Tasmota/tasmota/tasmota_xdrv_driver/xdrv_23_zigbee_2a_devices_i...

1059 lines
36 KiB
C++

/*
xdrv_23_zigbee_2a_devices_impl.ino - zigbee support for Tasmota
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* Implementation
\*********************************************************************************************/
Z_Device & Z_Devices::devicesAt(size_t i) const {
Z_Device * devp = (Z_Device*) _devices.at(i);
if (devp) {
return *devp;
} else {
return device_unk;
}
}
//
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
// entry with same shortaddr or longaddr exists.
//
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
if ((BAD_SHORTADDR == shortaddr) && !longaddr) { return device_unk; } // it is not legal to create this entry
Z_Device & device = _devices.addToLast();
device.shortaddr = shortaddr;
device.longaddr = longaddr;
dirty();
return device;
}
void Z_Devices::freeDeviceEntry(Z_Device *device) {
if (device->manufacturerId) { free(device->manufacturerId); }
if (device->modelId) { free(device->modelId); }
if (device->friendlyName) { free(device->friendlyName); }
free(device);
}
//
// Scan all devices to find a corresponding shortaddr
// Looks info device.shortaddr entry
// In:
// shortaddr (not BAD_SHORTADDR)
// Out:
// reference to device, or to device_unk if not found
// (use foundDevice() to check if found)
Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) {
for (auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
return device_unk;
}
const Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) const {
for (const auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding longaddr
// Looks info device.longaddr entry
// In:
// longaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) {
if (!longaddr) { return device_unk; }
for (auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
return device_unk;
}
const Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) const {
if (!longaddr) { return device_unk; }
for (const auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding friendlyNme
// Looks info device.friendlyName entry
// In:
// friendlyName (null terminated, should not be empty)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findFriendlyName(const char * name) const {
if (!name) { return -1; } // if pointer is null
size_t name_len = strlen(name);
int32_t found = 0;
if (name_len) {
for (auto &elem : _devices) {
if (elem.friendlyName) {
if (strcasecmp(elem.friendlyName, name) == 0) { return found; }
}
found++;
}
}
return -1;
}
//
// Scan all devices to find a corresponding friendlyNme
// Looks info device.friendlyName entry or the name of an endpoint
// In:
// friendlyName (null terminated, should not be empty)
// Out:
// index in _devices of entry, -1 if not found
// ep == 0 means ep not found
//
int32_t Z_Devices::findFriendlyNameOrEPName(const char * name, uint8_t * ep) const {
if (ep) { *ep = 0; }
if (!name) { return -1; } // if pointer is null
size_t name_len = strlen(name);
int32_t found = 0;
if (name_len) {
for (auto &elem : _devices) {
if (elem.friendlyName) {
if (strcasecmp(elem.friendlyName, name) == 0) { return found; }
}
uint8_t ep_found = elem.ep_names.findEPName(name);
if (ep_found) {
// found via ep name
if (ep) { *ep = ep_found; } // update ep
return found;
}
found++;
}
}
return -1;
}
Z_Device & Z_Devices::isKnownLongAddrDevice(uint64_t longaddr) const {
return (Z_Device &) findLongAddr(longaddr);
}
Z_Device & Z_Devices::isKnownIndexDevice(uint32_t index) const {
if (index < devicesSize()) {
return devicesAt(index);
} else {
return device_unk;
}
}
Z_Device & Z_Devices::isKnownFriendlyNameDevice(const char * name, uint8_t * ep) const {
if ((!name) || (0 == strlen(name))) { return device_unk; } // Error
uint8_t ep_found;
int32_t found = findFriendlyNameOrEPName(name, &ep_found);
if (found >= 0) {
if (ep) { *ep = ep_found; }
return devicesAt(found);
} else {
return device_unk;
}
}
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
return findShortAddr(shortaddr).longaddr; // if unknown, it reverts to the Unknown device and longaddr is 0x00
}
//
// We have a seen a shortaddr on the network, get the corresponding device object
//
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
if (BAD_SHORTADDR == shortaddr) { return device_unk; } // this is not legal
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(shortaddr, 0);
}
// find the Device object by its longaddr (unique key if not null)
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
if (!longaddr) { return device_unk; }
Z_Device & device = findLongAddr(longaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(0, longaddr);
}
// Remove device from list, return true if it was known, false if it was not recorded
bool Z_Devices::removeDevice(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
_devices.remove(&device);
dirty();
return true;
}
return false;
}
//
// We have just seen a device on the network, update the info based on short/long addr
// In:
// shortaddr
// longaddr (both can't be null at the same time)
Z_Device & Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
Z_Device * s_found = &findShortAddr(shortaddr); // is there already a shortaddr entry
Z_Device * l_found = &findLongAddr(longaddr); // is there already a longaddr entry
if (foundDevice(*s_found) && foundDevice(*l_found)) { // both shortaddr and longaddr are already registered
if (s_found == l_found) {
} else { // they don't match
// the device with longaddr got a new shortaddr
l_found->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
// erase the previous shortaddr
freeDeviceEntry(s_found);
_devices.remove(s_found);
dirty();
return *l_found;
}
} else if (foundDevice(*s_found)) {
// shortaddr already exists but longaddr not
// add the longaddr to the entry
s_found->longaddr = longaddr;
dirty();
return *s_found;
} else if (foundDevice(*l_found)) {
// longaddr entry exists, update shortaddr
l_found->shortaddr = shortaddr;
dirty();
return *l_found;
} else {
// neither short/lonf addr are found.
