Merge pull request #11360 from iot-sle/development

Wiegand reader. Support now several key pad strokes as one tag switchable by SetOptio…
This commit is contained in:
Theo Arends 2021-03-17 09:22:13 +01:00 committed by GitHub
commit f10940a349
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 267 additions and 56 deletions

View File

@ -149,7 +149,7 @@ typedef union { // Restricted by MISRA-C Rule 18.4 bu
uint32_t mqtt_state_retain : 1; // bit 7 (v9.3.0.1) - CMND_STATERETAIN uint32_t mqtt_state_retain : 1; // bit 7 (v9.3.0.1) - CMND_STATERETAIN
uint32_t mqtt_info_retain : 1; // bit 8 (v9.3.0.1) - CMND_INFORETAIN uint32_t mqtt_info_retain : 1; // bit 8 (v9.3.0.1) - CMND_INFORETAIN
uint32_t wiegand_hex_output : 1; // bit 9 (v9.3.1.1) - SetOption123 - (Wiegand) switch tag number output to hex format (1) uint32_t wiegand_hex_output : 1; // bit 9 (v9.3.1.1) - SetOption123 - (Wiegand) switch tag number output to hex format (1)
uint32_t spare10 : 1; // bit 10 uint32_t wiegand_keypad_to_tag : 1; // bit 10 (v9.3.1.1) - SetOption124 - (Wiegand) send key pad stroke as single char (0) or one tag (ending char #) (1)
uint32_t spare11 : 1; // bit 11 uint32_t spare11 : 1; // bit 11
uint32_t spare12 : 1; // bit 12 uint32_t spare12 : 1; // bit 12
uint32_t spare13 : 1; // bit 13 uint32_t spare13 : 1; // bit 13

View File

@ -41,29 +41,47 @@
* - fix for #11047 Wiegand 26/34 missed some key press if they are press at normal speed * - fix for #11047 Wiegand 26/34 missed some key press if they are press at normal speed
* - removed testing code for tests without attached hardware * - removed testing code for tests without attached hardware
* - added SetOption123 0-Wiegand UID decimal (default) 1-Wiegand UID hexadecimal * - added SetOption123 0-Wiegand UID decimal (default) 1-Wiegand UID hexadecimal
* - added SetOption124 0-Keypad every key a single tag (default) 1-all keys up to ending char (#) send as one tag * - added SetOption124 0-all keys up to ending char (# or *) send as one tag by MQTT (default) 1-Keypad every key a single tag
* - added a new realtime testing option emulating a Wiegang reader output on same GPIOs where normally reader is attached. Details below
\*********************************************************************************************/ \*********************************************************************************************/
#warning **** Wiegand interface enabled **** #pragma message("**** Wiegand interface enabled ****")
#define XSNS_82 82 #define XSNS_82 82
#define WIEGAND_CODE_GAP_FACTOR 3 // Gap between 2 complete RFID codes send by the device. (WIEGAND_CODE_GAP_FACTOR * bitTime) to detect the end of a code #define WIEGAND_CODE_GAP_FACTOR 3 // Gap between 2 complete RFID codes send by the device. (WIEGAND_CODE_GAP_FACTOR * bitTime) to detect the end of a code
#define WIEGAND_BIT_TIME_DEFAULT 1250 // period time of one bit (impluse + impulse_gap time) 1250µs measured by oscilloscope on my RFID Reader #define WIEGAND_BIT_TIME_DEFAULT 1250 // period time (µs) of one bit (impluse + impulse_gap time) 1250µs measured by oscilloscope on my RFID Reader
#define WIEGAND_RFID_ARRAY_SIZE 5 // storage of rfids found between 2 calls of FUNC_EVERY_100_MSECOND #define WIEGAND_RFID_ARRAY_SIZE 11 // storage of rfids found between 2 calls of FUNC_EVERY_100_MSECOND
#define WIEGAND_OPTION_HEX 123 // Index of option to switch output between hex (1) an decimal (0) (default) #define WIEGAND_OPTION_HEX 123 // Index of option to switch output between hex (1) an decimal (0) (default)
#define WIEGAND_OPTION_HEX_POSTFIX "h" // will be added after UID output nothing = ""
#define WIEGAND_OPTION_KEYPAD_TO_TAG 124 //Index of option to switch output of key pad strokes between every single stroke one single char (0) (default)
// or all strokes until detecting ending char (WIEGAND_OPTION_KEYPAD_END_CHAR) as one tag (1)
// using #define will save some space in the final code
// DEV_WIEGAND_TEST_MODE 2 : testing with hardware correctly connected.
