_len);
#endif
#endif // ESP32
Z_Flashentry *flashdata = (Z_Flashentry*)(spi_buffer + z_block_offset);
flashdata->name = ZIGB_NAME2; // v2
flashdata->len = buf_len;
flashdata->start = 0;
memcpy(spi_buffer + z_block_offset + sizeof(Z_Flashentry), buf.getBuffer(), buf_len);
// buffer is now ready, write it back
#ifdef ESP8266
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len);
#endif // ESP8266
#ifdef ESP32
#ifdef USE_UFILESYS
TfsSaveFile(TASM_FILE_ZIGBEE, spi_buffer, z_spi_len);
#endif
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved in %s (%d bytes)"), PSTR("Flash"), buf_len);
#endif // ESP32
free(spi_buffer);
}
// Erase the flash area containing the ZigbeeData
void eraseZigbeeDevices(void) {
zigbee_devices.clean(); // avoid writing data to flash after erase
#ifdef USE_ZIGBEE_EZSP
ZFS_Erase();
#endif // USE_ZIGBEE_EZSP
#ifdef ESP8266
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
// Fill the Zigbee area with 0xFF
memset(spi_buffer + z_block_offset, 0xFF, z_block_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
free(spi_buffer);
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("Flash"));
#endif // ESP8266
#ifdef ESP32
#ifdef USE_UFILESYS
TfsInitFile(TASM_FILE_ZIGBEE, z_block_len, 0xFF);
#endif
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased (%d bytes)"), z_block_len);
#endif // ESP32
}
void restoreDumpAllDevices(void) {
for (const auto & device : zigbee_devices.getDevices()) {
const SBuffer buf = hibernateDevicev2(device);
if (buf.len() > 0) {
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_RESTORE "\":\"ZbRestore %_B\"}"), &buf);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
}
}
}
#endif // USE_ZIGBEE

View File

@ -18,10 +18,23 @@
*/
#ifdef USE_ZIGBEE
#ifdef USE_ZIGBEE_EZSP
// #define Z_EEPROM_DEBUG
const static uint32_t ZIGB_NAME1 = 0x3167697A; // 'zig1' little endian
const static uint32_t ZIGB_NAME2 = 0x3267697A; // 'zig2' little endian, v2
const static uint32_t ZIGB_DATA2 = 0x32746164; // 'dat2' little endian, v2
extern FS *dfsp;
extern "C" uint32_t _FS_end;
// Is it ok to write to bank 0x402FF000
bool flash_valid(void) {
return (_FS_end > 0x40280000) && (_FS_end < 0x402FF000);
}
void hydrateSingleDevice(const SBuffer & buf_d);
#ifdef USE_ZIGBEE_EEPROM
// The EEPROM is 64KB in size with individually writable bytes.
// They are conveniently organized in pages of 128 bytes to accelerate
// data transfer, but unlike flash memory, you don't need to erase an entire page.
@ -243,7 +256,11 @@ public:
uint8_t blk_start; // if 0x00 then file does not exist
uint8_t entry_idx; // entry number in the directory
ZFS_Write_File(uint32_t _name) : name(_name), cursor(0), length(0), blk_start(0) { findOrCreate(); }
ZFS_Write_File(void) : name(0), cursor(0), length(0), blk_start(0) {}
void init(uint32_t _name) {
name = _name;
findOrCreate();
}
inline bool valid(void) const { return blk_start != 0; } // does the file exist?
@ -453,5 +470,238 @@ int32_t ZFS_Write_File::close(void) {
return length;
}
#endif // USE_ZIGBEE_EZSP
#endif // USE_ZIGBEE_EEPROM
/*********************************************************************************************\
*
* Generic for Reading a file
*
* Can work in 3 modes:
* - if passed a filename, use the ZFS for EEPROM nano-fs
* - if passed a File* object, use this object
* - if passed a buffer, read from a binary buffer in RAM
\*********************************************************************************************/
class Univ_Read_File {
public:
// file info
uint16_t len = 0;
uint16_t cursor = 0;
bool is_valid = false;
Univ_Read_File(void) {}
// == EEPROM ================================================
#ifdef USE_ZIGBEE_EEPROM
uint32_t eeprom_name = 0;
ZFS_File_Entry entry;
// uint16_t length;
// uint8_t blk_start; // if 0x00 then file does not exist
uint8_t entry_idx; // entry number in the directory
void init(uint32_t _name) {
eeprom_name = _name;
if (ZFS::findFileEntry(eeprom_name, entry, &entry_idx)) {
len = ZFS::getLength(eeprom_name);
is_valid = (len > 0);
}
}
#endif // USE_ZIGBEE_EEPROM
// == File ================================================
#ifdef USE_UFILESYS
File * file = nullptr;
void init(File * _file) {
file = _file;
is_valid = (bool) *file;
len = file->size();
}
#endif
#ifdef ESP8266
// == Buffer ================================================
// binary buffer
const uint8_t * buffer = nullptr;
void init(const uint8_t * buf, size_t buflen) {
buffer = buf;
len = buflen;
is_valid = (buffer != nullptr) && (len > 0);
}
#endif // ESP8266
// ==================================================
inline bool valid(void) const { return is_valid; } // does the file exist?