if ((BAD_SHORTADDR != shortaddr) || longaddr) {
return createDeviceEntry(shortaddr, longaddr);
}
return device_unk;
}
return device_unk;
}
// Clear the router flag for each device, called at the beginning of ZbMap
void Z_Devices::clearDeviceRouterInfo(void) {
for (Z_Device & device : zigbee_devices._devices) {
if (device.valid()) {
device.setRouter(false);
}
}
}
//
// Clear all endpoints
//
void Z_Device::clearEndpoints(void) {
for (uint32_t i = 0; i < endpoints_max; i++) {
endpoints[i] = 0;
// no dirty here because it doesn't make sense to store it, does it?
}
}
//
// Add an endpoint to a shortaddr
// return true if a change was made
//
bool Z_Device::addEndpoint(uint8_t endpoint) {
if ((0x00 == endpoint) || (endpoint > 240 && endpoint != 0xF2)) { return false; }
for (uint32_t i = 0; i < endpoints_max; i++) {
if (endpoint == endpoints[i]) {
return false; // endpoint already there
}
if (0 == endpoints[i]) {
endpoints[i] = endpoint;
return true;
}
}
return false;
}
//
// Count the number of known endpoints
//
uint32_t Z_Device::countEndpoints(void) const {
uint32_t count_ep = 0;
for (uint32_t i = 0; i < endpoints_max; i++) {
if (0 != endpoints[i]) {
count_ep++;
}
}
return count_ep;
}
// Find the first endpoint of the device
uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const {
// When in router of end-device mode, the coordinator was not probed, in this case always talk to endpoint 1
if (0x0000 == shortaddr) { return 1; }
return findShortAddr(shortaddr).endpoints[0]; // returns 0x00 if no endpoint
}
// set a name to an endpoint, must exist in the list or return `false`
bool Z_Device::setEPName(uint8_t ep, const char * name) {
if ((0x00 == ep) || (ep > 240 && ep != 0xF2)) { return false; }
for (uint32_t i = 0; i < endpoints_max; i++) {
if (ep == endpoints[i]) {
ep_names.setEPName(ep, name);
return true;
}
}
return false;
}
void Z_Device::setStringAttribute(char*& attr, const char * str) {
if (nullptr == str) { str = ""; } // nullptr is considered empty string, don't use PROGMEM to avoid crash
size_t str_len = strlen(str);
if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything
if (attr) {
// we already have a value
if (strcmp(attr, str) != 0) {
// new value
free(attr); // free previous value
attr = nullptr;
} else {
return; // same value, don't change anything
}
}
if (str_len) {
if (str_len > 31) { str_len = 31; }
attr = (char*) malloc(str_len + 1);
strlcpy(attr, str, str_len + 1);
}
zigbee_devices.dirty();
}
//
// Sets the ManufId for a device.
// No action taken if the device does not exist.
