Added frequency change support

shutterfrequency 1000 is default. can be increased or decreased. 
Added more comments to the source code for explanation
optimize load in RPC call
This commit is contained in:
stefanbode 2019-12-04 12:34:27 +01:00 committed by GitHub
parent 4cd7eb4108
commit f0e6e0098d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 58 additions and 32 deletions

View File

@ -37,10 +37,13 @@
#define D_CMND_SHUTTER_INVERT "Invert"
#define D_CMND_SHUTTER_CLIBRATION "Calibration"
#define D_CMND_SHUTTER_MOTORDELAY "MotorDelay"
#define D_CMND_SHUTTER_FREQUENCY "Frequency"
#define D_SHUTTER "SHUTTER"
const uint16_t MOTOR_STOP_TIME = 500; // in mS
const uint16_t MOTOR_STOP_TIME = 500; // in mS
uint8_t calibrate_pos[6] = {0,30,50,70,90,100};
uint16_t messwerte[5] = {30,50,70,90,100};
@ -51,12 +54,13 @@ const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|"
D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|"
D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|"
D_CMND_SHUTTER_MOTORDELAY;
D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY;
void (* const ShutterCommand[])(void) PROGMEM = {
&CmndShutterOpen, &CmndShutterClose, &CmndShutterStop, &CmndShutterPosition,
&CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay,
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay};
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay,
&CmndShutterFrequency};
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"direction\":%d}";
@ -68,23 +72,24 @@ struct SHUTTER {
power_t mask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter
power_t old_power = 0; // preserve old bitmask for power to extract the relay that changes.
power_t switched_relay = 0; // bitmatrix that contain the relays that was lastly changed.
uint32_t time[MAX_SHUTTERS];
uint32_t time[MAX_SHUTTERS]; // operating time of the shutter in 0.05sec
int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated
int32_t target_position[MAX_SHUTTERS]; // position to go to
int32_t start_position[MAX_SHUTTERS];
int32_t start_position[MAX_SHUTTERS]; // position before a movement is started. init at start
int32_t real_position[MAX_SHUTTERS]; // value between 0 and Shutter.open_max
uint16_t open_time[MAX_SHUTTERS]; // duration to open the shutter
uint16_t close_time[MAX_SHUTTERS]; // duration to close the shutter
uint16_t open_time[MAX_SHUTTERS]; // duration to open the shutter. 112 = 11.2sec
uint16_t close_time[MAX_SHUTTERS]; // duration to close the shutter. 112 = 11.2sec
uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster
int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down
uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE
uint8_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec.
uint16_t pwm_frequency;
uint8_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec.
uint16_t pwm_frequency; // frequency of PWN for stepper motors
uint16_t max_pwm_frequency = 1000;
} Shutter;
void ShutterRtc50mS(void)
{
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
for (uint32_t i = 0; i < shutters_present; i++) {
Shutter.time[i]++;
}
}
@ -189,6 +194,11 @@ void ShutterInit(void)
}
} else {
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE;
if (pin[GPIO_PWM1 ]+i < 99) {
Shutter.pwm_frequency = 0;
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1]+i, 50);
}
}
TickerShutter.attach_ms(50, ShutterRtc50mS );
@ -243,21 +253,21 @@ void ShutterUpdatePosition(void)
if (Shutter.direction[i] != 0) {
//char stemp1[20];
if (pin[GPIO_PWM1]+i < 99 && Shutter.pwm_frequency != 1000) {
Shutter.pwm_frequency += 100;
Shutter.pwm_frequency = (Shutter.pwm_frequency > 1000 ? 1000 : Shutter.pwm_frequency);
// frequency start at 0. Stepper will start moving with first change of the Speed
// Counter should be initiated to 0 to count movement.
// 0..1000 in step 100 = 10 steps with 0.05 sec = 0.5sec total ramp time from start to
// full speed.
if (pin[GPIO_PWM1]+i < 99 && Shutter.pwm_frequency != Shutter.max_pwm_frequency) {
Shutter.pwm_frequency += Shutter.max_pwm_frequency/20;
Shutter.pwm_frequency = (Shutter.pwm_frequency > Shutter.max_pwm_frequency ? Shutter.max_pwm_frequency : Shutter.pwm_frequency);
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1]+i, 50);
}
Shutter.real_position[i] = Shutter.start_position[i] + ( (Shutter.time[i] - Shutter.motordelay[i]) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
// avoid real position leaving the boundaries.
if (Shutter.real_position[i] < 0 || Shutter.real_position[i] > Shutter.open_max[i]) {
dtostrfd((float)Shutter.time[i] / 20, 1, stemp2);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: ShutterTEMP %d: Real Pos. %d, Stoppos: %ld, direction %d, rtcshutter: %s [s]"), i, Shutter.real_position[i], Settings.shutter_position[i], Shutter.direction[i], stemp2);
Shutter.real_position[i] = Shutter.real_position[i] < 0 ? 0 : (Shutter.real_position[i] > Shutter.open_max[i] ? Shutter.open_max[i] : Shutter.real_position[i]) ;
Shutter.real_position[i] = Shutter.real_position[i] < 0 ? 0 : (Shutter.real_position[i] > Shutter.open_max[i] ? Shutter.open_max[i] : Shutter.real_position[i]) ;
}
if (Shutter.real_position[i] * Shutter.direction[i] >= Shutter.target_position[i] * Shutter.direction[i] ) {
// calculate relay number responsible for current movement.
@ -275,17 +285,26 @@ void ShutterUpdatePosition(void)
break;
case SHT_OFF_ON__OPEN_CLOSE:
// This is a failsafe configuration. Relay1 ON/OFF Relay2 -1/1 direction
if (pin[GPIO_PWM1 ]+i < 99) {
// Only allow PWM microstepping if PWM and COUNTER are defined.