int32_t readBytes(uint8_t* buf, size_t buflen);
void close(void);
};
void Univ_Read_File::close(void) {
#ifdef USE_UFILESYS
if (file != nullptr) {
file->close();
}
#endif // USE_UFILESYS
// don't do anything for ZFS read of buffer
}
int32_t Univ_Read_File::readBytes(uint8_t* buf, size_t btr) {
if (!is_valid) { return -1; }
#ifdef USE_UFILESYS
if (file != nullptr) {
return file->read(buf, btr);
}
#endif // USE_UFILESYS
#ifdef USE_ZIGBEE_EEPROM
if (eeprom_name != 0) {
int32_t bytes_read = ZFS::readBytes(eeprom_name, buf, btr, cursor, btr);
if (bytes_read < 0) { return -1; }
cursor += bytes_read;
return bytes_read;
}
#endif // USE_ZIGBEE_EEPROM
#ifdef ESP8266
// binary buffer
if (buffer != nullptr) {
if (btr > len - cursor) { btr = len - cursor; }
memcpy_P(buf, buffer + cursor, btr);
cursor += btr;
return btr;
}
#endif // ESP8266
return -1;
}
/*********************************************************************************************\
*
* Generic for Writing a file
*
* Can work in 3 modes:
* - if passed a filename, use the ZFS for EEPROM nano-fs
* - if passed a File* object, use this object
* - if passed a buffer, write to a binary buffer in RAM
\*********************************************************************************************/
class Univ_Write_File {
public:
// file info
bool is_valid = false;
Univ_Write_File(void) {}
// == EEPROM ================================================
#ifdef USE_ZIGBEE_EEPROM
ZFS_Write_File eeprom_file;
void init(uint32_t _name) {
eeprom_file.init(_name);
is_valid = eeprom_file.valid();
}
#endif // USE_ZIGBEE_EEPROM
// == File ================================================
#ifdef USE_UFILESYS
File * file = nullptr;
void init(File * _file) {
file = _file;
is_valid = (bool) *file;
}
#endif
#ifdef ESP8266
// == Buffer ================================================
// binary buffer
size_t buflen = 0;
uint8_t * buffer = nullptr;
uint16_t cursor = 0;
void init(uint8_t * buf, size_t _buflen) {
buffer = buf;
buflen = _buflen;
is_valid = (buffer != nullptr) && (buflen > 0);
}
#endif // ESP8266
// ==================================================
inline bool valid(void) const { return is_valid; } // does the file exist?
int32_t writeBytes(uint8_t* buf, size_t buflen);
int32_t getCursor(void);
void close(void);
};
void Univ_Write_File::close(void) {
#ifdef USE_UFILESYS
if (file != nullptr) {
file->close();
}
#endif // USE_UFILESYS
#ifdef USE_ZIGBEE_EEPROM
if (eeprom_file.valid()) {
eeprom_file.close();
}
#endif // USE_ZIGBEE_EEPROM
// binary buffer doesn't need a close
}
int32_t Univ_Write_File::getCursor(void) {
if (!is_valid) { return -1; }
#ifdef USE_UFILESYS
if (file != nullptr) {
return file->position();
}
#endif // USE_UFILESYS
#ifdef USE_ZIGBEE_EEPROM
if (eeprom_file.valid()) {
return eeprom_file.length;
}
#endif // USE_ZIGBEE_EEPROM
#ifdef ESP8266
if (buffer != nullptr) {
return cursor;
}
#endif // ESP8266
return -1;
}
int32_t Univ_Write_File::writeBytes(uint8_t* buf, size_t btw) {
if (!is_valid) { return -1; }
#ifdef USE_UFILESYS
if (file != nullptr) {
return file->write(buf, btw);
}
#endif // USE_UFILESYS
#ifdef USE_ZIGBEE_EEPROM
if (eeprom_file.valid()) {
uint16_t length_before = eeprom_file.length;
eeprom_file.addBytes(buf, btw);
return eeprom_file.length - length_before; // compute the increase in size
}
#endif // USE_ZIGBEE_EEPROM
#ifdef ESP8266
if (buffer != nullptr) {
// binary buffer
if (btw > buflen - cursor) { btw = buflen - cursor; }
memcpy_P(buffer + cursor, buf, btw);
cursor += btw;
return btw;
}
#endif // ESP8266
return -1;
}
#endif // USE_ZIGBEE

View File

@ -74,14 +74,14 @@ bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t star
// negative means error
// positive is the segment length
int32_t hydrateSingleDevice(const SBuffer & buf, size_t start, size_t len) {
uint8_t segment_len = buf.get8(start);
if ((segment_len < 4) || (start + segment_len > len)) {
int32_t hydrateSingleDeviceData(const SBuffer & buf) {
uint8_t segment_len = buf.len();
if (segment_len < 4) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid segment_len=%d"), segment_len);
return -1;
}
// read shortaddr
uint16_t shortaddr = buf.get16(start + 1);
uint16_t shortaddr = buf.get16(0);
if (shortaddr >= 0xFFF0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr);
return -1;