// Inputs:
// - shortaddr: 16-bits short address of the device. No action taken if the device is unknown
// - str: string pointer, if nullptr it is considered as empty string
// Impact:
// - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash
//
void Z_Device::setManufId(const char * str) {
setStringAttribute(manufacturerId, str);
}
void Z_Device::setModelId(const char * str) {
setStringAttribute(modelId, str);
}
void Z_Device::setFriendlyName(const char * str) {
setStringAttribute(friendlyName, str);
}
void Z_Device::setFriendlyEPName(uint8_t ep, const char * str) {
ep_names.setEPName(ep, str);
}
// needs to push the implementation here to use Z_Device static method
void Z_EP_Name::setName(const char *new_name) {
Z_Device::setStringAttribute(name, new_name);
}
void Z_Device::setLastSeenNow(void) {
// Only update time if after 2020-01-01 0000.
// Fixes issue where zigbee device pings before WiFi/NTP has set utc_time
// to the correct time, and "last seen" calculations are based on the
// pre-corrected last_seen time and the since-corrected utc_time.
if (Rtc.utc_time < START_VALID_TIME) { return; }
last_seen = Rtc.utc_time;
}
void Z_Devices::deviceWasReached(uint16_t shortaddr) {
// since we just receveived data from the device, it is reachable
zigbee_devices.resetTimersForDevice(shortaddr, 0 /* groupaddr */, Z_CAT_REACHABILITY); // remove any reachability timer already there
Z_Device & device = findShortAddr(shortaddr);
if (device.valid()) {
device.setReachable(true); // mark device as reachable
}
}
void Z_Devices::deviceHasNoBattery(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (device.valid()) {
device.setHasNoBattery(); // mark device as reachable
}
}
// get the next sequance number for the device, or use the global seq number if device is unknown
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
device.seqNumber += 1;
return device.seqNumber;
} else {
_seqnumber += 1;
return _seqnumber;
}
}
// returns: dirty flag, did we change the value of the object
void Z_Device::setLightChannels(int8_t channels, uint8_t ep) {
if (channels >= 0) {
if (ep) { // if ep is not zero, the endpoint must exist
bool found = false;
for (uint32_t i = 0; i < endpoints_max; i++) {
if (ep == endpoints[i]) { found = true; break; }
}
if (!found) {
AddLog(LOG_LEVEL_INFO, D_LOG_ZIGBEE "cannot set light type to unknown ep=%i", ep);
return;
}
} else {
// if ep == 0, use first endpoint, or zero if no endpoint is known
ep = endpoints[0];
}
// retrieve of create light object
Z_Data_Light & light = data.get<Z_Data_Light>(ep);
if (channels != light.getConfig()) {
light.setConfig(channels);
zigbee_devices.dirty();
}
Z_Data_OnOff & onoff = data.get<Z_Data_OnOff>(ep);
(void)onoff;
} else {
// remove light / onoff object if any
for (auto & data_elt : data) {
if ((data_elt.getType() == Z_Data_Type::Z_Light) ||
(data_elt.getType() == Z_Data_Type::Z_OnOff)) {
if (ep == 0 || data_elt.getEndpoint() == ep) { // if remove ep==0 then remove all definitions
// remove light object
data.remove(&data_elt);
zigbee_devices.dirty();
}
}
}
}
}
int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr, uint8_t ep) const {
const Z_Device &device = findShortAddr(shortaddr);
return device.getHueBulbtype(ep);
}
void Z_Devices::hideHueBulb(uint16_t shortaddr, bool hidden) {
Z_Device &device = getShortAddr(shortaddr);
if (device.hidden != hidden) {
device.hidden = hidden;
dirty();
}
}
// true if device is not knwon or not a bulb - it wouldn't make sense to publish a non-bulb
bool Z_Devices::isHueBulbHidden(uint16_t shortaddr) const {
const Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
return device.hidden;
}
return true; // Fallback - Device is considered as hidden
}
// Deferred actions
// Parse for a specific category, of all deferred for a device if category == 0xFF
// Only with specific cluster number or for all clusters if cluster == 0xFFFF
void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster, uint8_t endpoint) {
// iterate the list of deferred, and remove any linked to the shortaddr
for (auto & defer : _deferred) {
if ((defer.shortaddr == shortaddr) && (defer.groupaddr == groupaddr)) {
if ((0xFF == category) || (defer.category == category)) {
if ((0xFFFF == cluster) || (defer.cluster == cluster)) {
if ((0xFF == endpoint) || (defer.endpoint == endpoint)) {
_deferred.remove(&defer);
}
}
}
}
}
}
// Set timer for a specific device