#define DEV_WIEGAND_TEST_MODE 0 #define DEV_WIEGAND_TEST_MODE 0
// using #define will save some space in the final code
// DEV_WIEGAND_TEST_MODE 1 : Use only without Wiegand reader device attache. On a second ESP to simulate reader output!
// DEV_WIEGAND_TEST_MODE 2 : testing with hardware correctly connected.
#ifdef DEV_WIEGAND_TEST_MODE #ifdef DEV_WIEGAND_TEST_MODE
#if (DEV_WIEGAND_TEST_MODE==0) #if (DEV_WIEGAND_TEST_MODE==0)
#elif (DEV_WIEGAND_TEST_MODE==1) #elif (DEV_WIEGAND_TEST_MODE==1)
#warning "(no longer available) Wiegand Interface compiled with 'DEV_WIEGAND_TEST_MODE' 1 (Random RFID)" #pragma message("\nWiegand Interface code generator (testing purpose only!) compiled with 'DEV_WIEGAND_TEST_MODE' 1 \nUse only on esp WITHOUT Wiegand reader hardware attached! GPIOS will be configured as OUTPUT!" )
// use on own risk for testing purpose only.
// please don't attach your reader to the ESP when you use this option. The GPIOS will be defined as OUTPUT
// the interrupts will be enabled and normally recognize the generated code, that's the idea behind for testing.
// Commands:
// WieBitTime [time] : get or set the bit impuls length
// WieInterBitTime [time]: get or set the length of the gap between 2 bits
// WieTagGap [tagGap]: get or set the current used gap time between 2 tags send in µs minimal WIEGAND_BIT_TIME_DEFAULT µs default WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR
// WieTagSize [tagsize]: get or set the tagsize (4,8,24,26,32,34) default 26.
// WieTag [tag]: get or set the current used tag. For tagsize 4,8 only one char will be used.
// WieSend [tag[:tagsize];tag[:tagsize];...] : Generate the current Tag with current TagSize to GPIOs if the paramters are used
// tags and tagsize from commandline are used as current values. If tagsize is omitted always last value will be used
// WieSend 4:4;5:8; will send 4 in 4 bit mode and 5 in 8 bit mode with a pause of current TagGab between the chars
// WieSend will send the last used tag with last used tagsize
#elif (DEV_WIEGAND_TEST_MODE==2) #elif (DEV_WIEGAND_TEST_MODE==2)
#warning "Wiegand Interface compiled with 'DEV_WIEGAND_TEST_MODE' 2 (Hardware connected)" #pragma message("\nWiegand Interface compiled with 'DEV_WIEGAND_TEST_MODE' 2 (Hardware connected)")
#else #else
#warning "Wiegand Interface compiled with unknown mode" #pragma message("\nWiegand Interface compiled with unknown mode")
#endif #endif
#endif #endif
@ -71,7 +89,6 @@ typedef struct rfid_store { uint64_t RFID; uint16_t bitCount; } RFID_store;
class Wiegand { class Wiegand {
public: public:
Wiegand(void); Wiegand(void);
void Init(void); void Init(void);
void ScanForTag(void); void ScanForTag(void);
@ -81,21 +98,24 @@ class Wiegand {
bool isInit = false; bool isInit = false;
private: #if (DEV_WIEGAND_TEST_MODE!=1)
//uint64_t HexStringToDec(uint64_t); private:
#endif //(DEV_WIEGAND_TEST_MODE==1)
uint64_t CheckAndConvertRfid(uint64_t,uint16_t); uint64_t CheckAndConvertRfid(uint64_t,uint16_t);