@ -89,7 +89,7 @@ int32_t hydrateSingleDevice(const SBuffer & buf, size_t start, size_t len) {
#ifdef Z_EEPROM_DEBUG
{
if (segment_len > 3) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%*_H"), shortaddr, segment_len+1-3, buf.buf(start+3));
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%*_H"), shortaddr, buf.buf(2), buf.len() - 2);
}
}
#endif
@ -98,62 +98,14 @@ int32_t hydrateSingleDevice(const SBuffer & buf, size_t start, size_t len) {
if (&device != nullptr) {
// parse the rest
bool ret = hydrateDeviceData(device, buf, start + 3, segment_len - 3);
bool ret = hydrateDeviceData(device, buf, 2, segment_len - 2);
if (!ret) { return -1; }
}
return segment_len + 1;
return segment_len;
}
/*********************************************************************************************\
*
* Hydrate data from the EEPROM
*
\*********************************************************************************************/
// Parse the entire blob
// return true if ok
bool hydrateDevicesDataFromEEPROM(void) {
#ifdef USE_ZIGBEE_EZSP
if (!zigbee.eeprom_ready) { return false; }
int32_t file_length = ZFS::getLength(ZIGB_DATA2);
if (file_length > 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device data in EEPROM (%d bytes)"), file_length);
} else {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data in EEPROM"));
return false;
}
const uint16_t READ_BUFFER = 192;
uint16_t cursor = 0x0000; // cursor in the file
bool read_more = true;
SBuffer buf(READ_BUFFER);
while (read_more) {
buf.setLen(buf.size()); // set to max size and fill with zeros
int32_t bytes_read = ZFS::readBytes(ZIGB_DATA2, buf.getBuffer(), buf.size(), cursor, READ_BUFFER);
// #ifdef Z_EEPROM_DEBUG
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "readBytes buffer_len=%d, read_start=%d, read_len=%d, actual_read=%d"), buf.size(), cursor, length, bytes_read);
// #endif
if (bytes_read > 0) {
buf.setLen(bytes_read); // adjust to actual size
int32_t segment_len = hydrateSingleDevice(buf, 0, buf.len());
// #ifdef Z_EEPROM_DEBUG
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateSingleDevice segment_len=%d"), segment_len);
// #endif
if (segment_len <= 0) { return false; }
cursor += segment_len;
} else {
read_more = false;
}
}
return true;
#else // USE_ZIGBEE_EZSP
return false;
#endif // USE_ZIGBEE_EZSP
}
SBuffer hibernateDeviceData(const struct Z_Device & device, bool mqtt = false) {
SBuffer hibernateDeviceData(const struct Z_Device & device) {
SBuffer buf(192);
// If we have zero information about the device, just skip ir
@ -183,45 +135,128 @@ SBuffer hibernateDeviceData(const struct Z_Device & device, bool mqtt = false) {
{
// skip first 3 bytes
size_t buf_len = buf.len() - 3;
if (mqtt) {
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%*_H\"}"), device.shortaddr, buf_len, buf.buf(3));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
} else {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%*_H"), device.shortaddr, buf_len, buf.buf(3));
}
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%*_H\"}"), device.shortaddr, buf_len, buf.buf(3));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
}
}
return buf;
}
/*********************************************************************************************\
*
* Hydrate data from the EEPROM
*
\*********************************************************************************************/
// Parse the entire blob
// return true if ok
bool hydrateDevicesData(void) {
Univ_Read_File f; // universal reader
const char * storage_class = PSTR("");
#ifdef USE_ZIGBEE_EEPROM
if (zigbee.eeprom_ready) {
f.init(ZIGB_DATA2);
storage_class = PSTR("EEPROM");
}
#endif // USE_ZIGBEE_EEPROM
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE_DATA, "r");
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
#endif // USE_UFILESYS
if (!f.valid() || f.len <= 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data"));
return false;
}
uint32_t file_len = f.len;
if (file_len > 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device data in %s (%d bytes)"), storage_class, file_len);
} else {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data in %s"), storage_class);
f.close();
return false;
}
while (1) {
uint8_t dev_record_len = 0;
int32_t ret = f.readBytes(&dev_record_len, sizeof(dev_record_len));
if (ret <= 0) {
break; // finished
}
