Merge pull request #5748 from s-hadinger/fix/better_colormode

Allow all 5 PWM channels individually adressable with LEDs.
This commit is contained in:
Theo Arends 2019-05-05 19:43:57 +01:00 committed by GitHub
commit fa64a0bf4d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 342 additions and 229 deletions

View File

@ -4,6 +4,8 @@
* Fix Shelly 2.5 overtemp * Fix Shelly 2.5 overtemp
* Set gamma correction as default behavior, ie "Ledtable 1" * Set gamma correction as default behavior, ie "Ledtable 1"
* Refactored management of lights, using classes and integers instead of floats. * Refactored management of lights, using classes and integers instead of floats.
* Extend PWM resolution from 8 to 10 bits for low brightness lights
* Allow all 5 PWM channels individually adressable with LEDs. (#5741)
* *
* 6.5.0.8 20190413 * 6.5.0.8 20190413
* Add Tuya Dimmer 10 second heartbeat serial packet required by some Tuya dimmer secondary MCUs * Add Tuya Dimmer 10 second heartbeat serial packet required by some Tuya dimmer secondary MCUs

View File

@ -134,6 +134,10 @@ const char kLightCommands[] PROGMEM =
D_CMND_PIXELS "|" D_CMND_RGBWWTABLE "|" D_CMND_ROTATION "|" D_CMND_SCHEME "|" D_CMND_SPEED "|" D_CMND_WAKEUP "|" D_CMND_WAKEUPDURATION "|" D_CMND_PIXELS "|" D_CMND_RGBWWTABLE "|" D_CMND_ROTATION "|" D_CMND_SCHEME "|" D_CMND_SPEED "|" D_CMND_WAKEUP "|" D_CMND_WAKEUPDURATION "|"
D_CMND_WHITE "|" D_CMND_WIDTH "|" D_CMND_CHANNEL "|" D_CMND_HSBCOLOR "|UNDOCA" ; D_CMND_WHITE "|" D_CMND_WIDTH "|" D_CMND_CHANNEL "|" D_CMND_HSBCOLOR "|UNDOCA" ;
// Light color mode, either RGB alone, or white-CT alone, or both only available if ct_rgb_linked is false
enum LightColorModes {
LCM_RGB = 1, LCM_CT = 2, LCM_BOTH = 3 };
struct LRgbColor { struct LRgbColor {
uint8_t R, G, B; uint8_t R, G, B;
}; };
@ -280,137 +284,179 @@ uint16_t changeUIntScale(uint16_t inum, uint16_t ifrom_min, uint16_t ifrom_max,
// This class is an abstraction of the current light state. // This class is an abstraction of the current light state.
// It allows for b/w, full colors, or white colortone // It allows for b/w, full colors, or white colortone
// //
// This class has 3 independant slots // This class has 2 independant slots
// 1/ Brightness 0.255, dimmer controls both RGB and WC (warm-cold) // 1/ Brightness 0.255, dimmer controls both RGB and WC (warm-cold)
// 1/ RGB and Hue/Sat - always kept in sync and stored at full brightness,
// i.e. R G or B are 255
// briRGB specifies the brightness for the RGB slot.
// If Brightness is 0, it is equivalent to Off (for compatibility) // If Brightness is 0, it is equivalent to Off (for compatibility)
// Dimmer is Brightness converted to range 0..100 // Dimmer is Brightness converted to range 0..100
// 2/ RGB and Hue/Sat - always kept in sync and stored at full brightness, // 2/ White with colortone - or WC (Warm / Cold)
// i.e. R G or B are 255 // ct is 153..500 temperature (153=cold, 500=warm)
// 3/ White with colortone - or WC (Warm / Cold) // briCT specifies the brightness for white channel
// ct is either 0: no white colortone control, revert to RGB
// ct is 153..500 temperature
// Optional whiteBri to contraol separately the brightness of white channel
// //
// RGB and Hue/Sat are always kept in sync // Dimmer (0.100) is automatically derived from brightness
// Brightness is stored in full range 0..255
// Dimmer (0.100) is autoamtically derived from brightness
// //
// Light has two states: either color (HS) when ct==0, or white with // INVARIANTS:
// colortone if ct > 0. // 1. RGB components are always stored at full brightness and modulated with briRGB
// ((R == 255) || (G == 255) || (B == 255))
// 2. RGB and Hue/Sat are always kept in sync whether you use setRGB() or setHS()
// 3. Warm/Cold white channels are always stored at full brightness
// ((WW == 255) || (WC == 255))
// 4. WC/WW and CT are always kept in sync.
// Note: if you use setCT() then WC+WW == 255 (both channels are linked)
// but if you use setWC() both channels can be set independantly
// 5. If RGB or CT channels are deactivated, then corresponding brightness is zero
// if (colot_tone == LCM_RGB) then briCT = 0
// if (color_tone == LCM_CT) then briRGB = 0
// if (colot_tone == LCM_BOTH) then briRGB and briCT can have any values
// //
// // Note: If you want the actual RGB, you need to multiply with Bri, or use getActualRGBCW()
// Note: RGB is internally stored always at full brightness (ie. one of R,G,B is 255)
// If you want the actual RGB, you need to multiply with Bri,
// or use getActualRGBCW()
// Note: all values are stored as unsigned integer, no floats. // Note: all values are stored as unsigned integer, no floats.
// Note: you can query vaules from this singleton. But to change values, // Note: you can query vaules from this singleton. But to change values,
// use the LightController - changing this object will have no effect on actual light. // use the LightController - changing this object will have no effect on actual light.