char translateEnterEscapeKeyPress(char);
uint8_t CalculateParities(uint64_t, int); uint8_t CalculateParities(uint64_t, int);
bool WiegandConversion (uint64_t , uint16_t ); bool WiegandConversion (uint64_t , uint16_t );
void setOutputFormat(void); // fix output HEX format void setOutputFormat(void); // fix output HEX format
void HandleKeyPad(void); //handle one tag for multi key strokes
static void handleD0Interrupt(void); static void handleD0Interrupt(void);
static void handleD1Interrupt(void); static void handleD1Interrupt(void);
static void handleDxInterrupt(int in); // fix #11047 static void handleDxInterrupt(int in); // fix #11047
uint64_t rfid; uint64_t rfid;
uint8_t tagSize; uint32_t tagSize;
char outFormat; const char* outFormat;
uint64_t mqttRFIDKeypadBuffer;
uint64_t webRFIDKeypadBuffer;
static volatile uint64_t rfidBuffer; static volatile uint64_t rfidBuffer;
static volatile uint16_t bitCount; static volatile uint16_t bitCount;
@ -107,7 +127,6 @@ class Wiegand {
static volatile bool CodeComplete; static volatile bool CodeComplete;
static volatile RFID_store rfid_found[]; static volatile RFID_store rfid_found[];
static volatile int currentFoundRFIDcount; static volatile int currentFoundRFIDcount;
}; };
Wiegand* oWiegand = new Wiegand(); Wiegand* oWiegand = new Wiegand();
@ -141,7 +160,9 @@ Wiegand::Wiegand() {
rfid_found[i].RFID=0; rfid_found[i].RFID=0;
rfid_found[i].bitCount=0; rfid_found[i].bitCount=0;
} }
outFormat='u'; // standard output format decimal outFormat="u"; // standard output format decimal
mqttRFIDKeypadBuffer = 0;
webRFIDKeypadBuffer = 0;
} }
void ICACHE_RAM_ATTR Wiegand::handleD1Interrupt() { // Receive a 1 bit. (D0=high & D1=low) void ICACHE_RAM_ATTR Wiegand::handleD1Interrupt() { // Receive a 1 bit. (D0=high & D1=low)
@ -202,6 +223,10 @@ void Wiegand::Init() {
#endif // DEV_WIEGAND_TEST_MODE>0 #endif // DEV_WIEGAND_TEST_MODE>0
pinMode(Pin(GPIO_WIEGAND_D0), INPUT_PULLUP); pinMode(Pin(GPIO_WIEGAND_D0), INPUT_PULLUP);
pinMode(Pin(GPIO_WIEGAND_D1), INPUT_PULLUP); pinMode(Pin(GPIO_WIEGAND_D1), INPUT_PULLUP);
#if (DEV_WIEGAND_TEST_MODE==1) // overwrite the setting
pinMode(Pin(GPIO_WIEGAND_D0), OUTPUT);
pinMode(Pin(GPIO_WIEGAND_D1), OUTPUT);
#endif //(DEV_WIEGAND_TEST_MODE==1)
attachInterrupt(Pin(GPIO_WIEGAND_D0), handleD0Interrupt, FALLING); attachInterrupt(Pin(GPIO_WIEGAND_D0), handleD0Interrupt, FALLING);
attachInterrupt(Pin(GPIO_WIEGAND_D1), handleD1Interrupt, FALLING); attachInterrupt(Pin(GPIO_WIEGAND_D1), handleD1Interrupt, FALLING);
isInit = true; // Helps to run only if correctly setup isInit = true; // Helps to run only if correctly setup
@ -286,27 +311,8 @@ uint8_t Wiegand::CalculateParities(uint64_t tagWithoutParities, int tag_size=26)
return retValue; return retValue;
} }
char Wiegand::translateEnterEscapeKeyPress(char oKeyPressed) {
switch(oKeyPressed) {
case 0x0b: // 11 or * key
return 0x0d; // 13 or ASCII ENTER
case 0x0a: // 10 or # key
return 0x1b; // 27 or ASCII ESCAPE
default:
return oKeyPressed;
}
}