SBuffer buf(dev_record_len);
buf.setLen(dev_record_len);
ret = f.readBytes(buf.getBuffer(), dev_record_len);
if (ret != dev_record_len) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device data information, aborting"));
f.close();
return false;
}
int32_t segment_len = hydrateSingleDeviceData(buf);
if (segment_len <= 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device data information, aborting"));
f.close();
return false;
}
}
f.close();
return true;
}
/*********************************************************************************************\
*
* Hibernate data to the EEPROM
*
\*********************************************************************************************/
void hibernateAllData(void) {
#ifdef USE_ZIGBEE_EZSP
if (Rtc.utc_time < START_VALID_TIME) { return; }
if (!zigbee.eeprom_ready) { return; }
Univ_Write_File f;
const char * storage_class = PSTR("");
ZFS_Write_File write_data(ZIGB_DATA2);
// first prefix is number of devices
uint8_t device_num = zigbee_devices.devicesSize();
#ifdef USE_ZIGBEE_EEPROM
if (!f.valid() && zigbee.eeprom_ready) {
f.init(ZIGB_DATA2);
storage_class = PSTR("EEPROM");
}
#endif
for (const auto & device : zigbee_devices.getDevices()) {
// allocte a buffer for a single device
SBuffer buf = hibernateDeviceData(device, false); // simple log, no mqtt
if (buf.len() > 0) {
write_data.addBytes(buf.getBuffer(), buf.len());
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE_DATA, "w");
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
int32_t ret = write_data.close();
#ifdef Z_EEPROM_DEBUG
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData - %d bytes written to EEPROM"), ret);
#endif
#endif // USE_ZIGBEE_EZSP
if (f.valid()) {
// first prefix is number of devices
uint8_t device_num = zigbee_devices.devicesSize();
for (const auto & device : zigbee_devices.getDevices()) {
// allocte a buffer for a single device
SBuffer buf = hibernateDeviceData(device);
if (buf.len() > 0) {
f.writeBytes(buf.getBuffer(), buf.len());
}
}
size_t buf_len = f.getCursor();
f.close();
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData - %d bytes written to %s"), buf_len, storage_class);
}
}
/*********************************************************************************************\
@ -232,86 +267,17 @@ const uint32_t Z_SAVE_DATA_TIMER = 60 * 60 * 1000; // save data every 60 m
//
// Callback for setting the timer to save Zigbee Data in x seconds
//
int32_t Z_Set_Save_Data_Timer_EEPROM(uint8_t value) {
int32_t Z_Set_Save_Data_Timer(uint8_t value) {
zigbee_devices.setTimer(0x0000, 0, Z_SAVE_DATA_TIMER, 0, 0, Z_CAT_ALWAYS, 0 /* value */, &Z_SaveDataTimer);
return 0; // continue
}
void Z_SaveDataTimer(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
hibernateAllData();
Z_Set_Save_Data_Timer_EEPROM(0); // set a new timer
}
#ifdef USE_ZIGBEE_EZSP
/*********************************************************************************************\
* Write Devices in EEPROM
\*********************************************************************************************/
// EEPROM variant that writes one item at a time and is not limited to 2KB
bool hibernateDevicesInEEPROM(void) {
if (Rtc.utc_time < START_VALID_TIME) { return false; }
if (!zigbee.eeprom_ready) { return false; }
ZFS_Write_File write_data(ZIGB_NAME2);
// first prefix is number of devices
uint8_t devices_size = zigbee_devices.devicesSize();
if (devices_size > 64) { devices_size = 64; } // arbitrarily limit to 64 devices in EEPROM instead of 32 in Flash
write_data.addBytes(&devices_size, sizeof(devices_size));
for (const auto & device : zigbee_devices.getDevices()) {
const SBuffer buf = hibernateDevicev2(device);
if (buf.len() > 0) {
write_data.addBytes(buf.getBuffer(), buf.len());
}
}
int32_t ret = write_data.close();
if (ret < 0) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Error writing Devices to EEPROM"));
return false;
} else {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved in %s (%d bytes)"), PSTR("EEPROM"), ret);
}
return true;
}
// dump = true, only dump to logs, don't actually load
bool loadZigbeeDevicesFromEEPROM(void) {
if (!zigbee.eeprom_ready) { return false; }
uint16_t file_len = ZFS::getLength(ZIGB_NAME2);
uint8_t num_devices = 0;
ZFS::readBytes(ZIGB_NAME2, &num_devices, sizeof(num_devices), 0, sizeof(num_devices));