// //
class LightStateClass { class LightStateClass {
private: private:
uint16_t _ct = 0; // 0 or 153..500
uint16_t _hue = 0; // 0..359 uint16_t _hue = 0; // 0..359
uint8_t _sat = 255; // 0..255 uint8_t _sat = 255; // 0..255
uint8_t _bri = 255; // 0..255 uint8_t _briRGB = 255; // 0..255
// dimmer is same as _bri but with a range of 0%-100% // dimmer is same as _bri but with a range of 0%-100%
uint8_t _r = 255; // 0..255 uint8_t _r = 255; // 0..255
uint8_t _g = 255; // 0..255 uint8_t _g = 255; // 0..255
uint8_t _b = 255; // 0..255 uint8_t _b = 255; // 0..255
// are RGB and CT linked, i.e. if we set CT then RGB channels are off
bool _ct_rgb_linked = true; uint8_t _subtype = 0; // local copy of light_subtype, if we need multiple lights
uint8_t _whiteBri = 255; uint16_t _ct = 153; // 153..500, default to 153 (cold white)
uint8_t _wc = 255; // white cold channel
uint8_t _ww = 0; // white warm channel
uint8_t _briCT = 255;
uint8_t _color_mode = LCM_RGB; // RGB by default
public: public:
LightStateClass() { LightStateClass() {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::Constructor RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::Constructor RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri);
} }
bool setCTRGBLinked(bool ct_rgb_linked) { void setSubType(uint8_t sub_type) {
bool prev = _ct_rgb_linked; _subtype = sub_type; // set sub_type at initialization, shoudln't be changed afterwards
_ct_rgb_linked = ct_rgb_linked;
return prev;
} }
bool isCTRGBLinked() { // This function is a bit hairy, it will try to match the rerquired
return _ct_rgb_linked; // colormode with the features of the device:
// LST_NONE: LCM_RGB
// LST_SINGLE: LCM_RGB
// LST_COLDWARM: LCM_CT
// LST_RGB: LCM_RGB
// LST_RGBW: LCM_RGB, LCM_CT or LCM_BOTH
// LST_RGBWC: LCM_RGB, LCM_CT or LCM_BOTH
uint8_t setColorMode(uint8_t cm) {
uint8_t prev_cm = _color_mode;
if (cm < LCM_RGB) { cm = LCM_RGB; }
if (cm > LCM_BOTH) { cm = LCM_BOTH; }
uint8_t maxbri = (_briRGB >= _briCT) ? _briRGB : _briCT;
switch (_subtype) {
case LST_COLDWARM:
_color_mode = LCM_CT;
break;
case LST_NONE:
case LST_SINGLE:
case LST_RGB:
default:
_color_mode = LCM_RGB;
break;
case LST_RGBW:
case LST_RGBWC:
_color_mode = cm;
break;
}
if (LCM_RGB == _color_mode) {
_briCT = 0;
if (0 == _briRGB) { _briRGB = maxbri; }
}
if (LCM_CT == _color_mode) {
_briRGB = 0;
if (0 == _briCT) { _briCT = maxbri; }
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setColorMode prev_cm (%d) req_cm (%d) new_cm (%d)", prev_cm, cm, _color_mode);
#endif
return prev_cm;
} }
void setWhite() { inline uint8_t getColorMode() {
_r = _g = _b = 255; return _color_mode;
_hue = 0; }
_sat = 0;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setWhite RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri); void addRGBMode() {
setColorMode(_color_mode | LCM_RGB);
}
void addCTMode() {
setColorMode(_color_mode | LCM_CT);
} }
// Get RGB color, always at full brightness (ie. one of the components is 255) // Get RGB color, always at full brightness (ie. one of the components is 255)
void getRGB(uint8_t *r, uint8_t *g, uint8_t *b) { void getRGB(uint8_t *r, uint8_t *g, uint8_t *b) {
if (r) *r = _r; if (r) { *r = _r; }
if (g) *g = _g; if (g) { *g = _g; }
if (b) *b = _b; if (b) { *b = _b; }
} }
// get full brightness values for wamr and cold channels. // get full brightness values for wamr and cold channels.
// either w=c=0 (off) or w+c=255 // either w=c=0 (off) or w+c=255
void getCW(uint8_t *rc, uint8_t *rw) { void getCW(uint8_t *rc, uint8_t *rw) {
uint16_t ct = _ct; if (rc) { *rc = _wc; }
uint16_t w = changeUIntScale(ct, 153, 500, 0, 255); if (rw) { *rw = _ww; }
if (rw) { *rw = (ct ? w : 0); }
if (rc) { *rc = (ct ? 255 - w : 0); }
} }
// Get the actual RGB corrected with Brightness, ready to drive leds // Get the actual values for each channel, ie multiply with brightness
// return Bri void getActualRGBWC(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *w, uint8_t *c) {
uint8_t getActualRGBCW(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *c, uint8_t *w) { bool rgb_channels_on = _color_mode & LCM_RGB;
uint16_t bri = _bri; bool ct_channels_on = _color_mode & LCM_CT;
uint16_t wBri = _whiteBri;
bool rgb_channels_off = _ct && _ct_rgb_linked;
if (r) { *r = rgb_channels_off ? 0 : changeUIntScale(_r, 0, 255, 0, bri); } if (r) { *r = rgb_channels_on ? changeUIntScale(_r, 0, 255, 0, _briRGB) : 0; }
if (g) { *g = rgb_channels_off ? 0 : changeUIntScale(_g, 0, 255, 0, bri); } if (g) { *g = rgb_channels_on ? changeUIntScale(_g, 0, 255, 0, _briRGB) : 0; }
if (b) { *b = rgb_channels_off ? 0 : changeUIntScale(_b, 0, 255, 0, bri); } if (b) { *b = rgb_channels_on ? changeUIntScale(_b, 0, 255, 0, _briRGB) : 0; }
if (_ct) { if (c) { *c = ct_channels_on ? changeUIntScale(_wc, 0, 255, 0, _briCT) : 0; }
// change range from 153..500 to 0..255 if (w) { *w = ct_channels_on ? changeUIntScale(_ww, 0, 255, 0, _briCT) : 0; }
uint8_t iwarm, icold;
getCW(&icold, &iwarm);
if (c) { *w = changeUIntScale(icold, 0, 255, 0, wBri); }
if (w) { *c = changeUIntScale(iwarm, 0, 255, 0, wBri); }
} else {
if (w) { *w = 0; }
if (c) { *c = 0; }
}
return _bri;
} }
uint8_t getChannels(uint8_t *channels) { uint8_t getChannels(uint8_t *channels) {
return getActualRGBCW(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]); getActualRGBWC(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]);
} }
void getHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) { void getHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) {
if (hue) *hue = _hue; if (hue) { *hue = _hue; }
if (sat) *sat = _sat; if (sat) { *sat = _sat; }
if (bri) *bri = _bri; if (bri) { *bri = _briRGB; }
} }
// getBri() is guaranteed to give the same result as setBri() - no rounding errors. // getBri() is guaranteed to give the same result as setBri() - no rounding errors.