bool Wiegand::WiegandConversion (uint64_t rfidBuffer, uint16_t bitCount) { bool Wiegand::WiegandConversion (uint64_t rfidBuffer, uint16_t bitCount) {
bool bRet = false; bool bRet = false;
// unsigned long nowTick = micros();
// Add a maximum wait time for new bits
// unsigned long diffTicks = nowTick - lastFoundTime;
// unsigned long inter_code_gap = WIEGAND_CODE_GAP_FACTOR * bitTime;
// if ((diffTicks > inter_code_gap) && (diffTicks >= 1000000 )) { // Max. 4-8 secs between 2 bits comming in. depends on micros() resolution
#if (DEV_WIEGAND_TEST_MODE)>0 #if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Raw tag %llu, Bit count %u"), rfidBuffer, bitCount); AddLog(LOG_LEVEL_INFO, PSTR("WIE: Raw tag %llu, Bit count %u"), rfidBuffer, bitCount);
#endif // DEV_WIEGAND_TEST_MODE>0 #endif // DEV_WIEGAND_TEST_MODE>0
@ -318,7 +324,7 @@ bool Wiegand::WiegandConversion (uint64_t rfidBuffer, uint16_t bitCount) {
} }
else if (4 == bitCount) { else if (4 == bitCount) {
// 4-bit Wiegand codes for keypads // 4-bit Wiegand codes for keypads
rfid = (int)translateEnterEscapeKeyPress(rfidBuffer & 0x0000000F); rfid = (int)(rfidBuffer & 0x0000000F);
tagSize = bitCount; tagSize = bitCount;
bRet = true; bRet = true;
} }
@ -329,16 +335,15 @@ bool Wiegand::WiegandConversion (uint64_t rfidBuffer, uint16_t bitCount) {
char highNibble = (rfidBuffer & 0xf0) >>4; char highNibble = (rfidBuffer & 0xf0) >>4;
char lowNibble = (rfidBuffer & 0x0f); char lowNibble = (rfidBuffer & 0x0f);
if (lowNibble == (~highNibble & 0x0f)) { // Check if low nibble matches the "NOT" of high nibble. if (lowNibble == (~highNibble & 0x0f)) { // Check if low nibble matches the "NOT" of high nibble.
rfid = (int)translateEnterEscapeKeyPress(lowNibble); rfid = (int)(lowNibble);
bRet = true; bRet = true;
} else { } else {
// lastFoundTime = nowTick;
bRet = false; bRet = false;
} }
tagSize = bitCount; tagSize = bitCount;
} else { } else {
// Time reached but unknown bitCount, clear and start again // Time reached but unknown bitCount, clear and start again
// lastFoundTime = nowTick; tagSize = 0;
bRet = false; bRet = false;
} }
#if (DEV_WIEGAND_TEST_MODE)>0 #if (DEV_WIEGAND_TEST_MODE)>0
@ -349,8 +354,31 @@ bool Wiegand::WiegandConversion (uint64_t rfidBuffer, uint16_t bitCount) {
void Wiegand::setOutputFormat(void) void Wiegand::setOutputFormat(void)
{ {
if (GetOption(WIEGAND_OPTION_HEX) == 0) { outFormat = 'u'; } if (GetOption(WIEGAND_OPTION_HEX) == 0) { outFormat = "u"; }
else { outFormat = 'X'; } else { outFormat = "X" WIEGAND_OPTION_HEX_POSTFIX ; }
}
void Wiegand::HandleKeyPad(void) { // will be called if a valid key pad input was recognized
if (GetOption(WIEGAND_OPTION_KEYPAD_TO_TAG) == 0) { // handle all key pad inputs as ONE Tag until # is recognized
if ( (tagSize == 4) || (tagSize == 8) ) {
//only handle Keypad strokes if it is requested
if (rfid >= 0x0a) { // # * as end of input detected -> all key values which are larger than 9
rfid = mqttRFIDKeypadBuffer; // original tagsize of 4 or 8 will be kept.