if ((file_len < 10) || (num_devices == 0x00) || (num_devices == 0xFF)) { // No data
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information in %s"), PSTR("EEPROM"));
return false;
}
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information in %s (%d bytes)"), PSTR("EEPROM"), file_len);
uint32_t k = 1; // byte index in global buffer
for (uint32_t i = 0; (i < num_devices) && (k < file_len); i++) {
uint8_t dev_record_len = 0;
int32_t ret = ZFS::readBytes(ZIGB_NAME2, &dev_record_len, 1, k, 1);
SBuffer buf(dev_record_len);
buf.setLen(dev_record_len);
ret = ZFS::readBytes(ZIGB_NAME2, buf.getBuffer(), dev_record_len, k, dev_record_len);
if (ret != dev_record_len) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "File too short when reading EEPROM"));
return false;
}
hydrateSingleDevice(buf, 2);
// next iteration
k += dev_record_len;
}
zigbee_devices.clean(); // don't write back to Flash what we just loaded
return true;
Z_Set_Save_Data_Timer(0); // set a new timer
}
#ifdef USE_ZIGBEE_EEPROM
void ZFS_Erase(void) {
if (zigbee.eeprom_present) {
ZFS::erase();
@ -319,6 +285,6 @@ void ZFS_Erase(void) {
}
}
#endif // USE_ZIGBEE_EZSP
#endif // USE_ZIGBEE_EEPROM
#endif // USE_ZIGBEE

View File

@ -0,0 +1,497 @@
/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
// Ensure persistence of devices into Flash
//
// Structure:
// (from file info):
// uint16 - start address in Flash (offset)
// uint16 - length in bytes (makes sure parsing stops)
//
// First byte:
// 0x00 - Empty or V3 format
// 0x01-0xFE - Legacy format
// 0xFF - invalid
//
//
// V1 Legacy
// =========
// File structure:
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
// uint8 - number of endpoints
// [Array of endpoints]
// uint8 - endpoint number
// uint16 - profileID of the endpoint
// Array of uint8 - clusters In codes, 0xFF end marker
// Array of uint8 - clusters Out codes, 0xFF end marker
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
// reserved for extensions
// -- V2 --
// int8_t - zigbee profile of the device
//
// =======================
// v3 with version number
// File structure:
//
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
//
// [Array of endpoints]
// uint8 - endpoint number, 0xFF marks the end of endpoints
// uint8[] - list of configuration bytes, 0xFF marks the end
// i.e. 0xFF-0xFF marks the end of the array of endpoints
//
// Memory footprint
#ifdef ESP8266
const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB
const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000
const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0800;
const static size_t z_block_len = 0x0800; // 2kb
#endif // ESP8266
#ifdef ESP32
uint8_t* z_dev_start;
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0000; // No offset needed
const static size_t z_block_len = 0x1000; // 4kb
#endif // ESP32
// Each entry consumes 8 bytes
class Z_Flashentry {
public:
uint32_t name; // simple 4 letters name. Currently 'zig1', 'zig2'. 0xFFFFFFFF if not entry
uint16_t len; // len of object in bytes, 0xFFFF if no entry
uint16_t start; // address of start, 0xFFFF if empty, must be aligned on 128 bytes boundaries
};
class Z_Flashdirectory {
public:
// 8 bytes header
uint32_t magic; // magic value 'Tsmt' to check that the block is initialized
uint32_t clock; // clock vector to discard entries that are made before this one. This should be incremented by 1 for each new entry (future anti-weavering)
// entries, 14*8 = 112 bytes
Z_Flashentry entries[14];
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
uint16_t len; // len of object
uint16_t reserved; // align on 4 bytes boundary
// link to next entry, none for now, but may be used for anti-weavering
uint16_t next_dir; // 0xFFFF if none
uint16_t reserved1; // must be 0xFFFF
uint32_t reserved2; // must be 0xFFFFFFFF
};
const static size_t Z_MAX_FLASH = z_block_len - sizeof(Z_Flashentry); // 2040
bool hibernateDeviceConfiguration(SBuffer & buf, const class Z_Data_Set & data, uint8_t endpoint) {
bool found = false;
for (auto & elt : data) {
if (endpoint == elt.getEndpoint()) {
buf.add8(elt.getConfigByte());
found = true;
}
}
return found;
}
/*********************************************************************************************\
* hibernateDevice
*
* Transforms a single device into a SBuffer binary representation.