uint8_t getBri() { uint8_t getBri(void) {
return _bri; // 0..255 // return the max of _briCT and _briRGB
return (_briRGB >= _briCT) ? _briRGB : _briCT;
} }
// get the Optional white Brightness // get the white Brightness
uint8_t getWhiteBri() { inline uint8_t getBriCT() {
return _whiteBri; return _briCT;
} }
uint8_t getDimmer() { uint8_t getDimmer() {
uint8_t dimmer = changeUIntScale(_bri, 0, 255, 0, 100); // 0.100 uint8_t bri = getBri();
uint8_t dimmer = changeUIntScale(bri, 0, 255, 0, 100); // 0.100
// if brightness is non zero, force dimmer to be non-zero too // if brightness is non zero, force dimmer to be non-zero too
if ((dimmer == 0) && (_bri > 0)) { dimmer = 1; } if ((dimmer == 0) && (bri > 0)) { dimmer = 1; }
return dimmer; return dimmer;
} }
uint16_t getCT() { inline uint16_t getCT() {
return _ct; // 0 or 153..500 return _ct; // 153..500
} }
// get current color in XY format // get current color in XY format
@ -420,66 +466,117 @@ class LightStateClass {
// setters -- do not use directly, use the light_controller instead // setters -- do not use directly, use the light_controller instead
// sets both master Bri and whiteBri // sets both master Bri and whiteBri
void setBri(uint8_t bri, bool syncWhiteBri = true) { void setBri(uint8_t bri) {
_bri = bri; // 0..255 setBriRGB(_color_mode & LCM_RGB ? bri : 0);
if (syncWhiteBri) { _whiteBri = bri; } setBriCT(_color_mode & LCM_CT ? bri : 0);
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setBri RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setBri RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif #endif
} }
// whanges the white brightness, leaving master Bri untouched // changes the RGB brightness alone
void setWhiteBri(uint8_t wBri) { uint8_t setBriRGB(uint8_t bri_rgb) {
_whiteBri = wBri; uint8_t prev_bri = _briRGB;
_briRGB = bri_rgb;
if (bri_rgb > 0) { addRGBMode(); }
return prev_bri;
}
// changes the white brightness alone
uint8_t setBriCT(uint8_t bri_ct) {
uint8_t prev_bri = _briCT;
_briCT = bri_ct;
if (bri_ct > 0) { addCTMode(); }
return prev_bri;
}
inline uint8_t getBriRGB() {
return _briRGB;
} }
void setDimmer(uint8_t dimmer) { void setDimmer(uint8_t dimmer) {
_bri = changeUIntScale(dimmer, 0, 100, 0, 255); // 0..255 setBri(changeUIntScale(dimmer, 0, 100, 0, 255)); // 0..255
} }
void setCT(uint16_t ct) { void setCT(uint16_t ct) {
if (0 == ct) { if (0 == ct) {
// disable ct mode // disable ct mode
_ct = 0; setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal
} else { } else {
_ct = (ct < 153 ? 153 : (ct > 500 ? 500 : ct)); ct = (ct < 153 ? 153 : (ct > 500 ? 500 : ct));
_ww = changeUIntScale(ct, 153, 500, 0, 255);
_wc = 255 - _ww;
_ct = ct;
addCTMode();
} }
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCT RGB raw (%d %d %d) HS (%d %d) bri (%d) CT (%d)", _r, _g, _b, _hue, _sat, _bri, _ct); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCT RGB raw (%d %d %d) HS (%d %d) briRGB (%d) briCT (%d) CT (%d)", _r, _g, _b, _hue, _sat, _briRGB, _briCT, _ct);
#endif #endif
} }
// recalibrate W and C, in case a channel was changed independently // Manually set Warm/Cold channels.
// w+c must be 255, recalculate ct temperature accordingly // There are two modes:
// returns brightness // 1. (free_range == false, default)
uint8_t setCW(uint8_t w, uint8_t c) { // In this mode there is only one virtual white channel with color temperature
uint16_t wc = w + c; // As a side effect, WC+WW = 255. It means also that the sum of light power
if (wc > 0) { // from white LEDs is always equal to briCT. It is not possible here
uint16_t ct = changeUIntScale(w, 0, wc, 153, 500); // to set both white LEDs at full power, hence protecting power supplies
setCT(ct); // from overlaoding.
// 2. (free_range == true)
// In this mode, values of WC and WW are free -- both channels can be set
// at full power.
// In this mode, we always scale both channels so that one at least is 255.
//
// We automatically adjust briCT to have the right values of channels
void setWC(uint8_t w, uint8_t c, bool free_range = false) {
uint16_t max = (w > c) ? w : c; // 0..255
uint16_t sum = c + w;
if (0 == max) {
_briCT = 0; // brightness set to null
setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal
} else { } else {
setCT(0); if (!free_range) {
// we need to normalize to sum = 255
_ww = changeUIntScale(w, 0, sum, 0, 255);
_wc = 255 - _ww;
} else { // we normalize to max = 255
_ww = changeUIntScale(w, 0, max, 0, 255);
_wc = changeUIntScale(c, 0, max, 0, 255);
}
_ct = changeUIntScale(w, 0, sum, 153, 500);
addCTMode(); // activate CT mode if needed
if (_color_mode & LCM_CT) { _briCT = free_range ? max : (sum > 255 ? 255 : sum); }
} }
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCW CW (%d %d) CT (%d)", c, w, _ct); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setWC WC (%d %d) CT (%d) briCT (%d)", w, c, _ct, _briCT);
#endif #endif
return (wc > 255 ? 255 : wc);
} }
// sets RGB and returns the Brightness. Bri is unchanged here. // sets RGB and returns the Brightness. Bri is updated unless keep_bri is true
uint8_t setRGB(uint8_t r, uint8_t g, uint8_t b) { uint8_t setRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) {
uint16_t hue; uint16_t hue;
uint8_t sat; uint8_t sat;
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB input (%d %d %d)", r, g, b);
#endif
uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255 uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255
if (0 == max) { if (0 == max) {
r = g = b = 255; r = g = b = 255;
} else if (255 > max) { setColorMode(LCM_CT); // try deactivating RGB, setColorMode() will check if this is legal
// we need to normalize rgb } else {
r = changeUIntScale(r, 0, max, 0, 255); if (255 > max) {
g = changeUIntScale(g, 0, max, 0, 255); // we need to normalize rgb
b = changeUIntScale(b, 0, max, 0, 255); r = changeUIntScale(r, 0, max, 0, 255);
g = changeUIntScale(g, 0, max, 0, 255);
b = changeUIntScale(b, 0, max, 0, 255);
}
addRGBMode();
}
if (!keep_bri) {
_briRGB = (_color_mode & LCM_RGB) ? max : 0;
} }
RgbToHsb(r, g, b, &hue, &sat, nullptr); RgbToHsb(r, g, b, &hue, &sat, nullptr);
@ -488,9 +585,8 @@ class LightStateClass {
_b = b; _b = b;
_hue = hue; _hue = hue;
_sat = sat; _sat = sat;
_ct = 0; // no ct mode
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif #endif
return max; return max;
} }
@ -503,10 +599,10 @@ class LightStateClass {
_b = b; _b = b;
_hue = hue; _hue = hue;
_sat = sat; _sat = sat;
_ct = 0; // no ct mode addRGBMode();
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS HS (%d %d) rgb (%d %d %d)", hue, sat, r, g, b); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS HS (%d %d) rgb (%d %d %d)", hue, sat, r, g, b);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif #endif
} }
@ -514,26 +610,13 @@ class LightStateClass {
// Channels are: R G B CW WW // Channels are: R G B CW WW
// Brightness is automatically recalculated to adjust channels to the desired values // Brightness is automatically recalculated to adjust channels to the desired values
void setChannels(uint8_t *channels) { void setChannels(uint8_t *channels) {
uint8_t briRGB = setRGB(channels[0], channels[1], channels[2]); setRGB(channels[0], channels[1], channels[2]);
uint8_t briCW = setCW(channels[3], channels[4]); setWC(channels[3], channels[4], true); // free range for WC and WW
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels (%d %d %d %d %d)", AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels (%d %d %d %d %d)",
channels[0], channels[1], channels[2], channels[3], channels[4]); channels[0], channels[1], channels[2], channels[3], channels[4]);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels CT (%d) briRGB (%d) briCW (%d) linked (%d)", AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels CT (%d) briRGB (%d) briCT (%d)", _ct, _briRGB, _briCT);
_ct, briRGB, briCW, _ct_rgb_linked);
#endif #endif
if (_ct_rgb_linked){
// if RGB and CT are linked, we set Brightness to either CT or RGB
if (_ct) {
setBri(briCW);
} else {
setBri(briRGB);
}
} else {
// we need to store the two brightnesses separately
setBri(briRGB);
setWhiteBri(briCW);
}
} }
// new version of RGB to HSB with only integer calculation // new version of RGB to HSB with only integer calculation
@ -696,17 +779,35 @@ void LightStateClass::XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_
} }
class LightControllerClass { class LightControllerClass {
private:
LightStateClass *_state; LightStateClass *_state;
// are RGB and CT linked, i.e. if we set CT then RGB channels are off
bool _ct_rgb_linked = true;
public: public:
LightControllerClass(LightStateClass& state) { LightControllerClass(LightStateClass& state) {
_state = &state; _state = &state;
} }
void setSubType(uint8_t sub_type) {
_state->setSubType(sub_type);
}
inline bool setCTRGBLinked(bool ct_rgb_linked) {
bool prev = _ct_rgb_linked;
_ct_rgb_linked = ct_rgb_linked;
return prev;
}
inline bool isCTRGBLinked() {
return _ct_rgb_linked;
}
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
void debugLogs() { void debugLogs() {
uint8_t r,g,b,c,w; uint8_t r,g,b,c,w;
_state->getActualRGBCW(&r,&g,&b,&c,&w); _state->getActualRGBWC(&r,&g,&b,&w,&c);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs rgb (%d %d %d) cw (%d %d)", AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs rgb (%d %d %d) cw (%d %d)",
r, g, b, c, w); r, g, b, c, w);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs lightCurrent (%d %d %d %d %d)", AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs lightCurrent (%d %d %d %d %d)",
@ -723,24 +824,21 @@ public:
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings light_type/sub (%d %d)", AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings light_type/sub (%d %d)",
light_type, light_subtype); light_type, light_subtype);
#endif #endif
// TODO
// set the RGB from settings // set the RGB from settings
_state->setRGB(Settings.light_color[0], Settings.light_color[1], Settings.light_color[2]); _state->setRGB(Settings.light_color[0], Settings.light_color[1], Settings.light_color[2]);
// get CT only for lights that support it // get CT only for lights that support it
if ((LST_COLDWARM == light_subtype) || (LST_RGBW <= light_subtype)) { if ((LST_COLDWARM == light_subtype) || (LST_RGBW <= light_subtype)) {
// calculate whether we have CT set // TODO check
uint32_t c = Settings.light_color[3]; _state->setWC(Settings.light_color[3], Settings.light_color[4], true);
uint32_t w = Settings.light_color[4];
uint32_t ct = ((c > 0) || (w > 0)) ? changeUIntScale(w, 0, 255, 153, 500) : 0;
_state->setCT(ct);
} }
// set Dimmer // set Dimmer
_state->setDimmer(Settings.light_dimmer); _state->setDimmer(Settings.light_dimmer);
} }
void changeCT(uint16_t new_ct) { void changeCTB(uint16_t new_ct, uint8_t briCT) {
/* Color Temperature (https://developers.meethue.com/documentation/core-concepts) /* Color Temperature (https://developers.meethue.com/documentation/core-concepts)
* *
* ct = 153 = 2000K = Warm = CCWW = 00FF * ct = 153 = 2000K = Warm = CCWW = 00FF
@ -751,6 +849,8 @@ public:
return; return;
} }
_state->setCT(new_ct); _state->setCT(new_ct);
_state->setBriCT(briCT);
if (_ct_rgb_linked) { _state->setColorMode(LCM_CT); } // try to force CT
saveSettings(); saveSettings();
calcLevels(); calcLevels();
//debugLogs(); //debugLogs();
@ -767,65 +867,67 @@ public:
calcLevels(); calcLevels();
} }
void changeRGB(uint8_t r, uint8_t g, uint8_t b) { void changeRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) {
_state->setRGB(r, g, b); _state->setRGB(r, g, b, keep_bri);
if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB
saveSettings(); saveSettings();
calcLevels(); calcLevels();
} }
// calculate the levels for each channel // calculate the levels for each channel
void calcLevels() { void calcLevels() {
uint8_t r,g,b,w,c,bri; uint8_t r,g,b,w,c,briRGB,briCT;
bri = _state->getActualRGBCW(&r,&g,&b,&w,&c); _state->getActualRGBWC(&r,&g,&b,&w,&c);
uint8_t wBri = _state->getWhiteBri(); briRGB = _state->getBriRGB();
briCT = _state->getBriCT();
light_current_color[0] = light_current_color[1] = light_current_color[2] = 0; light_current_color[0] = light_current_color[1] = light_current_color[2] = 0;
light_current_color[3] = light_current_color[4] = 0; light_current_color[3] = light_current_color[4] = 0;
if (PHILIPS == my_module_type) { switch (light_subtype) {
// Xiaomi Philips bulbs follow a different scheme: case LST_NONE:
// channel 0=intensity, channel2=temperature light_current_color[0] = 255;
light_current_color[0] = bri; // set brightness from r (white) break;
light_current_color[1] = c; case LST_SINGLE:
} else { light_current_color[0] = briRGB;
switch (light_subtype) { break;
case LST_NONE: case LST_COLDWARM:
light_current_color[0] = 255; light_current_color[0] = w;
break; light_current_color[1] = c;
case LST_SINGLE: break;
light_current_color[0] = bri; case LST_RGBW:
break; case LST_RGBWC:
case LST_COLDWARM: if (LST_RGBWC == light_subtype) {
light_current_color[0] = w; light_current_color[3] = w;
light_current_color[1] = c; light_current_color[4] = c;
break; } else {
case LST_RGB: light_current_color[3] = briCT;
case LST_RGBW: }
case LST_RGBWC: // continue
light_current_color[0] = r; case LST_RGB:
light_current_color[1] = g; light_current_color[0] = r;
light_current_color[2] = b; light_current_color[1] = g;
if (c || w) { // if we have CT set light_current_color[2] = b;
if (LST_RGBWC == light_subtype) { break;
light_current_color[3] = w;
light_current_color[4] = c;
} else if (LST_RGBW == light_subtype) {
light_current_color[3] = wBri;
}
}
break;
}
} }
} }
void changeHS(uint16_t hue, uint8_t sat) { void changeHSB(uint16_t hue, uint8_t sat, uint8_t briRGB) {
_state->setHS(hue, sat); _state->setHS(hue, sat);
_state->setBriRGB(briRGB);
if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB
saveSettings(); saveSettings();
calcLevels();
} }
// save the current light state to Settings. // save the current light state to Settings.
void saveSettings() { void saveSettings() {
_state->getRGB(&Settings.light_color[0], &Settings.light_color[1], &Settings.light_color[2]); memset(&Settings.light_color[0], 0, sizeof(Settings.light_color));
_state->getCW(&Settings.light_color[3], &Settings.light_color[4]); if (_state->getBriRGB() > 0) {
_state->getRGB(&Settings.light_color[0], &Settings.light_color[1], &Settings.light_color[2]);
}
if (_state->getBriCT() > 0) {
_state->getCW(&Settings.light_color[3], &Settings.light_color[4]);
}
Settings.light_dimmer = _state->getDimmer(); Settings.light_dimmer = _state->getDimmer();
#ifdef DEBUG_LIGHT #ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::saveSettings Settings.light_color (%d %d %d %d %d - %d)", AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::saveSettings Settings.light_color (%d %d %d %d %d - %d)",
@ -1221,6 +1323,7 @@ void LightInit(void)
light_device = devices_present; light_device = devices_present;
light_subtype = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7); // Always 0 - LST_MAX (5) light_subtype = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7); // Always 0 - LST_MAX (5)
light_controller.setSubType(light_subtype);
light_controller.loadSettings(); light_controller.loadSettings();
if (LST_SINGLE == light_subtype) { if (LST_SINGLE == light_subtype) {
@ -1339,7 +1442,7 @@ void LightUpdateColorMapping(void)
// do not allow independant RGV and WC colors // do not allow independant RGV and WC colors
bool ct_rgb_linked = !(Settings.param[P_RGB_REMAP] & 128); bool ct_rgb_linked = !(Settings.param[P_RGB_REMAP] & 128);
light_state.setCTRGBLinked(ct_rgb_linked); light_controller.setCTRGBLinked(ct_rgb_linked);
light_update = 1; light_update = 1;
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%d colors: %d %d %d %d %d") ,Settings.param[P_RGB_REMAP], light_color_remap[0],light_color_remap[1],light_color_remap[2],light_color_remap[3],light_color_remap[4]); //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%d colors: %d %d %d %d %d") ,Settings.param[P_RGB_REMAP], light_color_remap[0],light_color_remap[1],light_color_remap[2],light_color_remap[3],light_color_remap[4]);
@ -1356,7 +1459,7 @@ void LightSetColorTemp(uint16_t ct)
if ((LST_COLDWARM != light_subtype) && (LST_RGBWC != light_subtype)) { if ((LST_COLDWARM != light_subtype) && (LST_RGBWC != light_subtype)) {
return; return;
} }
light_controller.changeCT(ct); light_controller.changeCTB(ct, light_state.getBriCT());
} }
uint16_t LightGetColorTemp(void) uint16_t LightGetColorTemp(void)
@ -1365,7 +1468,7 @@ uint16_t LightGetColorTemp(void)
if ((LST_COLDWARM != light_subtype) && (LST_RGBWC != light_subtype)) { if ((LST_COLDWARM != light_subtype) && (LST_RGBWC != light_subtype)) {
return 0; return 0;
} }
return light_state.getCT(); return (light_state.getColorMode() & LCM_CT) ? light_state.getCT() : 0;
} }
void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value) void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value)
@ -1376,7 +1479,7 @@ void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value)
if (Settings.flag.light_signal) { if (Settings.flag.light_signal) {
uint16_t signal = changeUIntScale(value, lo, hi, 0, 255); // 0..255 uint16_t signal = changeUIntScale(value, lo, hi, 0, 255); // 0..255
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Light signal %d"), signal); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Light signal %d"), signal);
light_controller.changeRGB(signal, 255 - signal, 0); light_controller.changeRGB(signal, 255 - signal, 0, true); // keep bri
Settings.light_scheme = 0; Settings.light_scheme = 0;
if (0 == light_state.getBri()) { if (0 == light_state.getBri()) {
light_controller.changeBri(50); light_controller.changeBri(50);
@ -1669,42 +1772,60 @@ void LightAnimate(void)
cur_col_10bits[i] = changeUIntScale(cur_col[i], 0, 255, 0, 1023); cur_col_10bits[i] = changeUIntScale(cur_col[i], 0, 255, 0, 1023);
} }
// Apply gamma correction for 8 and 10 bits resolutions, if needed
if (Settings.light_correction) { if (PHILIPS == my_module_type) {
// first apply gamma correction to all channels independently, from 8 bits value // TODO
for (uint8_t i = 0; i < LST_MAX; i++) { // Xiaomi Philips bulbs follow a different scheme:
cur_col_10bits[i] = ledGamma(cur_col[i], 10); // channel 0=intensity, channel2=temperature
uint16_t pxBri = cur_col[0] + cur_col[1];
if (pxBri > 255) { pxBri = 255; }
//cur_col[1] = cur_col[0]; // get 8 bits CT from WC -- not really used
cur_col_10bits[1] = changeUIntScale(cur_col[0], 0, pxBri, 0, 1023); // get 10 bits CT from WC / (WC+WW)
if (Settings.light_correction) { // gamma correction
cur_col_10bits[0] = ledGamma(pxBri, 10); // 10 bits gamma correction
} else {
cur_col_10bits[0] = changeUIntScale(pxBri, 0, 255, 0, 1023); // no gamma, extend to 10 bits
} }
// then apply a different correction for CW white channels } else {
if ((LST_COLDWARM == light_subtype) || (LST_RGBWC == light_subtype)) { // Apply gamma correction for 8 and 10 bits resolutions, if needed
uint8_t w_idx[2] = {0, 1}; // if LST_COLDWARM, channels 0 and 1 if (Settings.light_correction) {
if (LST_RGBWC == light_subtype) { // if LST_RGBWC, channels 3 and 4 // first apply gamma correction to all channels independently, from 8 bits value
w_idx[0] = 3; for (uint8_t i = 0; i < LST_MAX; i++) {
w_idx[1] = 4; cur_col_10bits[i] = ledGamma(cur_col[i], 10);
} }
uint16_t white_bri = cur_col[w_idx[0]] + cur_col[w_idx[1]]; // then apply a different correction for CW white channels
// if sum of both channels is > 255, then channels are probablu uncorrelated if ((LST_COLDWARM == light_subtype) || (LST_RGBWC == light_subtype)) {
if (white_bri <= 255) { uint8_t w_idx[2] = {0, 1}; // if LST_COLDWARM, channels 0 and 1
// we calculate the gamma corrected sum of CW + WW if (LST_RGBWC == light_subtype) { // if LST_RGBWC, channels 3 and 4
uint16_t white_bri_10bits = ledGamma(white_bri, 10); w_idx[0] = 3;
// then we split the total energy among the cold and warm leds w_idx[1] = 4;
cur_col_10bits[w_idx[0]] = changeUIntScale(cur_col[w_idx[0]], 0, white_bri, 0, white_bri_10bits); }
cur_col_10bits[w_idx[1]] = changeUIntScale(cur_col[w_idx[1]], 0, white_bri, 0, white_bri_10bits); uint16_t white_bri = cur_col[w_idx[0]] + cur_col[w_idx[1]];
// if sum of both channels is > 255, then channels are probablu uncorrelated
if (white_bri <= 255) {
// we calculate the gamma corrected sum of CW + WW
uint16_t white_bri_10bits = ledGamma(white_bri, 10);
// then we split the total energy among the cold and warm leds
cur_col_10bits[w_idx[0]] = changeUIntScale(cur_col[w_idx[0]], 0, white_bri, 0, white_bri_10bits);
cur_col_10bits[w_idx[1]] = changeUIntScale(cur_col[w_idx[1]], 0, white_bri, 0, white_bri_10bits);
}
}
// still keep an 8 bits gamma corrected version
for (uint8_t i = 0; i < LST_MAX; i++) {
cur_col[i] = ledGamma(cur_col[i]);
} }
}
// still keep an 8 bits gamma corrected version
for (uint8_t i = 0; i < LST_MAX; i++) {
cur_col[i] = ledGamma(cur_col[i]);
} }
} }
// final adjusments for PMW, post-gamma correction // final adjusments for PMW, post-gamma correction
for (uint8_t i = 0; i < LST_MAX; i++) { for (uint8_t i = 0; i < LST_MAX; i++) {
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
// Fix unwanted blinking and PWM watchdog errors for values close to pwm_range (H801, Arilux and BN-SZ01) // Fix unwanted blinking and PWM watchdog errors for values close to pwm_range (H801, Arilux and BN-SZ01)
// but keep value 1023 if full range (PWM will be deactivated in this case) // but keep value 1023 if full range (PWM will be deactivated in this case)
if ((cur_col_10bits[i] > 1008) && (cur_col_10bits[i] < 1023)) { if ((cur_col_10bits[i] > 1008) && (cur_col_10bits[i] < 1023)) {
cur_col_10bits[i] = 1008; cur_col_10bits[i] = 1008;
} }
#endif
// scale from 0..1023 to 0..pwm_range, but keep any non-zero value to at least 1 // scale from 0..1023 to 0..pwm_range, but keep any non-zero value to at least 1
cur_col_10bits[i] = (cur_col_10bits[i] > 0) ? changeUIntScale(cur_col_10bits[i], 1, 1023, 1, Settings.pwm_range) : 0; cur_col_10bits[i] = (cur_col_10bits[i] > 0) ? changeUIntScale(cur_col_10bits[i], 1, 1023, 1, Settings.pwm_range) : 0;
} }
@ -1904,7 +2025,7 @@ bool LightCommand(void)
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
light_current_color[XdrvMailbox.index-1] = changeUIntScale(XdrvMailbox.payload,0,100,0,255); light_current_color[XdrvMailbox.index-1] = changeUIntScale(XdrvMailbox.payload,0,100,0,255);
// if we change channels 1,2,3 then turn off CT mode (unless non-linked) // if we change channels 1,2,3 then turn off CT mode (unless non-linked)
if ((XdrvMailbox.index <= 3) && (light_state.isCTRGBLinked())) { if ((XdrvMailbox.index <= 3) && (light_controller.isCTRGBLinked())) {
light_current_color[3] = light_current_color[4] = 0; light_current_color[3] = light_current_color[4] = 0;
} }
light_controller.changeChannels(light_current_color); light_controller.changeChannels(light_current_color);
@ -1936,11 +2057,11 @@ bool LightCommand(void)
} }
} else { // Command with only 1 parameter, Hue (0<H<360), Saturation (0<S<100) OR Brightness (0<B<100) } else { // Command with only 1 parameter, Hue (0<H<360), Saturation (0<S<100) OR Brightness (0<B<100)
uint16_t c_hue; uint16_t c_hue;
uint8_t c_sat, c_bri; uint8_t c_sat;
light_state.getHSB(&c_hue, &c_sat, &c_bri); light_state.getHSB(&c_hue, &c_sat, nullptr);
HSB[0] = c_hue; HSB[0] = c_hue;
HSB[1] = c_sat; HSB[1] = c_sat;
HSB[2] = c_bri; HSB[2] = light_state.getBri();
if (1 == XdrvMailbox.index) { if (1 == XdrvMailbox.index) {