// see wiki to connect PWM and COUNTER
if (pin[GPIO_PWM1 ]+i < 99 && pin[GPIO_CNTR1 ]+i < 99 ) {
int16_t missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) - RtcSettings.pulse_counter[i];
Shutter.pwm_frequency = 0;
//slow down for acurate position
analogWriteFreq(500);
analogWrite(pin[GPIO_PWM1]+i, 50);
//prepare for stop PWM
Shutter.motordelay[i] = -2 + Shutter.motordelay[i] + missing_steps/(Shutter.max_pwm_frequency/20);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Missing steps %d, adjust motordelay %d, counter %d, temp realpos %d"), missing_steps, Shutter.motordelay[i],RtcSettings.pulse_counter[i] ,Shutter.real_position[i]);
Settings.shutter_motordelay[i]=Shutter.motordelay[i];
analogWriteFreq(0);
while (RtcSettings.pulse_counter[i] < (Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]/2) {
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) {
delay(1);
}
analogWrite(pin[GPIO_PWM1]+i, 0);
Shutter.real_position[i] = RtcSettings.pulse_counter[i]*Shutter.direction[i]*2+Shutter.start_position[i];
Shutter.real_position[i] = ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_frequency)+Shutter.start_position[i];
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT:Realpos %d, pulsecount %d, startpos %d, int32 %d"), Shutter.real_position[i],RtcSettings.pulse_counter[i], Shutter.start_position[i], ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_frequency));
}
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
@ -303,7 +322,7 @@ void ShutterUpdatePosition(void)
Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i);
dtostrfd((float)Shutter.time[i] / 20, 1, stemp2);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Real Pos. %d, Stoppos: %ld, relay: %d, direction %d, pulsetimer: %d, rtcshutter: %s [s]"), i, Shutter.real_position[i], Settings.shutter_position[i], cur_relay -1, Shutter.direction[i], Settings.pulse_timer[cur_relay -1], stemp2);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Real Pos. %d, Stoppos: %ld, relay: %d, direction %d, pulsetimer: %d, motordelay %d, rtcshutter: %s [s]"), i, Shutter.real_position[i], Settings.shutter_position[i], cur_relay -1, Shutter.direction[i], Settings.pulse_timer[cur_relay -1], Shutter.motordelay[i],stemp2);
Shutter.start_position[i] = Shutter.real_position[i];
// sending MQTT result to broker
@ -342,7 +361,10 @@ void ShutterStartInit(uint8_t index, uint8_t direction, int32_t target_pos)
Shutter.pwm_frequency = 0;
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1]+index, 0);
RtcSettings.pulse_counter[index] = 0;
// can be operated without counter, but then not that acurate.
if (pin[GPIO_CNTR1]+index < 99) {
RtcSettings.pulse_counter[index] = 0;
}
}
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter: %d from %d to %d in directin %d"), index, Shutter.start_position[index], Shutter.target_position[index], Shutter.direction[index]);
}
@ -360,10 +382,10 @@ void ShutterReportPosition(void)
if (Shutter.direction[i] != 0) {
char stemp1[20];
char stemp2[10];
dtostrfd((float)Shutter.time[i] / 20, 1, stemp2);
dtostrfd((float)Shutter.time[i] / 20, 2, stemp2);
shutter_moving = 1;
//Settings.shutter_position[i] = Settings.shuttercoeff[2][i] * 5 > Shutter.real_position[i] ? Shutter.real_position[i] / Settings.shuttercoeff[2][i] : (Shutter.real_position[i]-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i];
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d, Target %d, source: %s, start-pos: %d %%, direction: %d, rtcshutter: %s [s]"), i,Shutter.real_position[i], Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), Settings.shutter_position[i], Shutter.direction[i], stemp2 );
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d, Target %d, source: %s, start-pos: %d %%, direction: %d, motordelay %d, rtcshutter: %s [s]"), i,Shutter.real_position[i], Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), Settings.shutter_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2 );
}
}
if (rules_flag.shutter_moving > shutter_moving) {
@ -424,12 +446,6 @@ void ShutterRelayChanged(void)
}
}
///////////////////////////////////////////////////////////////////////////////////
// Shutter specific functions
// TODO: move to shutter driver and make them accessible in a generic way
// device: 1..<numberOfShutters>
// position: 0-100
void ShutterSetPosition(uint8_t device, uint8_t position)
{
char svalue[32]; // Command and number parameter
@ -463,7 +479,7 @@ void CmndShutterStop(void)
if (Shutter.direction[index] != 0) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Stop moving shutter %d: direction: %d"), XdrvMailbox.index, Shutter.direction[index]);
// set stop position 10 steps ahead (0.5sec to allow normal stop)
int32_t temp_realpos = Shutter.start_position[index] + ( (Shutter.time[index]+10) * (Shutter.direction[index] > 0 ? 100 : -Shutter.close_velocity[index]));
XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, index);
//XdrvMailbox.payload = Settings.shuttercoeff[2][index] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][index] : (temp_realpos-Settings.shuttercoeff[0,index]) / Settings.shuttercoeff[1][index];
@ -609,6 +625,16 @@ void CmndShutterSetHalfway(void)
}
}
void CmndShutterFrequency(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 10000)) {
Shutter.max_pwm_frequency = XdrvMailbox.payload;
ResponseCmndNumber(XdrvMailbox.payload); // ????
} else {
ResponseCmndNumber(Shutter.max_pwm_frequency);
}
}
void CmndShutterSetClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {