Add support for Sonoff POWCT Energy Export Active ()

This commit is contained in:
Theo Arends 2024-12-07 22:44:45 +01:00
parent 523f803b06
commit ed520140a1
3 changed files with 42 additions and 19 deletions

View File

@ -17,6 +17,7 @@ All notable changes to this project will be documented in this file.
- Show Active Power Total with any multi-phase energy monitoring (#22579) - Show Active Power Total with any multi-phase energy monitoring (#22579)
- Command `SetOption162 1` to disable adding export energy to energy today (#22578) - Command `SetOption162 1` to disable adding export energy to energy today (#22578)
- ESP32 support for WPA2/3 Enterprise conditional in core v3.1.0.241206 (#22600) - ESP32 support for WPA2/3 Enterprise conditional in core v3.1.0.241206 (#22600)
- Support for Sonoff POWCT Energy Export Active (#22596)
### Breaking Changed ### Breaking Changed
- ESP32 ArtNet switches from GRB to RGB encoding (#22556) - ESP32 ArtNet switches from GRB to RGB encoding (#22556)

View File

@ -133,6 +133,7 @@ The latter links can be used for OTA upgrades too like ``OtaUrl https://ota.tasm
- Support for US AQI and EPA AQI in PMS5003x sensors [#22294](https://github.com/arendst/Tasmota/issues/22294) - Support for US AQI and EPA AQI in PMS5003x sensors [#22294](https://github.com/arendst/Tasmota/issues/22294)
- Support for MS5837 pressure and temperature sensor [#22376](https://github.com/arendst/Tasmota/issues/22376) - Support for MS5837 pressure and temperature sensor [#22376](https://github.com/arendst/Tasmota/issues/22376)
- Support for TM1640 based IoTTimer by Stefan Oskamp [#21376](https://github.com/arendst/Tasmota/issues/21376) - Support for TM1640 based IoTTimer by Stefan Oskamp [#21376](https://github.com/arendst/Tasmota/issues/21376)
- Support for Sonoff POWCT Energy Export Active [#22596](https://github.com/arendst/Tasmota/issues/22596)
- HLK-LD2410 Engineering mode [#21880](https://github.com/arendst/Tasmota/issues/21880) - HLK-LD2410 Engineering mode [#21880](https://github.com/arendst/Tasmota/issues/21880)
- Mitsubishi Electric HVAC Operation time for MiElHVAC [#22334](https://github.com/arendst/Tasmota/issues/22334) - Mitsubishi Electric HVAC Operation time for MiElHVAC [#22334](https://github.com/arendst/Tasmota/issues/22334)
- Mitsubishi Electric HVAC Outdoor Temperature for MiElHVAC [#22345](https://github.com/arendst/Tasmota/issues/22345) - Mitsubishi Electric HVAC Outdoor Temperature for MiElHVAC [#22345](https://github.com/arendst/Tasmota/issues/22345)