void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
// First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway)
if (category >= Z_CLEAR_DEVICE) { // if category == 0, we leave all previous timers
resetTimersForDevice(shortaddr, groupaddr, category, category >= Z_CLEAR_DEVICE_CLUSTER ? cluster : 0xFFFF, category >= Z_CLEAR_DEVICE_CLUSTER_ENDPOINT ? endpoint : 0xFF); // remove any cluster
}
// Now create the new timer
Z_Deferred & deferred = _deferred.addHead();
deferred = { wait_ms + millis(), // timer
shortaddr,
groupaddr,
cluster,
endpoint,
category,
value,
func };
}
// Set timer after the already queued events
// I.e. the wait_ms is not counted from now, but from the last event queued, which is 'now' or in the future
void Z_Devices::queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
Z_Device & device = getShortAddr(shortaddr);
uint32_t now_millis = millis();
if (TimeReached(device.defer_last_message_sent)) {
device.defer_last_message_sent = now_millis;
}
// defer_last_message_sent equals now or a value in the future
device.defer_last_message_sent += wait_ms;
// for queueing we don't clear the backlog, so we force category to Z_CAT_ALWAYS
setTimer(shortaddr, groupaddr, (device.defer_last_message_sent - now_millis), cluster, endpoint, Z_CAT_ALWAYS, value, func);
}
// Run timer at each tick
// WARNING: don't set a new timer within a running timer, this causes memory corruption
void Z_Devices::runTimer(void) {
// visit all timers
for (auto & defer : _deferred) {
uint32_t timer = defer.timer;
if (TimeReached(timer)) {
(*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value);
_deferred.remove(&defer);
}
}
// check if we need to save to Flash
if ((_saveTimer) && TimeReached(_saveTimer)) {
saveZigbeeDevices();
_saveTimer = 0;
}
}
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
// true - one attribute (except LinkQuality) woudl be lost, there is conflict
// false - new attributes can be safely added
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const {
const Z_Device & device = findShortAddr(shortaddr);
if (!foundDevice(device)) { return false; }
if (attr_list.isEmpty()) {
return false; // if no previous value, no conflict
}
// compare groups
if (device.attr_list.validGroupId() && attr_list.validGroupId()) {
if (device.attr_list.group_id != attr_list.group_id) { return true; } // groups are in conflict
}
// compare src_ep
if (device.attr_list.validSrcEp() && attr_list.validSrcEp()) {
if (device.attr_list.src_ep != attr_list.src_ep) { return true; }
}
// LQI does not count as conflicting
// parse all other parameters
for (const auto & attr : attr_list) {
const Z_attribute * curr_attr = device.attr_list.findAttribute(attr);
if (nullptr != curr_attr) {
if (!curr_attr->equalsVal(attr)) {
return true; // the value already exists and is different - conflict!
}
}
}
return false;
}
void Z_Devices::jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list) {
Z_Device & device = getShortAddr(shortaddr);
device.attr_list.mergeList(attr_list);
}
//
// internal function to publish device information with respect to all `SetOption`s
//
void Z_Device::jsonPublishAttrList(const char * json_prefix, const Z_attribute_list &attr_list, bool include_time) const {
const char * local_friendfly_name; // friendlyname publish can depend on the source endpoint
local_friendfly_name = ep_names.getEPName(attr_list.src_ep); // check if this ep has a specific name
if (local_friendfly_name == nullptr) {
// if no ep-specific name, get the device name
local_friendfly_name = friendlyName;
}
bool use_fname = (Settings->flag4.zigbee_use_names) && (local_friendfly_name); // should we replace shortaddr with friendlyname?
ResponseClear(); // clear string
// Do we prefix with `ZbReceived`?
if (!Settings->flag4.remove_zbreceived && !Settings->flag5.zb_received_as_subtopic) {
if (include_time && Rtc.utc_time >= START_VALID_TIME) {
// Add time if needed (and if time is valide)
ResponseAppendTimeFormat(Settings->flag2.time_format);
ResponseAppend_P(PSTR(",\"%s\":"), json_prefix);
} else {
ResponseAppend_P(PSTR("{\"%s\":"), json_prefix);
}
}
// What key do we use, shortaddr or name?
if (!Settings->flag5.zb_omit_json_addr) {
if (use_fname) {
ResponseAppend_P(PSTR("{\"%s\":"), local_friendfly_name);
} else {
ResponseAppend_P(PSTR("{\"0x%04X\":"), shortaddr);
}
}
ResponseAppend_P(PSTR("{"));
// Add "Device":"0x...."
