Merge branch 'development' of https://github.com/arendst/Tasmota into development

This commit is contained in:
Staars 2020-02-13 17:19:54 +01:00
commit ff1fefaf34
9 changed files with 344 additions and 10 deletions

View File

@ -4,7 +4,7 @@ python:
sudo: false
install:
- pip install -U platformio
- platformio upgrade
- platformio upgrade --dev
- platformio update
cache: false

View File

@ -59,6 +59,7 @@ The following binary downloads have been compiled with ESP8266/Arduino library c
- Change IRremoteESP8266 library updated to v2.7.3
- Change Zigbee command prefix from ``Zigbee*`` to ``Zb*``
- Change wifi connectivity stability (#7602)
- Change some wifi code to attempt faster connection (#7621)
- Change MQTT message size with additional 200 characters
- Fix Sonoff Bridge, Sc, L1, iFan03 and CSE7766 serial interface to forced speed, config and disable logging
- Fix commands ``Display`` and ``Counter`` from overruling command processing (#7322)
@ -101,3 +102,4 @@ The following binary downloads have been compiled with ESP8266/Arduino library c
- Add optional Wifi AccessPoint passphrase define WIFI_AP_PASSPHRASE in my_user_config.h (#7690)
- Add support for FiF LE-01MR energy meter by saper-2 (#7584)
- Add new DHT driver. The old driver can still be used using define USE_DHT_OLD (#7468)
- Add another new DHT driver based on ESPEasy. The old driver can still be used using define USE_DHT_OLD. The previous new driver can be used with define USE_DHT_V2 (#7717)

View File

@ -3,10 +3,13 @@
### 8.1.0.8 20200212
- Change MQTT message size with additional 200 characters
- Change some wifi code to attempt faster connection (#7621)
- Add another new DHT driver based on ESPEasy. The old driver can still be used using define USE_DHT_OLD. The previous new driver can be used with define USE_DHT_V2 (#7717)
### 8.1.0.7 20200210
- Add new DHT driver. The old driver can still be used using define USE_DHT_OLD (#7468)
- Fix wrong encoding of Zigbee persistent data
### 8.1.0.6 20200205

View File

@ -429,6 +429,10 @@ void WifiCheckIp(void)
WifiSetState(1);
Wifi.counter = WIFI_CHECK_SEC;
Wifi.retry = Wifi.retry_init;
if (Wifi.status != WL_CONNECTED) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECTED));
}
Wifi.status = WL_CONNECTED;
#ifdef USE_DISCOVERY
#ifdef WEBSERVER_ADVERTISE
if (2 == Wifi.mdns_begun) {
@ -450,9 +454,29 @@ void WifiCheckIp(void)
break;
case WL_NO_SSID_AVAIL:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_NOT_REACHED));
if (WIFI_WAIT == Settings.sta_config) {
Wifi.retry = Wifi.retry_init;
} else {
if (Wifi.retry > (Wifi.retry_init / 2)) {
Wifi.retry = Wifi.retry_init / 2;
}
else if (Wifi.retry) {
Wifi.retry = 0;
}
}
break;
case WL_CONNECT_FAILED:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_WRONG_PASSWORD));
if (Wifi.retry > (Wifi.retry_init / 2)) {
Wifi.retry = Wifi.retry_init / 2;
}
else if (Wifi.retry) {
Wifi.retry = 0;
}
break;
default: // WL_IDLE_STATUS and WL_DISCONNECTED
// log on the 1/2 or full interval

View File

@ -31,7 +31,7 @@
#define WIFI_SOFT_AP_CHANNEL 1 // Soft Access Point Channel number between 1 and 11 as used by WifiManager web GUI
#endif
const uint16_t CHUNKED_BUFFER_SIZE = 400; // Chunk buffer size (should be smaller than half mqtt_date size)
const uint16_t CHUNKED_BUFFER_SIZE = 400; // Chunk buffer size (should be smaller than half mqtt_date size = MESSZ)
const uint16_t HTTP_REFRESH_TIME = 2345; // milliseconds
#define HTTP_RESTART_RECONNECT_TIME 9000 // milliseconds