* Only supports v2 (not the legacy old one long forgotten)
\*********************************************************************************************/
SBuffer hibernateDevice(const struct Z_Device &device) {
SBuffer buf(128);
buf.add8(0x00); // overall length, will be updated later
buf.add16(device.shortaddr);
buf.add64(device.longaddr);
char *names[3] = { device.modelId, device.manufacturerId, device.friendlyName };
for (uint32_t i=0; i<nitems(names); i++) {
char *p = names[i];
if (p) {
size_t len = strlen(p);
if (len > 32) { len = 32; } // max 32 chars
buf.addBuffer(p, len);
}
buf.add8(0x00); // end of string marker
}
// check if we need to write fake endpoint 0x00
buf.add8(0x00);
if (hibernateDeviceConfiguration(buf, device.data, 0)) {
buf.add8(0xFF); // end of configuration
} else {
buf.setLen(buf.len()-1); // remove 1 byte header
}
// scan endpoints
for (uint32_t i=0; i<endpoints_max; i++) {
uint8_t endpoint = device.endpoints[i];
if (0x00 == endpoint) { break; }
buf.add8(endpoint);
hibernateDeviceConfiguration(buf, device.data, endpoint);
buf.add8(0xFF); // end of configuration
}
buf.add8(0xFF); // end of endpoints
// update overall length
buf.set8(0, buf.len());
return buf;
}
/*********************************************************************************************\
* Write Devices in EEPROM/File/Flash
*
* Writes the preamble and all devices in the Univ_Write_File structure.
* Does not close the file at the end.
* Returns true if succesful.
* In case of problem, the output file is left untouched
\*********************************************************************************************/
// EEPROM variant that writes one item at a time and is not limited to 2KB
bool hibernateDevices(Univ_Write_File & write_data);
bool hibernateDevices(Univ_Write_File & write_data) {
// first prefix is number of devices
uint8_t devices_size = zigbee_devices.devicesSize();
if (devices_size > 250) { devices_size = 250; } // arbitrarily limit to 250 devices in EEPROM instead of 32 in Flash
write_data.writeBytes(&devices_size, sizeof(devices_size));
for (const auto & device : zigbee_devices.getDevices()) {
const SBuffer buf = hibernateDevice(device);
if (buf.len() > 0) {
int32_t ret = write_data.writeBytes(buf.getBuffer(), buf.len());
if (ret != buf.len()) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Error writing Devices, written = %d, expected = %d"), ret, buf.len());
return false;
}
}
}
return true;
}
// parse a single string from the saved data
// if something wrong happens, returns nullptr to ignore the string
// Index d is incremented to just after the string
const char * hydrateSingleString(const SBuffer & buf, uint32_t *d) {
size_t s_len = buf.strlen(*d);
const char * ptr = s_len ? buf.charptr(*d) : "";
*d += s_len + 1;
return ptr;
}
/*********************************************************************************************\
* hydrateSingleDevice
*
* Transforms a binary representation to a Zigbee device
* Supports only v2
\*********************************************************************************************/
void hydrateSingleDevice(const SBuffer & buf_d) {
uint32_t d = 1; // index in device buffer
uint16_t shortaddr = buf_d.get16(d); d += 2;
uint64_t longaddr = buf_d.get64(d); d += 8;
size_t buf_len = buf_d.len();
Z_Device & device = zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses
// ModelId
device.setModelId(hydrateSingleString(buf_d, &d));
// ManufID
device.setManufId(hydrateSingleString(buf_d, &d));
// FriendlyName
device.setFriendlyName(hydrateSingleString(buf_d, &d));
if (d >= buf_len) { return; }
// Hue bulbtype - if present
while (d < buf_len) {
uint8_t ep = buf_d.get8(d++);
if (0xFF == ep) { break; } // ep 0xFF marks the end of the endpoints
if (ep > 240) { ep = 0xFF; } // ep == 0xFF means ignore
device.addEndpoint(ep); // it will ignore invalid endpoints
while (d < buf_len) {
uint8_t config_type = buf_d.get8(d++);
if (0xFF == config_type) { break; } // 0xFF marks the end of congiguration
uint8_t config = config_type & 0x0F;
Z_Data_Type type = (Z_Data_Type) (config_type >> 4);
// set the configuration
if (ep != 0xFF) {
Z_Data & z_data = device.data.getByType(type, ep);
if (&z_data != nullptr) {
z_data.setConfig(config);
Z_Data_Set::updateData(z_data);
}
}
}
}
}
/*********************************************************************************************\
* loadZigbeeDevices
*
* Load device configuration from storage.
