Tasmota/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_flash.ino

213 lines
7.9 KiB
C++

/*
xdrv_52_3_berry_webserver.ino - Berry scripting language, webserver module
Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_BERRY
#include <berry.h>
#include "esp_idf_version.h"
#if ESP_IDF_VERSION_MAJOR >= 5
#include "esp_flash.h"
#else
#include "esp_spi_flash.h"
#endif
size_t FlashWriteSubSector(uint32_t address_start, const uint8_t *data, size_t size) {
uint32_t addr = address_start;
size_t size_left = size;
size_t current_offset = 0;
esp_err_t ret;
// Memory is unaligned, so we need to copy it to an aligned buffer
uint8_t buffer[SPI_FLASH_SEC_SIZE] __attribute__((aligned(4)));
while (size_left) {
uint32_t page_addr = addr & ~(SPI_FLASH_SEC_SIZE - 1);
uint32_t addr_in_page = addr & (SPI_FLASH_SEC_SIZE - 1);
uint32_t size_in_page = size_left;
if (addr_in_page + size_in_page > SPI_FLASH_SEC_SIZE) {
size_in_page = SPI_FLASH_SEC_SIZE - addr_in_page;
}
// AddLog(LOG_LEVEL_DEBUG, ">>>: flash_write addr=%p size=%i -- page_addr=%p addr_in_page=%p size_in_page=%i size_left=%i", address_start, size, page_addr, addr_in_page, size_in_page, size_left);
// check if whole page?
if (addr_in_page == 0 && size_in_page == SPI_FLASH_SEC_SIZE) {
memcpy(buffer, data + current_offset, SPI_FLASH_SEC_SIZE);
} else {
#if ESP_IDF_VERSION_MAJOR < 5
ret = spi_flash_read(page_addr, buffer, SPI_FLASH_SEC_SIZE);
#else
ret = esp_flash_read(NULL, buffer, page_addr, SPI_FLASH_SEC_SIZE);
#endif
if (ret) { AddLog(LOG_LEVEL_INFO, "BRY: could not read flash %p (0x%X) ret=%i", page_addr, SPI_FLASH_SEC_SIZE, ret); return 0; }
memcpy(buffer + addr_in_page, data + current_offset, size_in_page);
}
#if ESP_IDF_VERSION_MAJOR < 5
ret = spi_flash_erase_sector(page_addr / SPI_FLASH_SEC_SIZE);
#else
ret = esp_flash_erase_region(NULL, page_addr, SPI_FLASH_SEC_SIZE);
#endif
if (ret) { AddLog(LOG_LEVEL_INFO, "BRY: could not erase flash sector 0x%X ret=%i", page_addr / SPI_FLASH_SEC_SIZE, ret); return 0; }
#if ESP_IDF_VERSION_MAJOR < 5
spi_flash_write(page_addr, buffer, SPI_FLASH_SEC_SIZE);
#else
esp_flash_write(NULL, buffer, page_addr, SPI_FLASH_SEC_SIZE);
#endif
if (ret) { AddLog(LOG_LEVEL_INFO, "BRY: could not write flash %p (0x%X) ret=%i", page_addr, SPI_FLASH_SEC_SIZE, ret); return 0; }
addr += size_in_page;
current_offset += size_in_page;
size_left -= size_in_page;
}
return current_offset;
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* import flash
*
\*********************************************************************************************/
extern "C" {
// Berry: `flash.read(address:int[, length:int]) -> bytes()`
//
// If length is not specified, it is full block 4KB
int32_t p_flash_read(struct bvm *vm);
int32_t p_flash_read(struct bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 1 && be_isint(vm, 1) &&
(argc < 2 || be_isint(vm, 2)) ) { // optional second argument must be int
uint32_t address = be_toint(vm, 1);
uint32_t length = 0x1000;
if (argc >= 2) {
length = be_toint(vm, 2);
if (length <= 0) { length = 0x1000; }
}
// allocate a buffer in the heap that will be automatically freed when going out of scope
auto buf = std::unique_ptr<uint8_t[]>(new uint8_t[length]);
#if ESP_IDF_VERSION_MAJOR < 5
esp_err_t ret = spi_flash_read(address, buf.get(), length);