HSB[0] = XdrvMailbox.payload; HSB[0] = XdrvMailbox.payload;
@ -1951,8 +2072,7 @@ bool LightCommand(void)
} }
} }
if (validHSB) { if (validHSB) {
light_controller.changeHS(HSB[0], HSB[1]); light_controller.changeHSB(HSB[0], HSB[1], HSB[2]);
light_controller.changeBri(HSB[2]);
LightPreparePower(); LightPreparePower();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_COLOR)); MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_COLOR));
} }
@ -2049,7 +2169,7 @@ bool LightCommand(void)
} }
} }
if ((XdrvMailbox.payload >= 153) && (XdrvMailbox.payload <= 500)) { // https://developers.meethue.com/documentation/core-concepts if ((XdrvMailbox.payload >= 153) && (XdrvMailbox.payload <= 500)) { // https://developers.meethue.com/documentation/core-concepts
light_controller.changeCT(XdrvMailbox.payload); light_controller.changeCTB(XdrvMailbox.payload, light_state.getBri());
coldim = true; coldim = true;
} else { } else {
Response_P(S_JSON_COMMAND_NVALUE, command, ct); Response_P(S_JSON_COMMAND_NVALUE, command, ct);

View File

@ -577,6 +577,7 @@ char prev_y_str[24] = "\0";
void HueLightStatus1(uint8_t device, String *response) void HueLightStatus1(uint8_t device, String *response)
{ {
uint16_t ct = 0; uint16_t ct = 0;
uint8_t color_mode;
String light_status = ""; String light_status = "";
uint16_t hue = 0; uint16_t hue = 0;
uint8_t sat = 0; uint8_t sat = 0;
@ -584,7 +585,8 @@ void HueLightStatus1(uint8_t device, String *response)
if (light_type) { if (light_type) {
light_state.getHSB(&hue, &sat, &bri); light_state.getHSB(&hue, &sat, nullptr);
bri = light_state.getBri();
if (bri > 254) bri = 254; // Philips Hue bri is between 1 and 254 if (bri > 254) bri = 254; // Philips Hue bri is between 1 and 254
if (bri < 1) bri = 1; if (bri < 1) bri = 1;
@ -605,21 +607,11 @@ void HueLightStatus1(uint8_t device, String *response)
prev_x_str[0] = prev_y_str[0] = 0; prev_x_str[0] = prev_y_str[0] = 0;
} }
color_mode = light_state.getColorMode();
ct = light_state.getCT(); ct = light_state.getCT();
// compute whether we're in CT mode if (LCM_RGB == color_mode) { g_gotct = false; }
if (LST_RGBW <= light_subtype) { if (LCM_CT == color_mode) { g_gotct = true; }
if (light_state.isCTRGBLinked()) { // If LCM_BOTH == color_mode, leave g_gotct unchanged
// normal case, CT mode if we have a CT channel
g_gotct = (ct > 0 ? true : false);
}
// else leave g_gotct unchanged, otherwise it's getting messy
} else if (LST_COLDWARM == light_subtype) {
// force ct mode for LST_COLDWARM
g_gotct = true;
} else {
// for all others, no ct
g_gotct = false;
}
// re-adjust ct if close to command value // re-adjust ct if close to command value
if ((ct > prev_ct ? ct - prev_ct : prev_ct - ct) < 1) if ((ct > prev_ct ? ct - prev_ct : prev_ct - ct) < 1)
@ -638,7 +630,6 @@ void HueLightStatus1(uint8_t device, String *response)
light_status += ","; light_status += ",";
//} //}
if (LST_COLDWARM <= light_subtype) { if (LST_COLDWARM <= light_subtype) {
//light_status += "\"colormode\":\"" + String(g_gotct ? "ct" : "hs") + "\",";
light_status += F("\"colormode\":\""); light_status += F("\"colormode\":\"");
light_status += (g_gotct ? "ct" : "hs"); light_status += (g_gotct ? "ct" : "hs");
light_status += "\","; light_status += "\",";
@ -652,7 +643,7 @@ void HueLightStatus1(uint8_t device, String *response)
light_status += "],"; light_status += "],";
} else { } else {
float x, y; float x, y;
light_state.getXY(&x, &y); light_state.getXY(&x, &y);
light_status += "\"xy\":["; light_status += "\"xy\":[";
light_status += String(x, 5); light_status += String(x, 5);
light_status += ","; light_status += ",";
@ -778,11 +769,13 @@ void HueLights(String *path)
} }
if (light_type) { if (light_type) {
light_state.getHSB(&hue, &sat, &bri); light_state.getHSB(&hue, &sat, nullptr);
bri = light_state.getBri(); // get the combined bri for CT and RGB, not only the RGB one
ct = light_state.getCT(); ct = light_state.getCT();
if ((LST_COLDWARM == light_subtype) || (ct > 0)) { uint8_t color_mode = light_state.getColorMode();
g_gotct = true; if (LCM_RGB == color_mode) { g_gotct = false; }
} if (LCM_CT == color_mode) { g_gotct = true; }
// If LCM_BOTH == color_mode, leave g_gotct unchanged
} }
prev_x_str[0] = prev_y_str[0] = 0; // reset xy string prev_x_str[0] = prev_y_str[0] = 0; // reset xy string
@ -876,11 +869,9 @@ void HueLights(String *path)
if (change) { if (change) {
if (light_type) { if (light_type) {
if (g_gotct) { if (g_gotct) {
light_controller.changeCT(ct); light_controller.changeCTB(ct, bri);
light_controller.changeBri(bri);
} else { } else {
light_controller.changeHS(hue, sat); light_controller.changeHSB(hue, sat, bri);
light_controller.changeBri(bri);
} }
LightPreparePower(); LightPreparePower();
if (LST_COLDWARM <= light_subtype) { if (LST_COLDWARM <= light_subtype) {