Tasmota/tasmota/tasmota_xdrv_driver/xdrv_23_zigbee_4b_data.ino

312 lines
9.5 KiB
C++

/*
xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - saving configuration in I2C Eeprom of ZBBridge
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
// =======================
// ZbData v1
// File structure:
//
// [Array of devices]
// uint8 - length of device record (excluding the length byte)
// uint16 - short address
//
// [Device specific data first]
// uint8 - length of structure (excluding the length byte)
// uint8[] - device wide data
//
// [Array of data structures]
// uint8 - length of structure
// uint8[] - list of data
//
// returns the lenght of consumed buffer, or -1 if error
int32_t hydrateDeviceWideData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) {
size_t segment_len = buf.get8(start);
if ((segment_len < 6) || (segment_len > len)) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid device wide data length=%d"), segment_len);
return -1;
}
device.last_seen = buf.get32(start+1);
device.lqi = buf.get8(start + 5);
device.batt_percent = buf.get8(start + 6);
if (segment_len >= 10) {
device.batt_last_seen = buf.get32(start+7);
}
if (segment_len >= 11) {
device.no_advertize = (Z_no_advertize)buf.get8(start+11);
}
return segment_len + 1;
}
// return true if success
bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) {
// First hydrate device wide data
int32_t ret = hydrateDeviceWideData(device, buf, start, len);
if (ret < 0) { return false; }
size_t offset = ret;
while (offset + 5 <= len) { // each entry is at least 5 bytes
uint8_t data_len = buf.get8(start + offset);
// #ifdef Z_EEPROM_DEBUG
// {
// char hex_char[((data_len+1) * 2) + 2];
// AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateDeviceData data_len=%d contains %s"), data_len, ToHex_P(buf.buf(start+offset+1), data_len, hex_char, sizeof(hex_char)));
// }
// #endif
Z_Data & data_elt = device.data.createFromBuffer(buf, start + offset + 1, data_len);
(void)data_elt; // avoid compiler warning
offset += data_len + 1;
}
return true;
}
// negative means error
// positive is the segment length
int32_t hydrateSingleDeviceData(const SBuffer & buf) {
uint8_t segment_len = buf.len();
if (segment_len < 4) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid segment_len=%d"), segment_len);
return -1;
}
// read shortaddr
uint16_t shortaddr = buf.get16(0);
if (shortaddr >= 0xFFF0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr);
return -1;
}
#ifdef Z_EEPROM_DEBUG
{
if (segment_len > 3) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%*_H"), shortaddr, buf.buf(2), buf.len() - 2);
}
}
#endif
// check if the device exists, if not skip the record
Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
if (&device != nullptr) {
// parse the rest
bool ret = hydrateDeviceData(device, buf, 2, segment_len - 2);
if (!ret) { return -1; }
}
return segment_len;
}
SBuffer hibernateDeviceData(const struct Z_Device & device) {
SBuffer buf(192);
// If we have zero information about the device, just skip ir
if (device.validLqi() ||
device.validBatteryPercent() ||
device.validLastSeen() ||
!device.data.isEmpty()) {
buf.add8(0x00); // overall length, will be updated later
buf.add16(device.shortaddr);
// device wide data
buf.add8(11); // 10 bytes
buf.add32(device.last_seen);
buf.add8(device.lqi);
buf.add8(device.batt_percent);
// now storing batt_last_seen
buf.add32(device.batt_last_seen);
// now storing no_advertize
buf.add8((uint8_t)device.no_advertize);
for (const auto & data_elt : device.data) {
size_t item_len = data_elt.DataTypeToLength(data_elt.getType());
buf.add8(item_len); // place-holder for length
buf.addBuffer((uint8_t*) &data_elt, item_len);
}
// update overall length
buf.set8(0, buf.len() - 1);
{
// skip first 3 bytes
size_t buf_len = buf.len() - 3;
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%*_H\"}"), device.shortaddr, buf_len, buf.buf(3));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
}
}
return buf;
}
