Tasmota/tasmota/tasmota_xdrv_driver/xdrv_23_zigbee_4c_devices.ino

585 lines
21 KiB
C++

/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
// Ensure persistence of devices into Flash
//
// Structure:
// (from file info):
// uint16 - start address in Flash (offset)
// uint16 - length in bytes (makes sure parsing stops)
//
// First byte:
// 0x00 - Empty or V3 format
// 0x01-0xFE - Legacy format
// 0xFF - invalid
//
//
// V1 Legacy
// =========
// File structure:
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
// uint8 - number of endpoints
// [Array of endpoints]
// uint8 - endpoint number
// uint16 - profileID of the endpoint
// Array of uint8 - clusters In codes, 0xFF end marker
// Array of uint8 - clusters Out codes, 0xFF end marker
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
// reserved for extensions
// -- V2 --
// int8_t - zigbee profile of the device
//
// =======================
// v3 with version number
// File structure:
//
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
//
// [Array of endpoints]
// uint8 - endpoint number, 0xFF marks the end of endpoints
// uint8[] - list of configuration bytes, 0xFF marks the end
// i.e. 0xFF-0xFF marks the end of the array of endpoints
//
// =======================
// v4 which provides more extensibility
// File structure: (all values are little Endian)
//
// uint8 - number of devices, 0xFF indicates invalid file (or erased Flash?)
// [Array of devices, max to number of devices]
// [starts at offset = 3]
// uint16 - length of the device record, including the length field - allows to jump to next device
// [mandatory device data]
// uint16 - short address
// uint64 - long IEEE address
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
//
// [Array of endpoints]
// uint8 - endpoint number, 0xFF marks the end of endpoints
// uint8 - length of the endpoint information, excuding length byte and endpoint number
// uint8[] - list of configuration bytes, 0xFF marks the end
// str - (optional) FriendlyName for this endpoint (null terminated C string, 32 chars max), 0x00 if none
//
// [extended attributes]
// : any other data until `length of the device record` is reached
//
// Memory footprint
#ifdef ESP8266
const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB
const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000
const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0800;
const static size_t z_block_len = 0x0800; // 2kb
#endif // ESP8266
#ifdef ESP32
uint8_t* z_dev_start;
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0000; // No offset needed
const static size_t z_block_len = 0x1000; // 4kb
#endif // ESP32
// Each entry consumes 8 bytes
class Z_Flashentry {
public:
uint32_t name; // simple 4 letters name. Currently 'zig1', 'zig2'. 0xFFFFFFFF if not entry
uint16_t len; // len of object in bytes, 0xFFFF if no entry
uint16_t start; // address of start, 0xFFFF if empty, must be aligned on 128 bytes boundaries
};
class Z_Flashdirectory {
public:
// 8 bytes header
uint32_t magic; // magic value 'Tsmt' to check that the block is initialized
uint32_t clock; // clock vector to discard entries that are made before this one. This should be incremented by 1 for each new entry (future anti-weavering)
// entries, 14*8 = 112 bytes
Z_Flashentry entries[14];
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
uint16_t len; // len of object
uint16_t reserved; // align on 4 bytes boundary
// link to next entry, none for now, but may be used for anti-weavering
uint16_t next_dir; // 0xFFFF if none
uint16_t reserved1; // must be 0xFFFF
uint32_t reserved2; // must be 0xFFFFFFFF
};
const static size_t Z_MAX_FLASH = z_block_len - sizeof(Z_Flashentry); // 2040
bool hibernateDeviceConfiguration(SBuffer & buf, const class Z_Data_Set & data, uint8_t endpoint) {
bool found = false;
for (auto & elt : data) {
if (endpoint == elt.getEndpoint()) {
buf.add8(elt.getConfigByte());
found = true;
}
}
return found;
}
/*********************************************************************************************\
* hibernateDevice
*
* Transforms a single device into a SBuffer binary representation.