View File

@ -33,6 +33,21 @@
* Based on datasheet from ChipSea and analysing serial data * Based on datasheet from ChipSea and analysing serial data
* See https://github.com/arendst/Tasmota/discussions/10793 * See https://github.com/arendst/Tasmota/discussions/10793
* https://goldenrelay.en.alibaba.com/product/62119012875-811845870/GOLDEN_GI_1A_5LH_SPST_5V_5A_10A_250VAC_NO_18_5_10_5_15_3mm_sealed_type_all_certificate_compliances_class_F_SPDT_Form_available.html * https://goldenrelay.en.alibaba.com/product/62119012875-811845870/GOLDEN_GI_1A_5LH_SPST_5V_5A_10A_250VAC_NO_18_5_10_5_15_3mm_sealed_type_all_certificate_compliances_class_F_SPDT_Form_available.html
*
* Model differences:
* Function Model1 Model2 Remark
* ------------------------------ ------- ------- -------------------------------------------------
* Sonoff DualR3 PowCT
* Processor ESP32 ESP32
* CSE7761 Rx 1 2 Index defines model number
* Number of inputs 2 1 Count of CSE7761 inputs used
* Current measurement device shunt CT CT = Current Transformer
* Common voltage Yes Yes Show common voltage in GUI/JSON
* Common frequency Yes Yes Show common frequency in GUI/JSON
* Swapped inputs Yes No Current direction defined by hardware design - Fixed by Tasmota
* Support Zero Cross detection Yes No Tasmota supports zero cross detection only on DualR3 due to timing
* Support Export Active No Yes Only CT supports correct negative value detection
* Show negative power No Yes Only CT supports correct negative value detection
\*********************************************************************************************/ \*********************************************************************************************/
#define XNRG_19 19 #define XNRG_19 19
@ -96,8 +111,9 @@ struct {
uint32_t frequency = 0; uint32_t frequency = 0;
uint32_t voltage_rms = 0; uint32_t voltage_rms = 0;
uint32_t current_rms[2] = { 0 }; uint32_t current_rms[2] = { 0 };
uint32_t energy[2] = { 0 }; int32_t energy[2] = { 0 };
uint32_t active_power[2] = { 0 }; uint32_t active_power[2] = { 0 };
uint32_t power_factor[2] = { 0 };
uint16_t coefficient[8] = { 0 }; uint16_t coefficient[8] = { 0 };
uint8_t energy_update[2] = { 0 }; uint8_t energy_update[2] = { 0 };
uint8_t init = 4; uint8_t init = 4;
@ -445,32 +461,27 @@ void Cse7761GetData(void) {
CSE7761Data.frequency = (value >= 0x8000) ? 0 : value; CSE7761Data.frequency = (value >= 0x8000) ? 0 : value;
#endif // CSE7761_FREQUENCY #endif // CSE7761_FREQUENCY
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0], 3); for (uint32_t channel = 0; channel < Energy->phase_count; channel++) {
#ifdef CSE7761_SIMULATE if (CSE7761_MODEL_POWCT == CSE7761Data.model) {
value = 455; Cse7761Write(CSE7761_SPECIAL_COMMAND, (channel) ? CSE7761_CMD_CHAN_B_SELECT : CSE7761_CMD_CHAN_A_SELECT);
#endif CSE7761Data.power_factor[channel] = Cse7761ReadFallback(CSE7761_REG_POWERFACTOR, CSE7761Data.power_factor[channel], 3);
CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA }
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0], 4);
#ifdef CSE7761_SIMULATE
value = 217;
#endif
CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
if (2 == Energy->phase_count) { value = Cse7761ReadFallback((channel) ? CSE7761_REG_RMSIB : CSE7761_REG_RMSIA, CSE7761Data.current_rms[channel], 3);
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1], 3);
#ifdef CSE7761_SIMULATE #ifdef CSE7761_SIMULATE
value = 29760; // 0.185A value = 455;
#endif #endif
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA CSE7761Data.current_rms[channel] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1], 4); value = Cse7761ReadFallback((channel) ? CSE7761_REG_POWERPB : CSE7761_REG_POWERPA, CSE7761Data.active_power[channel], 4);
#ifdef CSE7761_SIMULATE #ifdef CSE7761_SIMULATE
value = 2126641; // 44.05W value = 217;
#endif #endif
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value; CSE7761Data.active_power[channel] = (0 == CSE7761Data.current_rms[channel]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
} }
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: F%d, U%d, I%d/%d, P%d/%d"), AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: F%d, U%d, PF%d/%d, I%d/%d, P%d/%d"),
CSE7761Data.frequency, CSE7761Data.voltage_rms, CSE7761Data.frequency, CSE7761Data.voltage_rms,
CSE7761Data.power_factor[0], CSE7761Data.power_factor[1],
CSE7761Data.current_rms[0], CSE7761Data.current_rms[1], CSE7761Data.current_rms[0], CSE7761Data.current_rms[1],
CSE7761Data.active_power[0], CSE7761Data.active_power[1]); CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
@ -497,6 +508,13 @@ void Cse7761GetData(void) {
if (0 == Energy->active_power[channel]) { if (0 == Energy->active_power[channel]) {
Energy->current[channel] = 0; Energy->current[channel] = 0;
} else { } else {
if (CSE7761_MODEL_POWCT == CSE7761Data.model) {
int32_t power_factor = CSE7761Data.power_factor[channel] << 8;
if (power_factor < 0) {
// power factor is negative and active power is not zero -> handle negative active power
Energy->active_power[channel] = -Energy->active_power[channel];
}
}
uint32_t current_calibration = EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION, channel); uint32_t current_calibration = EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION, channel);
// Current = RmsIA * RmsIAC / 0x800000 // Current = RmsIA * RmsIAC / 0x800000
// Energy->current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A // Energy->current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A
@ -628,6 +646,9 @@ void Cse7761DrvInit(void) {
if (CSE7761_MODEL_DUALR3 == CSE7761Data.model) { if (CSE7761_MODEL_DUALR3 == CSE7761Data.model) {
Energy->phase_count = 2; // Handle two channels as two phases Energy->phase_count = 2; // Handle two channels as two phases
} }
if (CSE7761_MODEL_POWCT == CSE7761Data.model) {
Energy->local_energy_active_export = true; // Support energy export
}
Energy->voltage_common = true; // Use common voltage Energy->voltage_common = true; // Use common voltage
#ifdef CSE7761_FREQUENCY #ifdef CSE7761_FREQUENCY
Energy->frequency_common = true; // Use common frequency Energy->frequency_common = true; // Use common frequency