ResponseAppend_P(PSTR("\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\","), shortaddr);
// Add "Name":"xxx" if name is present
if (local_friendfly_name) {
ResponseAppend_P(PSTR("\"" D_JSON_ZIGBEE_NAME "\":\"%s\","), EscapeJSONString(local_friendfly_name).c_str());
}
// Add all other attributes
ResponseAppend_P(PSTR("%s}"), attr_list.toString(false).c_str());
if (!Settings->flag5.zb_omit_json_addr) {
ResponseAppend_P(PSTR("}"));
}
if (!Settings->flag4.remove_zbreceived && !Settings->flag5.zb_received_as_subtopic) {
ResponseAppend_P(PSTR("}"));
}
#ifdef USE_INFLUXDB
InfluxDbProcess(1); // Use a copy of ResponseData
#endif
if (Settings->flag4.zigbee_distinct_topics) {
char subtopic[TOPSZ];
if (Settings->flag4.zb_topic_fname && local_friendfly_name && strlen(local_friendfly_name)) {
// Clean special characters
char stemp[TOPSZ];
strlcpy(stemp, local_friendfly_name, sizeof(stemp));
MakeValidMqtt(0, stemp);
if (Settings->flag5.zigbee_hide_bridge_topic) {
snprintf_P(subtopic, sizeof(subtopic), PSTR("%s"), stemp);
} else {
snprintf_P(subtopic, sizeof(subtopic), PSTR("%s/%s"), TasmotaGlobal.mqtt_topic, stemp);
}
} else {
if (Settings->flag5.zigbee_hide_bridge_topic) {
snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X"), shortaddr);
} else {
snprintf_P(subtopic, sizeof(subtopic), PSTR("%s/%04X"), TasmotaGlobal.mqtt_topic, shortaddr);
}
}
if (Settings->flag5.zb_topic_endpoint) {
if (attr_list.validSrcEp()) {
snprintf_P(subtopic, sizeof(subtopic), PSTR("%s_%d"), subtopic, attr_list.src_ep);
}
}
char stopic[TOPSZ];
if (Settings->flag5.zb_received_as_subtopic)
GetTopic_P(stopic, TELE, subtopic, json_prefix);
else
GetTopic_P(stopic, TELE, subtopic, PSTR(D_RSLT_SENSOR));
MqttPublish(stopic, Settings->flag.mqtt_sensor_retain);
} else {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings->flag.mqtt_sensor_retain);
}
XdrvRulesProcess(0); // apply rules
}
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (!device.valid()) { return; } // safeguard
Z_attribute_list &attr_list = device.attr_list;
if (!attr_list.isEmpty()) {
// save parameters is global variables to be used by Rules
gZbLastMessage.device = shortaddr; // %zbdevice%
gZbLastMessage.groupaddr = attr_list.group_id; // %zbgroup%
gZbLastMessage.endpoint = attr_list.src_ep; // %zbendpoint%
// add battery percentage from last known value
if (device.validBatteryPercent()) {
attr_list.setBattPercent(device.batt_percent);
}
device.jsonPublishAttrList(PSTR(D_JSON_ZIGBEE_RECEIVED), attr_list, Settings->flag5.zigbee_include_time);
attr_list.reset(); // clear the attributes
}
}
void Z_Devices::jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list) {
jsonPublishFlush(shortaddr); // flush any previous buffer
jsonAppend(shortaddr, attr_list);
jsonPublishFlush(shortaddr); // publish now
}
void Z_Devices::dirty(void) {
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
}
void Z_Devices::clean(void) {
_saveTimer = 0;
}
// Parse the command parameters for either:
// - a short address starting with "0x", example: 0x1234
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
// - a number 0..99, the index number in ZigbeeStatus
// - a friendly name, between quotes, example: "Room_Temp"
//
// In case the device is not found, the parsed 0x.... short address is passed to *parsed_shortaddr
Z_Device & Z_Devices::parseDeviceFromName(const char * param, uint16_t * parsed_shortaddr, uint8_t * ep, int32_t mailbox_payload) {
if (ep) { *ep = 0; } // mark as not found
if (nullptr == param) { return device_unk; }
size_t param_len = strlen(param);
char dataBuf[param_len + 1];
strcpy(dataBuf, param);
TrimSpace(dataBuf);
if (parsed_shortaddr != nullptr) { *parsed_shortaddr = BAD_SHORTADDR; } // if it goes wrong, mark as bad