* Only supports v2 (not the legacy old one long forgotten)
\*********************************************************************************************/
SBuffer hibernateDevice(const struct Z_Device &device) {
SBuffer buf(256);
buf.add16(0x0000); // overall length, will be updated later
buf.add16(device.shortaddr);
buf.add64(device.longaddr);
char *names[3] = { device.modelId, device.manufacturerId, device.friendlyName };
for (uint32_t i=0; i<nitems(names); i++) {
char *p = names[i];
if (p) {
size_t len = strlen(p);
if (len > 32) { len = 32; } // max 32 chars
buf.addBuffer(p, len);
}
buf.add8(0x00); // end of string marker
}
// check if we need to write fake endpoint 0x00
buf.add8(0x00);
uint32_t ep0_len_offset = buf.len(); // mark where to update the ep data length
buf.add8(0x00);
if (hibernateDeviceConfiguration(buf, device.data, 0)) {
buf.add8(0xFF); // end of configuration
buf.add8(0x00); // empty ep friendly name, as it would duplicate the global friendly name
// update the lenght of ep0_data_lenth
buf.set8(ep0_len_offset, buf.len() - ep0_len_offset - 1);
} else {
buf.setLen(buf.len()-2); // remove 2 bytes header
}
// scan endpoints
for (uint32_t i=0; i<endpoints_max; i++) {
uint8_t endpoint = device.endpoints[i];
if (0x00 == endpoint) { break; }
buf.add8(endpoint);
uint32_t ep_len_offset = buf.len(); // mark where to update the ep data length
buf.add8(0x00);
hibernateDeviceConfiguration(buf, device.data, endpoint);
buf.add8(0xFF); // end of configuration
const char * ep_name = device.ep_names.getEPName(endpoint);
if (ep_name != nullptr) {
size_t len = strlen(ep_name);
if (len > 32) { len = 32; } // max 32 chars
buf.addBuffer(ep_name, len);
buf.add8(0x00); // end of string marker
} else {
buf.add8(0x00); // no endpoint name
}
// update the lenght of ep0_data_lenth
buf.set8(ep_len_offset, buf.len() - ep_len_offset - 1);
}
buf.add8(0xFF); // end of endpoints
// update overall length
buf.set8(0, buf.len());
return buf;
}
/*********************************************************************************************\
* Write Devices in EEPROM/File/Flash
*
* Updated to v4 format
*
* Writes the preamble and all devices in the Univ_Write_File structure.
* Does not close the file at the end.
* Returns true if succesful.
* In case of problem, the output file is left untouched
\*********************************************************************************************/
// EEPROM variant that writes one item at a time and is not limited to 2KB
bool hibernateDevices(Univ_Write_File & write_data);
bool hibernateDevices(Univ_Write_File & write_data) {
// first prefix is number of devices
size_t devices_size = zigbee_devices.devicesSize();
if (devices_size > 250) { devices_size = 250; } // arbitrarily limit to 250 devices in EEPROM instead of 32 in Flash
uint8_t devices_size8 = devices_size;
write_data.writeBytes((uint8_t*)&devices_size8, sizeof(devices_size8)); // write number of devices in file
for (const auto & device : zigbee_devices.getDevices()) {
const SBuffer buf = hibernateDevice(device);
if (buf.len() > 0) {
int32_t ret = write_data.writeBytes(buf.getBuffer(), buf.len());
if (ret != buf.len()) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Error writing Devices, written = %d, expected = %d"), ret, buf.len());
return false;
}
}
}
return true;
}
// parse a single string from the saved data
// if something wrong happens, returns nullptr to ignore the string
// Index d is incremented to just after the string
const char * hydrateSingleString(const SBuffer & buf, uint32_t *d) {
size_t s_len = buf.strlen(*d);
const char * ptr = s_len ? buf.charptr(*d) : "";
*d += s_len + 1;
return ptr;
}
/*********************************************************************************************\
* hydrateSingleDevice
*
* Transforms a binary representation to a Zigbee device
* Supports only v2 and v4
\*********************************************************************************************/
void hydrateSingleDevice(const SBuffer & buf_d, uint32_t version) {
uint32_t d = 0; // index in device buffer
uint16_t shortaddr = buf_d.get16(d); d += 2;
uint64_t longaddr = buf_d.get64(d); d += 8;
size_t buf_len = buf_d.len();
Z_Device & device = zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses
// ModelId
device.setModelId(hydrateSingleString(buf_d, &d));
// ManufID
device.setManufId(hydrateSingleString(buf_d, &d));
// FriendlyName
device.setFriendlyName(hydrateSingleString(buf_d, &d));
if (d >= buf_len) { return; }
// Read per-endpoint information
while (d < buf_len) {
uint8_t ep = buf_d.get8(d++);
if (0xFF == ep) { break; } // ep 0xFF marks the end of the endpoints
if (ep > 240 && ep != 0xF2) { ep = 0xFF; } // ep == 0xFF means ignore
device.addEndpoint(ep); // it will ignore invalid endpoints