* Order of storage for loading is: 1/ EEPROM 2/ File system 3/ Flash (ESP8266 only)
\*********************************************************************************************/
// dump = true, only dump to logs, don't actually load
bool loadZigbeeDevices(void) {
Univ_Read_File f; // universal reader
const char * storage_class = PSTR("");
#ifdef USE_ZIGBEE_EEPROM
if (zigbee.eeprom_ready) {
f.init(ZIGB_NAME2);
storage_class = PSTR("EEPROM");
}
#endif // USE_ZIGBEE_EEPROM
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE, "r");
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
#endif // USE_UFILESYS
#ifdef ESP8266
if (!f.valid() && flash_valid()) {
// Read binary data from Flash
Z_Flashentry flashdata;
memcpy_P(&flashdata, z_dev_start, sizeof(Z_Flashentry));
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "z_dev_start %p"), z_dev_start);
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len);
// Check the signature
if ( ((flashdata.name == ZIGB_NAME1) || (flashdata.name == ZIGB_NAME2))
&& (flashdata.len > 0)) {
uint16_t buf_len = flashdata.len;
// uint32_t version = (flashdata.name == ZIGB_NAME2) ? 2 : 1;
f.init(z_dev_start + sizeof(Z_Flashentry), buf_len);
storage_class = PSTR("Flash");
}
}
#endif // ESP8266
uint32_t file_len = 0;
uint8_t num_devices = 0;
if (f.valid()) {
file_len = f.len;
f.readBytes(&num_devices, sizeof(num_devices));
}
if ((file_len < 10) || (num_devices == 0x00) || (num_devices == 0xFF)) { // No data
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information"));
return false;
}
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information found in %s (%d devices - %d bytes)"), storage_class, num_devices, file_len);
uint32_t k = 1; // byte index in global buffer
for (uint32_t i = 0; (i < num_devices) && (k < file_len); i++) {
uint8_t dev_record_len = 0;
f.readBytes(&dev_record_len, sizeof(dev_record_len));
// int32_t ret = ZFS::readBytes(ZIGB_NAME2, &dev_record_len, 1, k, 1);
if (dev_record_len == 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device information, aborting"));
zigbee_devices.clean(); // don't write back to Flash what we just loaded
return false;
}
SBuffer buf(dev_record_len);
buf.setLen(dev_record_len);
buf.set8(0, dev_record_len); // push the first byte (len including this first byte)
int32_t ret = f.readBytes(buf.buf(1), dev_record_len - 1);
// ret = ZFS::readBytes(ZIGB_NAME2, buf.getBuffer(), dev_record_len, k, dev_record_len);
if (ret != dev_record_len - 1) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device information, aborting"));
zigbee_devices.clean(); // don't write back to Flash what we just loaded
return false;
}
hydrateSingleDevice(buf);
// next iteration
k += dev_record_len;
}
zigbee_devices.clean(); // don't write back to Flash what we just loaded
return true;
}
/*********************************************************************************************\
* saveZigbeeDevices
*
* Save device configuration from storage.
* Order of storage for saving is: 1/ EEPROM 2/ File system 3/ Flash (ESP8266 only)
\*********************************************************************************************/
void saveZigbeeDevices(void) {
Univ_Write_File f;
const char * storage_class = PSTR("");
#ifdef USE_ZIGBEE_EEPROM
if (!f.valid() && zigbee.eeprom_ready) {
f.init(ZIGB_NAME2);
storage_class = PSTR("EEPROM");
}
#endif
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE, "w");
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
#endif
#if defined(ESP8266)
uint8_t *sbuffer = nullptr;
static const size_t max_flash_size = 2040;
if (!f.valid() && flash_valid()) {
sbuffer = (uint8_t*) malloc(max_flash_size);
f.init(sbuffer, max_flash_size);
storage_class = PSTR("Flash");
}
#endif // defined(ESP8266)
bool written = false;
size_t buf_len = 0;
if (f.valid()) {
written = hibernateDevices(f);
buf_len = f.getCursor();
f.close();
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved in %s (%d bytes)"), storage_class, buf_len);
}
#if defined(ESP8266)
if (written && sbuffer != nullptr) {
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
free(sbuffer);
return;
}
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
Z_Flashentry *flashdata = (Z_Flashentry*)(spi_buffer + z_block_offset);
flashdata->name = ZIGB_NAME2; // v2
flashdata->len = buf_len;
flashdata->start = 0;
memcpy(spi_buffer + z_block_offset + sizeof(Z_Flashentry), sbuffer, buf_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len);
free(spi_buffer);
free(sbuffer);
}
#endif // defined(ESP8266)
}