webRFIDKeypadBuffer = 0; // can be resetted, because now rfid > 0 will be used at web interface
mqttRFIDKeypadBuffer = 0;
}
else {
mqttRFIDKeypadBuffer = (mqttRFIDKeypadBuffer*10)+rfid; //left shift + new key
webRFIDKeypadBuffer = mqttRFIDKeypadBuffer; // visualising the current typed keys
rfid = 0;
tagSize = 0;
}
}
else { //it's not a key pad entry, so another key come in, we will reset the buffer, if it is not finished yet
webRFIDKeypadBuffer = 0;
mqttRFIDKeypadBuffer = 0;
}
}
} }
void Wiegand::ScanForTag() { void Wiegand::ScanForTag() {
@ -364,7 +392,7 @@ void Wiegand::ScanForTag() {
// format MQTT output // format MQTT output
setOutputFormat(); setOutputFormat();
char sFormat[50]; char sFormat[50];
snprintf( sFormat, 50, PSTR(",\"Wiegand\":{\"UID\":%%0ll%c,\"" D_JSON_SIZE "\":%%%c}}"), outFormat, outFormat); snprintf( sFormat, 50, PSTR(",\"Wiegand\":{\"UID\":%%0ll%s,\"" D_JSON_SIZE "\":%%%s}}"), outFormat, outFormat);
for (int i= 0; i < WIEGAND_RFID_ARRAY_SIZE; i++) for (int i= 0; i < WIEGAND_RFID_ARRAY_SIZE; i++)
{ {
@ -375,11 +403,14 @@ void Wiegand::ScanForTag() {
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Previous tag %llu"), oldTag); AddLog(LOG_LEVEL_INFO, PSTR("WIE: Previous tag %llu"), oldTag);
#endif // DEV_WIEGAND_TEST_MODE>0 #endif // DEV_WIEGAND_TEST_MODE>0
if (validKey) { // Only in case of valid key do action. Issue#10585 if (validKey) { // Only in case of valid key do action. Issue#10585
if (oldTag == rfid) { HandleKeyPad(); //support one tag for multi key input
AddLog(LOG_LEVEL_DEBUG, PSTR("WIE: Old tag")); if (tagSize>0) { //do output only for rfids which are complete
if (oldTag == rfid) {
AddLog(LOG_LEVEL_DEBUG, PSTR("WIE: Old tag"));
}
ResponseTime_P(sFormat, rfid, tagSize);
MqttPublishTeleSensor();
} }
ResponseTime_P(sFormat, rfid,tagSize);
MqttPublishTeleSensor();
} }
rfid_found[i].RFID=0; rfid_found[i].RFID=0;
rfid_found[i].bitCount=0; rfid_found[i].bitCount=0;
@ -399,17 +430,192 @@ void Wiegand::ScanForTag() {
#ifdef USE_WEBSERVER #ifdef USE_WEBSERVER
void Wiegand::Show(void) { void Wiegand::Show(void) {
setOutputFormat(); setOutputFormat();
char sFormat [30]; char sFormat [30];
snprintf( sFormat, 30,PSTR("{s}Wiegand UID{m}%%ll%c {e}"), outFormat); snprintf( sFormat, 30,PSTR("{s}Wiegand UID{m}%%ll%s {e}"), outFormat);
WSContentSend_PD(sFormat, rfid); if (tagSize>0) { WSContentSend_PD(sFormat, rfid); }
//WSContentSend_PD(PSTR("{s}Wiegand UID{m}%llX {e}"), rfid); else { WSContentSend_PD(sFormat, webRFIDKeypadBuffer); }
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Tag %llu, Bits %u"), rfid, bitCount); #if (DEV_WIEGAND_TEST_MODE)>0
#endif // DEV_WIEGAND_TEST_MODE>0 AddLog(LOG_LEVEL_INFO, PSTR("WIE: Tag %llu, Bits %u"), rfid, bitCount);
#endif // DEV_WIEGAND_TEST_MODE>0
} }
#endif // USE_WEBSERVER #endif // USE_WEBSERVER
#if (DEV_WIEGAND_TEST_MODE==1)
void CmndTag(void);
void CmndTagSize(void);
void CmndTagGap(void);
void CmndTimeReset(void);
void CmndAllReset(void);
void CmndSend(void);
void CmndBitTime(void);
void CmndInterBitTime(void);
unsigned int setTagSize( char *);
unsigned int setTag ( char * );
void sendBit(unsigned int b);
void sendTag(uint32_t Tag, uint32_t TagSize);
uint32_t currTag = 0;
uint32_t currTagSize = 26; //default value 26 Wiegand
uint32_t currBitTime=(WIEGAND_BIT_TIME_DEFAULT/10); //length of the bit impluse in µs
uint32_t currInterBitTime = ((WIEGAND_BIT_TIME_DEFAULT/10)*9); //time to wait before next bit is send in µs
uint32_t currTagGabTime = (WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR) ; //time to wait before next tag is send in µs
void CmndTag(void){
if (XdrvMailbox.data_len > 0) {
currTag= strtoul(XdrvMailbox.data, nullptr, 0);
}
ResponseCmndNumber(currTag);
}
void CmndTagSize(void){
if (XdrvMailbox.data_len > 0) {
currTagSize = setTagSize(XdrvMailbox.data);
}
ResponseCmndNumber(currTagSize);
}
void CmndTagGap(void){
if (XdrvMailbox.data_len > 0) {
currTagGabTime = strtoul(XdrvMailbox.data, nullptr, 0);
if (currTagGabTime < (currBitTime+currInterBitTime) ) // doesn't make sense
{ currTagGabTime = (currBitTime+currInterBitTime) * WIEGAND_CODE_GAP_FACTOR; }
}
ResponseCmndNumber(currTagGabTime);
}
void CmndBitTime(void){
if (XdrvMailbox.data_len > 0) {
uint32_t newBitTime = strtoul(XdrvMailbox.data, nullptr, 0);
if ( (newBitTime >= 100) && (newBitTime <= 500000) ) // accept only values between 100µs and 5s
{ currBitTime = newBitTime; }
}
ResponseCmndNumber(currBitTime);
}
void CmndInterBitTime(void){
if (XdrvMailbox.data_len > 0) {
uint32_t newInterBitTime = strtoul(XdrvMailbox.data, nullptr, 0);
if ( (newInterBitTime >= currBitTime) && (newInterBitTime <= (100 * currBitTime)) ) // accept only values between 100µs and 5s
{ currInterBitTime = newInterBitTime; }
}
ResponseCmndNumber(currInterBitTime);
}
void CmndTimeReset(void){
currBitTime=(WIEGAND_BIT_TIME_DEFAULT/10);
currInterBitTime = ((WIEGAND_BIT_TIME_DEFAULT/10)*9);
currTagGabTime = (WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR) ;
ResponseCmndChar_P(PSTR("All timings reset to default!"));
}
void CmndAllReset(void){
CmndTimeReset();
currTagSize = 26;
ResponseCmndChar_P(PSTR("All timings and tag size reset to default"));
}
void CmndSend(void){
if (XdrvMailbox.data_len > 0) { // parameter [tag[:tagsize];tag[:tagsize];...]