if (version == 4) {
if (d >= buf_len) { break; } // end of buffer
uint8_t ep_len = buf_d.get8(d++);
if (d + ep_len > buf_len) { break; } // buffer is too small to contain the announced data
while (d < buf_len) {
uint8_t config_type = buf_d.get8(d++);
if (0xFF == config_type) { break; } // 0xFF marks the end of congiguration
uint8_t config = config_type & 0x0F;
Z_Data_Type type = (Z_Data_Type) (config_type >> 4);
// set the configuration
if (ep != 0xFF) {
Z_Data & z_data = device.data.getByType(type, ep);
if (&z_data != nullptr) {
z_data.setConfig(config);
Z_Data_Set::updateData(z_data);
}
}
}
// ability to have additional fields here
// friendly name for ep
if (d < buf_len) {
device.setFriendlyEPName(ep, hydrateSingleString(buf_d, &d));
}
// additional information comes here
} else {
// version == 2
while (d < buf_len) {
uint8_t config_type = buf_d.get8(d++);
if (0xFF == config_type) { break; } // 0xFF marks the end of congiguration
uint8_t config = config_type & 0x0F;
Z_Data_Type type = (Z_Data_Type) (config_type >> 4);
// set the configuration
if (ep != 0xFF) {
Z_Data & z_data = device.data.getByType(type, ep);
if (&z_data != nullptr) {
z_data.setConfig(config);
Z_Data_Set::updateData(z_data);
}
}
}
}
}
}
/*********************************************************************************************\
* loadZigbeeDevices
*
* Load device configuration from storage.
* Order of storage for loading is: 1/ EEPROM 2/ File system 3/ Flash (ESP8266 only)
\*********************************************************************************************/
// dump = true, only dump to logs, don't actually load
bool loadZigbeeDevices(void) {
Univ_Read_File f; // universal reader
const char * storage_class = PSTR("");
uint32_t file_version = 4; // currently supporting v3 and v4
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE, "r");
if (!file) {
file = dfsp->open(TASM_FILE_ZIGBEE_LEGACY_V2, "r");
if (file) { file_version = 2; } // v2 found
}
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
#endif // USE_UFILESYS
#ifdef USE_ZIGBEE_EEPROM
if (!f.valid() && zigbee.eeprom_ready) {
f.init(ZIGB_NAME4); // try v4 first
if (!f.valid()) {
f.init(ZIGB_NAME2); // else try v2
if (f.valid()) { file_version = 2; } // v2 found
}
if (f.valid()) {
storage_class = PSTR("EEPROM");
}
}
#endif // USE_ZIGBEE_EEPROM
#ifdef ESP8266
if (!f.valid() && flash_valid()) {
// Read binary data from Flash
Z_Flashentry flashdata;
memcpy_P(&flashdata, z_dev_start, sizeof(Z_Flashentry));
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "z_dev_start %p"), z_dev_start);
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len);
// Check the signature
if ( ((flashdata.name == ZIGB_NAME2) || (flashdata.name == ZIGB_NAME4))
&& (flashdata.len > 0)) {
uint16_t buf_len = flashdata.len;
if (flashdata.name == ZIGB_NAME2) { file_version = 2; } // v2 found
f.init(z_dev_start + sizeof(Z_Flashentry), buf_len);
storage_class = PSTR("Flash");
}
}
#endif // ESP8266
uint32_t file_len = 0;
uint8_t num_devices = 0;
if (f.valid()) {
file_len = f.len;
f.readBytes(&num_devices, sizeof(num_devices));
}
if ((file_len < 10) || (num_devices == 0x00) || (num_devices == 0xFF)) { // No data
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information"));
return false;
}
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information found in %s (%d devices - %d bytes)"), storage_class, num_devices, file_len);
uint32_t k = 1; // byte index in global buffer
for (uint32_t i = 0; (i < num_devices) && (k < file_len); i++) {
uint16_t dev_record_len = 0;
size_t dev_record_len_bytes = file_version >= 4 ? 2 : 1;
f.readBytes((uint8_t*)&dev_record_len, dev_record_len_bytes); // starting with v4, length is 2 bytes
if (dev_record_len == 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device information, aborting"));
zigbee_devices.clean(); // don't write back to Flash what we just loaded
return false;
}
SBuffer buf(dev_record_len - dev_record_len_bytes);
buf.setLen(dev_record_len - dev_record_len_bytes);
buf.set8(0, dev_record_len - dev_record_len_bytes); // push the first byte (len including this first byte)
int32_t ret = f.readBytes(buf.buf(), dev_record_len - dev_record_len_bytes);
if (ret != dev_record_len - dev_record_len_bytes) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Invalid device information, aborting"));
zigbee_devices.clean(); // don't write back to Flash what we just loaded
return false;
}
hydrateSingleDevice(buf, file_version);
// next iteration
k += dev_record_len;
}
zigbee_devices.clean(); // don't write back to Flash what we just loaded
return true;
}
/*********************************************************************************************\
* saveZigbeeDevices
*
* Save device configuration from storage.
