Add uncalibrated energy monitor

Add uncalibrated energy monitoring to Shelly2 (#2789)
This commit is contained in:
Theo Arends 2018-09-17 20:32:38 +02:00
parent d747a6fc3d
commit ff4f8f75c1
3 changed files with 304 additions and 2 deletions

View File

@ -6,6 +6,7 @@
* Add userid/password option to decode-status.py (#3796)
* Fix syslog when emulation is selected (#2109, #3784)
* Fix Pzem2 compilation error (#3766, #3767)
* Add uncalibrated energy monitoring to Shelly2 (#2789)
*
* 6.2.1.3 20180907
* Change web Configure Module GPIO drop down list order for better readability

View File

@ -98,6 +98,8 @@ void EnergyUpdateToday()
void Energy200ms()
{
energy_power_on = (power != 0) | Settings.flag.no_power_on_check;
energy_fifth_second++;
if (5 == energy_fifth_second) {
energy_fifth_second = 0;
@ -121,8 +123,6 @@ void Energy200ms()
}
}
energy_power_on = (power &1) | Settings.flag.no_power_on_check;
XnrgCall(FUNC_EVERY_200_MSECOND);
if (energy_calc_power_factor) {

View File

@ -0,0 +1,301 @@
/*
xnrg_04_mcp39f501.ino - MCP39F501 energy sensor support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_MCP39F501
/*********************************************************************************************\
* MCP39F501 - Energy (Shelly 2)
*
* Based on datasheet from https://www.microchip.com/wwwproducts/en/MCP39F501
* and https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/7a7f9bb56d4b72770dba8d0f18eaa9d956dd0baf/olimex/user/modules/mod_emtr.c
\*********************************************************************************************/
#define XNRG_04 4
#define MCP_START_FRAME 0xA5
#define MCP_ACK_FRAME 0x06
#define MCP_ERROR_NAK 0x15
#define MCP_ERROR_CRC 0x51
#define MCP_SINGLE_WIRE 0xAB
#define MCP_SET_ADDRESS 0x41
#define MCP_READ 0x4E
#define MCP_READ_16 0x52
#define MCP_READ_32 0x44
#define MCP_WRITE 0x4D
#define MCP_WRITE_16 0x57
#define MCP_WRITE_32 0x45
#define MCP_SAVE_REGISTERS 0x53
#define MCP_FLASH_READ 0x42
#define MCP_FLASH_WRITE 0x50
uint32 mcp_system_configuration = 0x03000000;
uint8_t mcp_single_wire_active = 0;
/*********************************************************************************************\
* Olimex tools
* https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/7a7f9bb56d4b72770dba8d0f18eaa9d956dd0baf/olimex/user/modules/mod_emtr.c
\*********************************************************************************************/
unsigned long McpExtractInt(uint8_t *data, uint8_t offset, uint8_t size)
{
unsigned long result = 0;
unsigned long pow = 1;
for (byte i = 0; i < size; i++) {
result = result + data[offset + i] * pow;
pow = pow * 256;
}
return result;
}
void McpSetSystemConfiguration(uint16 interval)
{
uint8_t data[17];
data[ 0] = MCP_START_FRAME;
data[ 1] = sizeof(data);
data[ 2] = MCP_SET_ADDRESS; // Set address pointer
data[ 3] = 0x00; // address
data[ 4] = 0x42; // address
data[ 5] = MCP_WRITE_32; // Write 4 bytes
data[ 6] = (mcp_system_configuration >> 24) & 0xFF; // system_configuration
data[ 7] = (mcp_system_configuration >> 16) & 0xFF; // system_configuration
data[ 8] = (mcp_system_configuration >> 8) & 0xFF; // system_configuration
data[ 9] = (mcp_system_configuration >> 0) & 0xFF; // system_configuration
data[10] = MCP_SET_ADDRESS; // Set address pointer
data[11] = 0x00; // address
data[12] = 0x5A; // address
data[13] = MCP_WRITE_16; // Write 2 bytes
data[14] = (interval >> 8) & 0xFF; // interval
data[15] = (interval >> 0) & 0xFF; // interval
uint8_t checksum = 0;
for (byte i = 0; i < sizeof(data) -1; i++) { checksum += (uint8_t)data[i]; }
data[16] = checksum;
// A5 11 41 00 42 45 03 00 01 00 41 00 5A 57 00 06 7A
AddLogSerial(LOG_LEVEL_DEBUG, data, sizeof(data));
for (byte i = 0; i < sizeof(data); i++) { Serial.write(data[i]); }
}
void McpSingleWireStart()
{
if ((mcp_system_configuration & (1 << 8)) != 0) { return; }
mcp_system_configuration = mcp_system_configuration | (1 << 8);
McpSetSystemConfiguration(6); // 64
mcp_single_wire_active = 1;
}
void McpSingleWireStop()
{
if ((mcp_system_configuration & (1 << 8)) == 0) { return; }
mcp_system_configuration = mcp_system_configuration & (~(1 << 8));
McpSetSystemConfiguration(2); // 4
mcp_single_wire_active = 0;
}
/********************************************************************************************/
unsigned long mcp_current = 0;
unsigned long mcp_voltage = 0;
unsigned long mcp_power = 0;
unsigned long mcp_frequency = 0;
void McpParseData(uint8_t single_wire)
{