View File

@ -138,7 +138,7 @@ private:
static bool findInVector(const std::vector<T> & vecOfElements, const T & element);
template < typename T>
static int32_t findEndpointInVector(const std::vector<T> & vecOfElements, const T & element);
static int32_t findEndpointInVector(const std::vector<T> & vecOfElements, uint8_t element);
// find the first endpoint match for a cluster
static int32_t findClusterEndpoint(const std::vector<uint32_t> & vecOfElements, uint16_t element);
@ -180,12 +180,12 @@ bool Z_Devices::findInVector(const std::vector<T> & vecOfElements, const T & e
}
template < typename T>
int32_t Z_Devices::findEndpointInVector(const std::vector<T> & vecOfElements, const T & element) {
int32_t Z_Devices::findEndpointInVector(const std::vector<T> & vecOfElements, uint8_t element) {
// Find given element in vector
int32_t found = 0;
for (auto &elem : vecOfElements) {
if ((elem >> 16) & 0xFF == element) { return found; }
if ( ((elem >> 16) & 0xFF) == element) { return found; }
found++;
}
@ -427,7 +427,7 @@ void Z_Devices::addEndoint(uint16_t shortaddr, uint8_t endpoint) {
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
if (findEndpointInVector(device.endpoints, ep_profile) < 0) {
if (findEndpointInVector(device.endpoints, endpoint) < 0) {
device.endpoints.push_back(ep_profile);
dirty();
}
@ -439,7 +439,7 @@ void Z_Devices::addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
int32_t found = findEndpointInVector(device.endpoints, ep_profile);
int32_t found = findEndpointInVector(device.endpoints, endpoint);
if (found < 0) {
device.endpoints.push_back(ep_profile);
dirty();

View File

@ -31,7 +31,7 @@
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of revice record
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
// uint8 - number of endpoints
@ -43,6 +43,7 @@
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
// reserved for extensions
// Memory footprint

View File

@ -17,7 +17,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DHT
#ifdef USE_DHT_V2
/*********************************************************************************************\
* DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy
*
@ -274,7 +274,7 @@ void DhtInit(void)
snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_SENSORS_FOUND " %d"), dht_sensors);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "(v2) " D_SENSORS_FOUND " %d"), dht_sensors);
} else {
dht_active = false;
}