/*********************************************************************************************\
*
* Hydrate data from the EEPROM
*
\*********************************************************************************************/
// Parse the entire blob
// return true if ok
bool hydrateDevicesData(void) {
Univ_Read_File f; // universal reader
const char * storage_class = PSTR("");
#ifdef USE_ZIGBEE_EEPROM
if (zigbee.eeprom_ready) {
f.init(ZIGB_DATA2);
storage_class = PSTR("EEPROM");
}
#endif // USE_ZIGBEE_EEPROM
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE_DATA, "r");
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
#endif // USE_UFILESYS
if (!f.valid() || f.len <= 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data"));
return false;
}
uint32_t file_len = f.len;
if (file_len > 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device data in %s (%d bytes)"), storage_class, file_len);
} else {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data in %s"), storage_class);
f.close();
return false;
}
while (1) {
uint8_t dev_record_len = 0;
int32_t ret = f.readBytes(&dev_record_len, sizeof(dev_record_len));
if (ret <= 0) {
break; // finished
}
SBuffer buf(dev_record_len);
buf.setLen(dev_record_len);
ret = f.readBytes(buf.getBuffer(), dev_record_len);
if (ret != dev_record_len) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device data information, aborting"));
f.close();
return false;
}
int32_t segment_len = hydrateSingleDeviceData(buf);
if (segment_len <= 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device data information, aborting"));
f.close();
return false;
}
}
f.close();
return true;
}
/*********************************************************************************************\
*
* Hibernate data to the EEPROM
*
\*********************************************************************************************/
void hibernateAllData(void) {
if (Rtc.utc_time < START_VALID_TIME) { return; }
if (zigbee_devices.devicesSize() == 0) { return; } // safe-guard, if data is empty, don't save anything
Univ_Write_File f;
const char * storage_class = PSTR("");
#ifdef USE_ZIGBEE_EEPROM
if (!f.valid() && zigbee.eeprom_ready) {
f.init(ZIGB_DATA2);
storage_class = PSTR("EEPROM");
}
#endif
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE_DATA, "w");
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
#endif
if (f.valid()) {
for (const auto & device : zigbee_devices.getDevices()) {
// allocte a buffer for a single device
SBuffer buf = hibernateDeviceData(device);
if (buf.len() > 0) {
f.writeBytes(buf.getBuffer(), buf.len());
}
}
size_t buf_len = f.getCursor();
f.close();
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData - %d bytes written to %s"), buf_len, storage_class);
}
}
/*********************************************************************************************\
* Timer to save every 60 minutes
\*********************************************************************************************/
const uint32_t Z_SAVE_DATA_TIMER = 60 * 60 * 1000; // save data every 60 minutes (in ms)
//
// Callback for setting the timer to save Zigbee Data in x seconds
//
int32_t Z_Set_Save_Data_Timer(uint8_t value) {
zigbee_devices.setTimer(0x0000, 0, Z_SAVE_DATA_TIMER, 0, 0, Z_CAT_ALWAYS, 0 /* value */, &Z_SaveDataTimer);
return 0; // continue
}
void Z_SaveDataTimer(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
hibernateAllData();
Z_Set_Save_Data_Timer(0); // set a new timer
}
//
// Callback for saving all data once, used after receiving important events
//
int32_t Z_Set_Save_Data_Timer_Once(uint8_t value) {
zigbee_devices.setTimer(0x0000, 0, 0 /* now */, 0, 0, Z_CAT_ALWAYS, 0 /* value */, &Z_SaveDataTimerOnce);
return 0; // continue
}
void Z_SaveDataTimerOnce(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
hibernateAllData();
}
#ifdef USE_ZIGBEE_EEPROM
void ZFS_Erase(void) {
if (zigbee.eeprom_present) {
ZFS::erase();
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("EEPROM"));
}
}
#endif // USE_ZIGBEE_EEPROM
#endif // USE_ZIGBEE