/*********************************************************************************************\
* eraseZigbeeDevices
*
* Erase all storage locations: 1/ EEPROM, 2/ File system 3/ Flash (ESP8266 only if no filesystem)
\*********************************************************************************************/
// Erase the flash area containing the ZigbeeData
void eraseZigbeeDevices(void) {
zigbee_devices.clean(); // avoid writing data to flash after erase
#ifdef USE_ZIGBEE_EEPROM
ZFS_Erase();
#endif // USE_ZIGBEE_EEPROM
#if defined(ESP8266) && !defined(USE_UFILESYS)
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
// Fill the Zigbee area with 0xFF
memset(spi_buffer + z_block_offset, 0xFF, z_block_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
free(spi_buffer);
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("Flash"));
#endif // defined(ESP8266) && !defined(USE_UFILESYS)
#ifdef USE_UFILESYS
if (TfsDeleteFile(TASM_FILE_ZIGBEE)) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased"));
}
#endif // USE_UFILESYS
}
/*********************************************************************************************\
* restoreDumpAllDevices
*
* Dump all devices in `ZbRestore <hex>` format ready to copy/paste
\*********************************************************************************************/
void restoreDumpAllDevices(void) {
for (const auto & device : zigbee_devices.getDevices()) {
const SBuffer buf = hibernateDevice(device);
if (buf.len() > 0) {
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_RESTORE "\":\"ZbRestore %_B\"}"), &buf);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
}
}
}
#endif // USE_ZIGBEE

View File

@ -481,8 +481,12 @@ static const Zigbee_Instruction zb_prog[] PROGMEM = {
ZI_MQTT_STATE(ZIGBEE_STATUS_OK, kStarted)
ZI_LOG(LOG_LEVEL_INFO, kZigbeeStarted)
ZI_CALL(&Z_State_Ready, 1) // Now accept incoming messages
ZI_CALL(&Z_Prepare_Storage, 0)
ZI_CALL(&Z_Load_Devices, 0)
ZI_CALL(&Z_Load_Data, 0)
ZI_CALL(&Z_Set_Save_Data_Timer, 0)
ZI_CALL(&Z_Query_Bulbs, 0)
ZI_LABEL(ZIGBEE_LABEL_MAIN_LOOP)
ZI_WAIT_FOREVER()
ZI_GOTO(ZIGBEE_LABEL_READY)
@ -907,10 +911,10 @@ static const Zigbee_Instruction zb_prog[] PROGMEM = {
ZI_MQTT_STATE(ZIGBEE_STATUS_OK, kStarted)
ZI_LOG(LOG_LEVEL_INFO, kZigbeeStarted)
ZI_CALL(&Z_State_Ready, 1) // Now accept incoming messages
ZI_CALL(&Z_Prepare_EEPROM, 0)
ZI_CALL(&Z_Prepare_Storage, 0)
ZI_CALL(&Z_Load_Devices, 0)
ZI_CALL(&Z_Load_Data_EEPROM, 0)
ZI_CALL(&Z_Set_Save_Data_Timer_EEPROM, 0)
ZI_CALL(&Z_Load_Data, 0)
ZI_CALL(&Z_Set_Save_Data_Timer, 0)
ZI_CALL(&Z_Query_Bulbs, 0)
ZI_LABEL(ZIGBEE_LABEL_MAIN_LOOP)

View File

@ -2017,15 +2017,15 @@ int32_t ZNP_Recv_Default(int32_t res, const SBuffer &buf) {
//
// Callback for loading preparing EEPROM, called by the state machine
//
#ifdef USE_ZIGBEE_EZSP
int32_t Z_Prepare_EEPROM(uint8_t value) {
int32_t Z_Prepare_Storage(uint8_t value) {
#ifdef USE_ZIGBEE_EEPROM
ZFS::initOrFormat();
#endif
return 0; // continue
}
#endif // USE_ZIGBEE_EZSP
//
// Callback for loading Zigbee configuration from Flash, called by the state machine
// Callback for loading Zigbee configuration, called by the state machine
//
int32_t Z_Load_Devices(uint8_t value) {
// try to hidrate from known devices
@ -2036,8 +2036,8 @@ int32_t Z_Load_Devices(uint8_t value) {
//
// Callback for loading Zigbee data from EEPROM, called by the state machine
//
int32_t Z_Load_Data_EEPROM(uint8_t value) {
hydrateDevicesDataFromEEPROM();
int32_t Z_Load_Data(uint8_t value) {
hydrateDevicesData();
return 0; // continue
}

View File

@ -1291,12 +1291,6 @@ void CmndZbSave(void) {
case 2: // save only data
hibernateAllData();
break;
case -1: // dump configuration
loadZigbeeDevices(true); // dump only
break;
case -2:
hydrateDevicesDataFromEEPROM();
break;
#ifdef Z_EEPROM_DEBUG
case -10:
{ // reinit EEPROM
@ -1569,7 +1563,7 @@ void CmndZbData(void) {
if (strlen(XdrvMailbox.data) == 0) {
// if empty, log values for all devices
for (const auto & device : zigbee_devices.getDevices()) {
hibernateDeviceData(device, true); // simple log, no mqtt
hibernateDeviceData(device);
}
} else {
// check if parameters contain a comma ','
@ -1588,7 +1582,7 @@ void CmndZbData(void) {
// non-JSON, export current data
// ZbData 0x1234
// ZbData Device_Name
hibernateDeviceData(device, true); // mqtt
hibernateDeviceData(device);
}
}
@ -2183,9 +2177,7 @@ bool Xdrv23(uint8_t function)
result = DecodeCommand(kZbCommands, ZigbeeCommand, kZbSynonyms);
break;
case FUNC_SAVE_BEFORE_RESTART:
#ifdef USE_ZIGBEE_EZSP
hibernateAllData();
#endif // USE_ZIGBEE_EZSP
restoreDumpAllDevices();
break;
}