if ((dataBuf[0] >= '0') && (dataBuf[0] <= '9') && (strlen(dataBuf) < 4)) {
// simple number 0..99
if ((mailbox_payload > 0) && (mailbox_payload <= 99)) {
return isKnownIndexDevice(mailbox_payload - 1);
} else {
return device_unk;
}
} else if ((dataBuf[0] == '0') && ((dataBuf[1] == 'x') || (dataBuf[1] == 'X'))) {
// starts with 0x
if (strlen(dataBuf) < 18) {
// expect a short address
uint16_t shortaddr = strtoull(dataBuf, nullptr, 0);
if (parsed_shortaddr != nullptr) { *parsed_shortaddr = shortaddr; } // return the parsed shortaddr even if the device doesn't exist
return (Z_Device&) findShortAddr(shortaddr); // if not found, it reverts to the unknown_device with address BAD_SHORTADDR
} else {
// expect a long address
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
return isKnownLongAddrDevice(longaddr);
}
} else {
// expect a Friendly Name
return isKnownFriendlyNameDevice(dataBuf, ep);
}
}
/*********************************************************************************************\
*
* Methods below build a JSON representation of device data
* Used by: ZbLight, ZbStatus, ZbInfo
*
\*********************************************************************************************/
// Add "Device":"0x1234","Name":"FrienflyName"
void Z_Device::jsonAddDeviceNamme(Z_attribute_list & attr_list) const {
const char * fname = friendlyName;
attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_DEVICE)).setHex32(shortaddr);
if (fname) {
attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_NAME)).setStr(fname);
}
}
// Add "Names":{"1":"name1","2":"name2"}
void Z_Device::jsonAddEPName(Z_attribute_list & attr_list) const {
String s = ep_names.tojson();
if (s.length() > 0) {
attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_NAMES)).setStrRaw(s.c_str());
}
}
// Add "IEEEAddr":"0x1234567812345678"
void Z_Device::jsonAddIEEE(Z_attribute_list & attr_list) const {
attr_list.addAttributePMEM(PSTR("IEEEAddr")).setHex64(longaddr);
}
// Add "ModelId":"","Manufacturer":""
void Z_Device::jsonAddModelManuf(Z_attribute_list & attr_list) const {
if (modelId) {
attr_list.addAttributePMEM(PSTR(D_JSON_MODEL D_JSON_ID)).setStr(modelId);
}
if (manufacturerId) {
attr_list.addAttributePMEM(PSTR("Manufacturer")).setStr(manufacturerId);
}
}
// Add "Endpoints":[...]
void Z_Device::jsonAddEndpoints(Z_attribute_list & attr_list) const {
JsonGeneratorArray arr_ep;
for (uint32_t i = 0; i < endpoints_max; i++) {
uint8_t endpoint = endpoints[i];
if (0x00 == endpoint) { break; }
arr_ep.add((uint32_t)endpoint);
}
attr_list.addAttributePMEM(PSTR("Endpoints")).setStrRaw(arr_ep.toString().c_str());
}
// Add "Config":["",""...]
void Z_Device::jsonAddConfig(Z_attribute_list & attr_list) const {
JsonGeneratorArray arr_data;
for (auto & data_elt : data) {
char key[8];
if (data_elt.validConfig()) {
snprintf_P(key, sizeof(key), PSTR("?%02X.%1X"), data_elt.getEndpoint(), data_elt.getConfig());
} else {
snprintf_P(key, sizeof(key), PSTR("?%02X"), data_elt.getEndpoint());
}
key[0] = Z_Data::DataTypeToChar(data_elt.getType());
arr_data.addStr(key);
}
attr_list.addAttributePMEM(PSTR("Config")).setStrRaw(arr_data.toString().c_str());
}
// Add "HueEmulation":false, "Matter":false
void Z_Device::jsonAddEmulation(Z_attribute_list & attr_list) const {
if (!isAdvertizeHue()) { attr_list.addAttributePMEM(PSTR("HueEmulation")).setBool(false); }
if (!isAdvertizeMatter()) { attr_list.addAttributePMEM(PSTR("Matter")).setBool(false); }
}
// Add All data attributes
void Z_Device::jsonAddDataAttributes(Z_attribute_list & attr_list) const {
// show internal data - mostly last known values
for (auto & data_elt : data) {
data_elt.toAttributes(attr_list);
if (data_elt.getType() == Z_Data_Type::Z_Light) { // since we don't have virtual methods, do an explicit test