if (single_wire) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// AB CD EF 51 06 00 00 B8 08 FC 0D 00 00 0A C4 11
// Header-- Current---- Volt- Power------ Freq- Ck
mcp_current = McpExtractInt((uint8_t*)serial_in_buffer, 3, 4);
mcp_voltage = McpExtractInt((uint8_t*)serial_in_buffer, 7, 2);
mcp_power = McpExtractInt((uint8_t*)serial_in_buffer, 9, 4);
mcp_frequency = McpExtractInt((uint8_t*)serial_in_buffer, 13, 2);
} else {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// 06 19 61 06 00 00 FE 08 9B 0E 00 00 0B 00 00 00 97 0E 00 00 FF 7F 0C C6 35
// Ak Ln Current---- Volt- ActivePower ReActivePow ApparentPow Factr Frequ Ck
mcp_current = McpExtractInt((uint8_t*)serial_in_buffer, 2, 4);
mcp_voltage = McpExtractInt((uint8_t*)serial_in_buffer, 6, 2);
mcp_power = McpExtractInt((uint8_t*)serial_in_buffer, 8, 4);
mcp_frequency = McpExtractInt((uint8_t*)serial_in_buffer, 22, 2);
}
if (energy_power_on) { // Powered on
energy_frequency = (float)mcp_frequency / 1000;
energy_voltage = (float)mcp_voltage / 10;
energy_power = (float)mcp_power / 100;
if (0 == energy_power) {
energy_current = 0;
} else {
energy_current = (float)mcp_current / 10000;
}
} else { // Powered off
energy_frequency = 0;
energy_voltage = 0;
energy_power = 0;
energy_current = 0;
}
}
bool McpSerialInput()
{
Settings.flag.mqtt_serial = 0; // Disable possible SerialReceive handling
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
if (MCP_ERROR_CRC == serial_in_buffer[0]) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR("MCP: Send " D_CHECKSUM_FAILURE));
return 1;
}
else if (MCP_ACK_FRAME == serial_in_buffer[0]) {
if ((serial_in_byte_counter > 1) && (serial_in_byte_counter == serial_in_buffer[1])) {
AddLogSerial(LOG_LEVEL_DEBUG_MORE);
uint8_t checksum = 0;
for (byte i = 0; i < serial_in_byte_counter -1; i++) { checksum += (uint8_t)serial_in_buffer[i]; }
if (checksum != serial_in_buffer[serial_in_byte_counter -1]) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR("MCP: " D_CHECKSUM_FAILURE));
} else {
if (25 == serial_in_buffer[1]) { McpParseData(0); }
}
return 1;
}
}
else if (MCP_SINGLE_WIRE == serial_in_buffer[0]) {
if (serial_in_byte_counter == 16) {
AddLogSerial(LOG_LEVEL_DEBUG_MORE);
uint8_t checksum = 0;
for (byte i = 3; i < serial_in_byte_counter -1; i++) { checksum += (uint8_t)serial_in_buffer[i]; }
// if (~checksum != serial_in_buffer[serial_in_byte_counter -1]) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("MCP: " D_CHECKSUM_FAILURE));
// } else {
McpParseData(1);
// }
return 1;
}
}
else {
return 1;
}
serial_in_byte = 0; // Discard
return 0;
}
/********************************************************************************************/
void McpEverySecond()
{
if (!mcp_single_wire_active) {
char get_state[] = "A5084100044E1656";
SerialSendRaw(get_state, sizeof(get_state));
}
energy_kWhtoday += (energy_power / 36);
EnergyUpdateToday();
}
void McpSnsInit()
{
digitalWrite(15, 1); // GPIO15 - MCP enable
}
void McpDrvInit()
{
if (!energy_flg) {
if (SHELLY2 == Settings.module) {
pinMode(15, OUTPUT);
digitalWrite(15, 0); // GPIO15 - MCP disable - Reset Delta Sigma ADC's
baudrate = 4800;
energy_calc_power_factor = 1; // Calculate power factor from data
energy_flg = XNRG_04;
}
}
}
boolean McpCommand()
{
boolean serviced = true;
if ((CMND_POWERCAL == energy_command_code) || (CMND_VOLTAGECAL == energy_command_code) || (CMND_CURRENTCAL == energy_command_code)) {
}
else if (CMND_POWERSET == energy_command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 3601) && power_cycle) {
// Settings.energy_power_calibration = (XdrvMailbox.payload * power_cycle) / CSE_PREF;
}
}
else if (CMND_VOLTAGESET == energy_command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 501) && voltage_cycle) {
// Settings.energy_voltage_calibration = (XdrvMailbox.payload * voltage_cycle) / CSE_UREF;
}
}
else if (CMND_CURRENTSET == energy_command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 16001) && current_cycle) {
// Settings.energy_current_calibration = (XdrvMailbox.payload * current_cycle) / 1000;
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
int Xnrg04(byte function)
{
int result = 0;
if (FUNC_PRE_INIT == function) {
McpDrvInit();
}
else if (XNRG_04 == energy_flg) {
switch (function) {
case FUNC_INIT:
McpSnsInit();
break;
case FUNC_EVERY_SECOND:
McpEverySecond();
break;
case FUNC_COMMAND:
result = McpCommand();
break;
case FUNC_SERIAL:
result = McpSerialInput();
break;
}
}
return result;
}
#endif // USE_MCP39F501
#endif // USE_ENERGY_SENSOR