304
tasmota/xsns_06_dht_v3.ino Normal file
View File

@ -0,0 +1,304 @@
/*
xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DHT
/*********************************************************************************************\
* DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy
*
* Reading temperature or humidity takes about 250 milliseconds!
* Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
*
* This version is based on ESPEasy _P005_DHT.ino 20191201
\*********************************************************************************************/
#define XSNS_06 6
#define DHT_MAX_SENSORS 4
#define DHT_MAX_RETRY 8
uint8_t dht_data[5];
uint8_t dht_sensors = 0;
uint8_t dht_pin_out = 0; // Shelly GPIO00 output only
bool dht_active = true; // DHT configured
bool dht_dual_mode = false; // Single pin mode
struct DHTSTRUCT {
uint8_t pin;
uint8_t type;
char stype[12];
uint32_t lastreadtime;
uint8_t lastresult;
float t = NAN;
float h = NAN;
} Dht[DHT_MAX_SENSORS];
bool DhtExpectPulse(uint8_t sensor, int level)
{
unsigned long timeout = micros() + 100;
while (digitalRead(Dht[sensor].pin) != level) {
if (micros() > timeout) { return false; }
delayMicroseconds(1);
}
return true;
}
int DhtReadDat(uint8_t sensor)
{
uint8_t result = 0;
for (uint32_t i = 0; i < 8; i++) {
if (!DhtExpectPulse(sensor, HIGH)) { return -1; }
delayMicroseconds(35); // was 30
if (digitalRead(Dht[sensor].pin)) {
result |= (1 << (7 - i));
}
if (!DhtExpectPulse(sensor, LOW)) { return -1; }
}
return result;
}
bool DhtRead(uint8_t sensor)
{
dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0;
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, OUTPUT);
digitalWrite(Dht[sensor].pin, LOW);
} else {
digitalWrite(dht_pin_out, LOW);
}
switch (Dht[sensor].type) {
case GPIO_DHT11:
delay(19); // minimum 18ms
break;
case GPIO_DHT22:
delay(2); // minimum 1ms
break;
case GPIO_SI7021:
delayMicroseconds(500);
break;
}
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, INPUT_PULLUP);
} else {
digitalWrite(dht_pin_out, HIGH);
}
switch (Dht[sensor].type) {
case GPIO_DHT11:
case GPIO_DHT22:
delayMicroseconds(50);
break;
case GPIO_SI7021:
// See: https://github.com/letscontrolit/ESPEasy/issues/1798
delayMicroseconds(20);
break;
}
noInterrupts();
if (!DhtExpectPulse(sensor, LOW)) {
interrupts();
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE));
return false;
}
if (!DhtExpectPulse(sensor, HIGH)) {
interrupts();
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_HIGH " " D_PULSE));
return false;
}
if (!DhtExpectPulse(sensor, LOW)) {
interrupts();
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE));
return false;
}
int data = 0;
for (uint32_t i = 0; i < 5; i++) {
data = DhtReadDat(sensor);
if (-1 == data) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_PULSE));
break;
}
dht_data[i] = data;
}
interrupts();
if (-1 == data) { return false; }
uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF;
if (dht_data[4] != checksum) {
char hex_char[15];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE " %s =? %02X"),
ToHex_P(dht_data, 5, hex_char, sizeof(hex_char), ' '), checksum);
return false;
}
return true;
}
void DhtReadTempHum(uint8_t sensor)
{
if ((NAN == Dht[sensor].h) || (Dht[sensor].lastresult > DHT_MAX_RETRY)) { // Reset after 8 misses
Dht[sensor].t = NAN;
Dht[sensor].h = NAN;
}
if (DhtRead(sensor)) {
switch (Dht[sensor].type) {
case GPIO_DHT11:
Dht[sensor].h = dht_data[0];
Dht[sensor].t = dht_data[2] + ((float)dht_data[3] * 0.1f); // Issue #3164
break;
case GPIO_DHT22:
case GPIO_SI7021:
Dht[sensor].h = ((dht_data[0] << 8) | dht_data[1]) * 0.1;
Dht[sensor].t = (((dht_data[2] & 0x7F) << 8 ) | dht_data[3]) * 0.1;
if (dht_data[2] & 0x80) {
Dht[sensor].t *= -1;
}
break;
}
Dht[sensor].t = ConvertTemp(Dht[sensor].t);
Dht[sensor].h = ConvertHumidity(Dht[sensor].h);
Dht[sensor].lastresult = 0;
} else {
Dht[sensor].lastresult++;
}
}
/********************************************************************************************/
bool DhtPinState()
{
if ((XdrvMailbox.index >= GPIO_DHT11) && (XdrvMailbox.index <= GPIO_SI7021)) {
if (dht_sensors < DHT_MAX_SENSORS) {
Dht[dht_sensors].pin = XdrvMailbox.payload;
Dht[dht_sensors].type = XdrvMailbox.index;
dht_sensors++;
XdrvMailbox.index = GPIO_DHT11;
} else {
XdrvMailbox.index = 0;
}
return true;
}
return false;
}
void DhtInit(void)
{
if (dht_sensors) {
if (pin[GPIO_DHT11_OUT] < 99) {
dht_pin_out = pin[GPIO_DHT11_OUT];
dht_dual_mode = true; // Dual pins mode as used by Shelly
dht_sensors = 1; // We only support one sensor in pseudo mode
pinMode(dht_pin_out, OUTPUT);
}
for (uint32_t i = 0; i < dht_sensors; i++) {
pinMode(Dht[i].pin, INPUT_PULLUP);
Dht[i].lastreadtime = 0;
Dht[i].lastresult = 0;
GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames);
if (dht_sensors > 1) {
snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "(v3) " D_SENSORS_FOUND " %d"), dht_sensors);
} else {
dht_active = false;
}
}
void DhtEverySecond(void)
{
if (uptime &1) {
// <1mS
// DhtReadPrep();
} else {
for (uint32_t i = 0; i < dht_sensors; i++) {
// DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor
DhtReadTempHum(i);
}
}
}
void DhtShow(bool json)
{
for (uint32_t i = 0; i < dht_sensors; i++) {
char temperature[33];
dtostrfd(Dht[i].t, Settings.flag2.temperature_resolution, temperature);
char humidity[33];
dtostrfd(Dht[i].h, Settings.flag2.humidity_resolution, humidity);
if (json) {
ResponseAppend_P(JSON_SNS_TEMPHUM, Dht[i].stype, temperature, humidity);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzTempHumSensor(temperature, humidity);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == tele_period) && (0 == i)) {
KnxSensor(KNX_TEMPERATURE, Dht[i].t);
KnxSensor(KNX_HUMIDITY, Dht[i].h);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, Dht[i].stype, temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_HUM, Dht[i].stype, humidity);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns06(uint8_t function)
{
bool result = false;
if (dht_active) {
switch (function) {
case FUNC_EVERY_SECOND:
DhtEverySecond();
break;
case FUNC_JSON_APPEND:
DhtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
DhtShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
DhtInit();
break;
case FUNC_PIN_STATE:
result = DhtPinState();
break;
}
}
return result;
}
#endif // USE_DHT