((Z_Data_Light&)data_elt).toRGBAttributes(attr_list);
}
}
}
// Add "BatteryPercentage", "LastSeen", "LastSeenEpoch", "LinkQuality", "HueEmulation" (opt) and "Matter" (opt)
void Z_Device::jsonAddDeviceAttributes(Z_attribute_list & attr_list) const {
attr_list.addAttributePMEM(PSTR("Reachable")).setBool(getReachable());
if (validBatteryPercent()) { attr_list.addAttributePMEM(PSTR("BatteryPercentage")).setUInt(batt_percent); }
if (validBattLastSeen()) {
attr_list.addAttributePMEM(PSTR("BatteryLastSeenEpoch")).setUInt(batt_last_seen);
}
if (validLastSeen()) {
if (Rtc.utc_time >= last_seen) {
attr_list.addAttributePMEM(PSTR("LastSeen")).setUInt(Rtc.utc_time - last_seen);
}
attr_list.addAttributePMEM(PSTR("LastSeenEpoch")).setUInt(last_seen);
}
if (validLqi()) { attr_list.addAttributePMEM(PSTR(D_CMND_ZIGBEE_LINKQUALITY)).setUInt(lqi); }
}
// Display the tracked status for a light
void Z_Device::jsonLightState(Z_attribute_list & attr_list) const {
if (valid()) {
// dump all known values
attr_list.addAttributePMEM(PSTR("Reachable")).setBool(getReachable());
if (validPower()) { attr_list.addAttributePMEM(PSTR("Power")).setUInt(getPower()); }
int32_t light_mode = -1;
const Z_Data_Light & light = data.find<Z_Data_Light>(0);
if (&light != &z_data_unk) {
if (light.validConfig()) {
light_mode = light.getConfig();
}
light.toAttributes(attr_list);
// Exception, we need to convert Hue to 0..360 instead of 0..254
if (light.validHue()) {
attr_list.findOrCreateAttribute(PSTR("Hue")).setUInt(light.getHue());
}
light.toRGBAttributes(attr_list);
}
attr_list.addAttributePMEM(PSTR("Light")).setInt(light_mode);
}
}
// Dump the internal memory of Zigbee devices - does not include "Device" and "Name"
// Mode = 1: simple dump of devices addresses
// Mode = 2: simple dump of devices addresses and names, endpoints, light
// Mode = 3: dump last known data attributes
// String Z_Device::dumpSingleDevice(uint32_t dump_mode, bool add_device_name, bool add_brackets) const {
void Z_Device::jsonDumpSingleDevice(Z_attribute_list & attr_list, uint32_t dump_mode, bool add_name) const {
if (add_name) {
jsonAddDeviceNamme(attr_list);
}
if (dump_mode >= 2) {
jsonAddEPName(attr_list);
jsonAddIEEE(attr_list);
jsonAddModelManuf(attr_list);
jsonAddEndpoints(attr_list);
jsonAddConfig(attr_list);
jsonAddEmulation(attr_list);
}
if (dump_mode >= 3) {
jsonAddDataAttributes(attr_list);
// add device wide attributes
jsonAddDeviceAttributes(attr_list);
}
}
// Dump coordinator specific data
String Z_Devices::dumpCoordinator(void) const {
Z_attribute_list attr_list;
attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_DEVICE)).setHex32(localShortAddr);
attr_list.addAttributePMEM(PSTR("IEEEAddr")).setHex64(localIEEEAddr);
attr_list.addAttributePMEM(PSTR("TotalDevices")).setUInt(zigbee_devices.devicesSize());
return attr_list.toString(true);
}
// If &device == nullptr, then dump all
String Z_Devices::dumpDevice(uint32_t dump_mode, const Z_Device & device) const {
JsonGeneratorArray json_arr;
if (&device == &device_unk) {
if (dump_mode < 2) {
// dump light mode for all devices
for (const auto & device2 : _devices) {
Z_attribute_list attr_list;
device2.jsonDumpSingleDevice(attr_list, dump_mode, true);
json_arr.addStrRaw(attr_list.toString(true).c_str());
}
}
} else {
Z_attribute_list attr_list;
device.jsonDumpSingleDevice(attr_list, dump_mode, true);
json_arr.addStrRaw(attr_list.toString(true).c_str());
}
return json_arr.toString();
}
// Restore a single device configuration based on json export
// Input: json element as expported by `ZbStatus2``
// Mandatory attribue: `Device`
//
// Returns:
// 0 : Ok
// <0 : Error
//
// Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"],"HueEmulation":false}
int32_t Z_Devices::deviceRestore(JsonParserObject json) {