* Order of storage for saving is: 1/ EEPROM 2/ File system 3/ Flash (ESP8266 only)
\*********************************************************************************************/
void saveZigbeeDevices(void) {
Univ_Write_File f;
const char * storage_class = PSTR("");
// TODO can we prioritize filesystem instead of eeprom?
#ifdef USE_ZIGBEE_EEPROM
if (!f.valid() && zigbee.eeprom_ready) {
f.init(ZIGB_NAME4);
storage_class = PSTR("EEPROM");
}
#endif
#ifdef USE_UFILESYS
File file;
if (!f.valid() && dfsp) {
file = dfsp->open(TASM_FILE_ZIGBEE, "w");
if (file) {
f.init(&file);
storage_class = PSTR("File System");
}
}
#endif
#if defined(ESP8266)
uint8_t *sbuffer = nullptr;
static const size_t max_flash_size = 2040;
if (!f.valid() && flash_valid()) {
sbuffer = (uint8_t*) malloc(max_flash_size);
f.init(sbuffer, max_flash_size);
storage_class = PSTR("Flash");
}
#endif // defined(ESP8266)
bool written = false;
size_t buf_len = 0;
if (f.valid()) {
written = hibernateDevices(f);
buf_len = f.getCursor();
f.close();
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved in %s (%d bytes)"), storage_class, buf_len);
}
#if defined(ESP8266)
if (written && sbuffer != nullptr) {
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
free(sbuffer);
return;
}
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
Z_Flashentry *flashdata = (Z_Flashentry*)(spi_buffer + z_block_offset);
flashdata->name = ZIGB_NAME4; // v4
flashdata->len = buf_len;
flashdata->start = 0;
memcpy(spi_buffer + z_block_offset + sizeof(Z_Flashentry), sbuffer, buf_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len);
free(spi_buffer);
free(sbuffer);
}
#endif // defined(ESP8266)
}
/*********************************************************************************************\
* eraseZigbeeDevices
*
* Erase all storage locations: 1/ EEPROM, 2/ File system 3/ Flash (ESP8266 only if no filesystem)
\*********************************************************************************************/
// Erase the flash area containing the ZigbeeData
void eraseZigbeeDevices(void) {
zigbee_devices.clean(); // avoid writing data to flash after erase
#ifdef USE_ZIGBEE_EEPROM
ZFS_Erase();
#endif // USE_ZIGBEE_EEPROM
#if defined(ESP8266) && !defined(USE_UFILESYS)
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
// Fill the Zigbee area with 0xFF
memset(spi_buffer + z_block_offset, 0xFF, z_block_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
free(spi_buffer);
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("Flash"));
#endif // defined(ESP8266) && !defined(USE_UFILESYS)
#ifdef USE_UFILESYS
if (TfsDeleteFile(TASM_FILE_ZIGBEE)) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased"));
}
#endif // USE_UFILESYS
}
/*********************************************************************************************\
* restoreDumpAllDevices
*
* Dump all devices in `ZbRestore <hex>` format ready to copy/paste
\*********************************************************************************************/
void restoreDumpAllDevices(void) {
for (const auto & device : zigbee_devices.getDevices()) {
const SBuffer buf = hibernateDevice(device);
if (buf.len() > 0) {
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_RESTORE "\":\"ZbRestore %_B\"}"), &buf);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
}
}
}
#endif // USE_ZIGBEE