char *parameter = strtok(XdrvMailbox.data, ";");
while (parameter != nullptr) {
char* pTagSize = strchr(parameter,':'); // find optional tagsizes
if (pTagSize != 0) { // 2 parameters found tag:tagsize
*pTagSize = 0; //replace separator ':' by \0 string end
currTag = setTag(parameter); // is now ending before tagsize
pTagSize++; //set the starting char of tagsize correctly
currTagSize = setTagSize(pTagSize);
ResponseCmndChar(pTagSize);
}
else {//only one parameter (tag) found
currTag = setTag(parameter);
}
ResponseCmndChar(parameter);
sendTag(currTag, currTagSize);
ResponseCmndNumber(currTag);
parameter = strtok(nullptr, ";");
}
}
else { // send last used values again
sendTag(currTag, currTagSize);
ResponseCmndNumber(currTag);
}
}
unsigned int setTag ( char * newTag) {
unsigned int retValue = strtoul(newTag, nullptr, 0);
if ( (currTagSize == 4) || (currTagSize == 8) ) //key pad input simulation requested
{ retValue &= 0x0F; }
return retValue;
}
unsigned int setTagSize ( char * newTagSize) {
unsigned int retValue = strtoul(newTagSize, nullptr, 0);
// accept only supported TagSize
if ( retValue <= 4) { retValue = 4;}
else if ( retValue <= 8) { retValue = 8;}
else if ( retValue <= 24) { retValue = 24;}
else if ( retValue <= 26) { retValue = 26;}
else if ( retValue <= 32) { retValue = 32;}
else if ( retValue <= 34) { retValue = 34;}
else { retValue = 26;} //default value
return retValue;
}
void sendBit(unsigned int b) {
int sel = (b == 0) ? Pin(GPIO_WIEGAND_D0) : Pin(GPIO_WIEGAND_D1);
digitalWrite(sel, 0);
delayMicroseconds(currBitTime); // bit impuls time
digitalWrite(sel, 1);
delayMicroseconds(currBitTime+currInterBitTime); // bit + inter bit gap time
}
void sendPlainTag( uint32_t pTag, uint32_t pTagSize){ // send tag without parity
for (int i=1; i<=pTagSize; ++i)
{
sendBit((pTag >> (pTagSize-i)) & 1);
}
}
void sendTag(uint32_t Tag, uint32_t TagSize) {
// TagSize is the requested output tagSize. means b.e. 24 bit == 24 Tag without parity 26 bit = 24 bit with parity bits
// supported tag sizes 4/8 for key pad simulation 24/26 and 32/34 for RFID tags
switch (TagSize){
case 24:
case 32:
case 4:
sendPlainTag( Tag, TagSize);
break;
case 26:
case 34:
uint8_t parity;
parity = oWiegand->CalculateParities(Tag, TagSize);
sendBit(parity & 0x01); //even parity (starting parity)
sendPlainTag( Tag, TagSize-2);
sendBit(parity & 0x80); //odd parity (ending parity)
break;
case 8: // high nibble is ~ low nibble
Tag = Tag & 0x0F; // low nibble in case of more the one char input it will be cut here
Tag = Tag | ((~Tag) << 4);
sendPlainTag ( Tag, TagSize);
break;
}
//delay to simulate end of tag
delayMicroseconds(currTagGabTime); // inter code gap
return;
}
const char kWiegandCommands[] PROGMEM = "Wie|" // No prefix
"Tag|"
"TagSize|"
"TagGap|"
"BitTime|"
"InterBitTime|"
"TimeReset|"
"AllReset|"
"Send";
void (* const WiegandCommand[])(void) PROGMEM = {
&CmndTag,
&CmndTagSize,
&CmndTagGap,
&CmndBitTime,
&CmndInterBitTime,
&CmndTimeReset,
&CmndAllReset,
&CmndSend
};
#endif //(DEV_WIEGAND_TEST_MODE==1)
/*********************************************************************************************\ /*********************************************************************************************\
* Interface * Interface
\*********************************************************************************************/ \*********************************************************************************************/
@ -430,6 +636,11 @@ bool Xsns82(byte function) {
oWiegand->Show(); oWiegand->Show();
break; break;
#endif // USE_WEBSERVER #endif // USE_WEBSERVER
#if (DEV_WIEGAND_TEST_MODE==1)
case FUNC_COMMAND:
result = DecodeCommand(kWiegandCommands, WiegandCommand);
break;
#endif //(DEV_WIEGAND_TEST_MODE==1)
} }
} }
return result; return result;