// params
uint16_t shortaddr = 0x0000; // 0x0000 is coordinator so considered invalid
uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown
const char * modelid = nullptr;
const char * manufid = nullptr;
const char * friendlyname = nullptr;
// read mandatory "Device"
JsonParserToken val_device = json[PSTR("Device")];
if (val_device) {
shortaddr = (uint32_t) val_device.getUInt(shortaddr);
} else {
return -1; // missing "Device" attribute
}
ieeeaddr = json.getULong(PSTR("IEEEAddr"), ieeeaddr); // read "IEEEAddr" 64 bits in format "0x0000000000000000"
friendlyname = json.getStr(PSTR("Name"), nullptr); // read "Name"
modelid = json.getStr(PSTR("ModelId"), nullptr);
manufid = json.getStr(PSTR("Manufacturer"), nullptr);
// update internal device information
updateDevice(shortaddr, ieeeaddr);
Z_Device & device = getShortAddr(shortaddr);
if (modelid) { device.setModelId(modelid); }
if (manufid) { device.setManufId(manufid); }
if (friendlyname) { device.setFriendlyName(friendlyname); }
// read "Endpoints"
JsonParserToken val_endpoints = json[PSTR("Endpoints")];
if (val_endpoints.isArray()) {
JsonParserArray arr_ep = JsonParserArray(val_endpoints);
device.clearEndpoints(); // clear even if array is empty
for (auto ep_elt : arr_ep) {
uint8_t ep = ep_elt.getUInt();
if (ep) { device.addEndpoint(ep); }
}
}
// read "Names"
JsonParserToken val_names = json[PSTR("Names")];
if (val_names.isObject()) {
JsonParserObject attr_names = val_names.getObject();
// iterate on keys
for (auto key : attr_names) {
int32_t ep = key.getUInt();
if (ep > 255) { ep = 0; } // ep == 0 is invalid
const char * ep_name = key.getValue().getStr();
if (!ep || !device.setEPName(ep, ep_name)) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ignoring ep=%i name='%s'"), ep, ep_name);
}
}
}
// read "Config"
JsonParserToken val_config = json[PSTR("Config")];
if (val_config.isArray()) {
JsonParserArray arr_config = JsonParserArray(val_config);
device.data.reset(); // remove existing configuration
for (auto config_elt : arr_config) {
const char * conf_str = config_elt.getStr();
Z_Data_Type data_type;
uint8_t ep = 0;
uint8_t config = 0xF; // default = no config
if (Z_Data::ConfigToZData(conf_str, &data_type, &ep, &config)) {
Z_Data & data = device.data.getByType(data_type, ep);
if (&data != nullptr) {
data.setConfig(config);
}
} else {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Ignoring config '%s'"), conf_str);
}
}
}
// read "HueEmulation" and "Matter"
bool hue_emulation = json.getBool(PSTR("HueEmulation"), false);
bool matter = json.getBool(PSTR("Matter"), false);
device.setAdvertizeHue(hue_emulation);
device.setAdvertizeMatter(matter);
return 0;
}
Z_Data_Light & Z_Devices::getLight(uint16_t shortaddr, uint8_t ep) {
return getShortAddr(shortaddr).data.get<Z_Data_Light>(ep);
}
bool Z_Devices::isTuyaProtocol(uint16_t shortaddr, uint8_t ep) const {
const Z_Device & device = findShortAddr(shortaddr);
if (device.valid()) {
const Z_Data_Mode & mode = device.data.getConst<Z_Data_Mode>(ep);
if (&mode != nullptr) {
return mode.isTuyaProtocol();
}
}
return false;
}
/*********************************************************************************************\
* Device specific data handlers
\*********************************************************************************************/
void Z_Device::setPower(bool power_on, uint8_t ep) {
data.get<Z_Data_OnOff>(ep).setPower(power_on);
}
bool Z_Device::validPower(uint8_t ep) const {
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
return (&onoff != &z_data_unk);
}
bool Z_Device::getPower(uint8_t ep) const {
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
if (&onoff != &z_data_unk) return onoff.getPower();
return false;
}
#endif // USE_ZIGBEE