#else
esp_err_t ret = esp_flash_read(NULL, buf.get(), address, length);
#endif
if (ret) {
be_raisef(vm, "internal_error", "Error calling spi_flash_read(0x%X, %i)", address, length);
}
be_pushbytes(vm, buf.get(), length);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `flash.write(address:int, content:bytes() [, no_erase:bool]) -> nil`
// if `no_erase` is true, just call spi_flash_write
int32_t p_flash_write(struct bvm *vm);
int32_t p_flash_write(struct bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 2 && be_isint(vm, 1) && be_isinstance(vm, 2)) {
be_getglobal(vm, "bytes"); /* get the bytes class */ /* TODO eventually replace with be_getbuiltin */
if (be_isderived(vm, 2)) {
bool no_erase = false;
if (argc >= 3 && be_isbool(vm, 3)) {
no_erase = be_tobool(vm, 3);
}
uint32_t address = be_toint(vm, 1);
size_t length = 0;
const void * bytes = be_tobytes(vm, 2, &length);
if (bytes && length > 0) {
if (no_erase) {
#if ESP_IDF_VERSION_MAJOR < 5
esp_err_t ret = spi_flash_write(address, (const uint8_t*)bytes, length);
#else
esp_err_t ret = esp_flash_write(NULL, (const uint8_t*)bytes, address, length);
#endif
if (ret) {
be_raisef(vm, "internal_error", "Error calling spi_flash_write() ret=%i", ret);
}
} else {
size_t ret = FlashWriteSubSector(address, (const uint8_t*)bytes, length);
if (ret == 0) {
be_raise(vm, "internal_error", "Error calling spi_flash_write()");
}
}
be_return_nil(vm);
// success
}
}
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `flash.erase(address:int, length:int) -> nil`
//
// Address and length must be 4KB aligned
int32_t p_flash_erase(struct bvm *vm);
int32_t p_flash_erase(struct bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 2 && be_isint(vm, 1) && be_isint(vm, 2)) {
int32_t address = be_toint(vm, 1);
int32_t length = be_toint(vm, 2);
if ((address % 0x1000) != 0 || address < 0) {
be_raise(vm, "value_error", "Address must be a multiple of 0x1000");
}
if ((length % 0x1000) != 0 || length < 0) {
be_raise(vm, "value_error", "Length must be a multiple of 0x1000");
}
#if ESP_IDF_VERSION_MAJOR < 5
esp_err_t ret = spi_flash_erase_range(address, length);
#else
esp_err_t ret = esp_flash_erase_region(NULL, address, length);
#endif
be_return_nil(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// return current OTA partition
// Typically `0` or `1`, or `-1` if safeboot
int p_cur_ota() {
uint32_t cur_part = ESP_PARTITION_SUBTYPE_APP_FACTORY; // 0
const esp_partition_t *running_ota = esp_ota_get_running_partition();
if (running_ota) { cur_part = running_ota->subtype; } // 16 - 32
if (cur_part >= (uint32_t)ESP_PARTITION_SUBTYPE_APP_OTA_MIN /*16*/ && cur_part < (uint32_t)ESP_PARTITION_SUBTYPE_APP_OTA_MAX /*32*/) {
return cur_part - (uint32_t)ESP_PARTITION_SUBTYPE_APP_OTA_MIN /*16*/;
}
return -1;
}
// Forces the next restart to use the `factory` partition if any is present
void p_factory(bbool force_ota) {
const esp_partition_t *otadata_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
if (otadata_partition) {
esp_partition_erase_range(otadata_partition, 0, SPI_FLASH_SEC_SIZE * 2);
}
if (force_ota) {
//#ifdef CONFIG_IDF_TARGET_ESP32C3
#ifdef ESP32
OtaFactoryWrite(true);
#endif
RtcSettings.ota_loader = 1; // force OTA at next reboot
}
}
}
#endif // USE_BERRY