Tasmota/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_gpio.ino

290 lines
8.8 KiB
C++

/*
xdrv_52_3_berry_native.ino - Berry scripting language, native fucnctions
Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_BERRY
#include <berry.h>
#include "esp8266toEsp32.h"
#if defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2)
#if ESP_IDF_VERSION_MAJOR >= 5
#include <driver/dac_oneshot.h>
#else
#include <driver/dac.h>
#endif
#endif
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* import gpio
*
*
\*********************************************************************************************/
extern "C" {
#include "berry/include/be_gpio_defines.h"
#if defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2)
#include "soc/dac_channel.h"
#endif // defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2)
// virtual member
int gp_member(bvm *vm);
int gp_member(bvm *vm) {
be_const_module_member_raise(vm, lv_gpio_constants, lv_gpio_constants_size);
be_return(vm);
}
int gp_pin_mode(bvm *vm);
int gp_pin_mode(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 2 && be_isint(vm, 1) && be_isint(vm, 2)) {
int32_t pin = be_toint(vm, 1);
int32_t mode = be_toint(vm, 2);
if (pin >= 0) {
if (mode > 0) {
// standard ESP mode
pinMode(pin, mode);
} else {
// synthetic mode
if (-1 == mode) {
// DAC
#if defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2)
if (pin != DAC_CHAN0_GPIO_NUM && pin != DAC_CHAN1_GPIO_NUM) {
be_raisef(vm, "value_error", "DAC only supported on GPIO%i-%i", DAC_CHAN0_GPIO_NUM, DAC_CHAN1_GPIO_NUM);
}
// DEPRECATED - this is not needed anymore, the GPIO is configured when first write occurs
#else
be_raise(vm, "value_error", "DAC unsupported in this chip");
#endif
}
}
}
be_return_nil(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int gp_digital_write(bvm *vm);
int gp_digital_write(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 2 && be_isint(vm, 1) && be_isint(vm, 2)) {
int32_t pin = be_toint(vm, 1);
int32_t val = be_toint(vm, 2);
if (pin >= 0) {
digitalWrite(pin, val);
}
be_return_nil(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int gp_digital_read(bvm *vm);
int gp_digital_read(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 1 && be_isint(vm, 1)) {
int32_t pin = be_toint(vm, 1);
if (pin >= 0) {
int32_t ret = digitalRead(pin);
be_pushint(vm, ret);
} else {
be_pushnil(vm);
}
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int gp_dac_voltage(bvm *vm);
int gp_dac_voltage(bvm *vm) {
#if defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2)
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 2 && be_isint(vm, 1) && be_isnumber(vm, 2)) {
int32_t pin = be_toint(vm, 1);
int32_t mV = be_toint(vm, 2);
if (pin != DAC_CHAN0_GPIO_NUM && pin != DAC_CHAN1_GPIO_NUM) {
be_raisef(vm, "value_error", "DAC only supported on GPIO%i-%i", DAC_CHAN0_GPIO_NUM, DAC_CHAN1_GPIO_NUM);
}
if (mV < 0) { mV = 0; }
uint32_t dac_value = changeUIntScale(mV, 0, 3300, 0, 255); // convert from 0..3300 ms to 0..255
if (!dacWrite(pin, dac_value)) {
be_raise(vm, "value_error", "Error: dacWrite failed");
}
be_pushint(vm, changeUIntScale(dac_value, 0, 255, 0, 3300)); // convert back to mV to indicate the actual value
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
#else // defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2)
be_raise(vm, "value_error", "DAC unsupported in this chip");
#endif // defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32S2)
}
// Tasmota specific
int gp_pin_used(bvm *vm);
int gp_pin_used(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 1 && argc <= 2 && be_isint(vm, 1)) {
int32_t pin = be_toint(vm, 1);
int32_t index = 0;
if (argc == 2 && be_isint(vm, 2)) {
index = be_toint(vm, 2);
}
bool ret;
if (pin == GPIO_OPTION_A) {
ret = bitRead(TasmotaGlobal.gpio_optiona.data, index);
} else {
ret = PinUsed(pin, index);
}
be_pushbool(vm, ret);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int gp_pin(bvm *vm);
int gp_pin(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 1 && argc <= 2 && be_isint(vm, 1)) {
int32_t pin = be_toint(vm, 1);
int32_t index = 0;
if (argc == 2 && be_isint(vm, 2)) {
index = be_toint(vm, 2);
}
int32_t ret = Pin(pin, index);
be_pushint(vm, ret);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
void gp_set_duty(int32_t pin, int32_t duty, int32_t hpoint) {
analogWritePhase(pin, duty, hpoint);
}
void gp_set_frequency(int32_t pin, int32_t frequency) {
analogWriteFreq(frequency, pin);
}
// gpio.counter_read(counter:int) -> int or nil
//
// Read counter value, or return nil if counter is not used
int gp_counter_read(bvm *vm);
int gp_counter_read(bvm *vm) {
#ifdef USE_COUNTER
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 1 && be_isint(vm, 1)) {
int32_t counter = be_toint(vm, 1) + 1; // counter are 0 based in Berry, 1 based in Tasmota
// is `index` refering to a counter?
if (CounterPinConfigured(counter)) {
be_pushint(vm, CounterPinRead(counter));
be_return(vm);
} else {
be_return_nil(vm);
}
}
be_raise(vm, kTypeError, nullptr);
#else
be_return_nil(vm);
#endif
}
int gp_counter_set_add(bvm *vm, bool add) {
#ifdef USE_COUNTER
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 2 && be_isint(vm, 1) && be_isint(vm, 2)) {
int32_t counter = be_toint(vm, 1) + 1; // counter are 0 based in Berry, 1 based in Tasmota
int32_t value = be_toint(vm, 2);
// is `index` refering to a counter?
if (CounterPinConfigured(counter)) {
be_pushint(vm, CounterPinSet(counter, value, add));
be_return(vm);
} else {
be_return_nil(vm);
}
}
be_raise(vm, kTypeError, nullptr);
#else
be_return_nil(vm);
#endif
}
// gpio.counter_set(counter:int, value:int) -> int or nil
//
// Set the counter value, return the actual value, or return nil if counter is not used
int gp_counter_set(bvm *vm);
int gp_counter_set(bvm *vm) {
return gp_counter_set_add(vm, false);
}
// gpio.counter_add(counter:int, value:int) -> int or nil
//
// Add to the counter value, return the actual value, or return nil if counter is not used
int gp_counter_add(bvm *vm);
int gp_counter_add(bvm *vm) {
return gp_counter_set_add(vm, true);
}
// gpio.get_duty(pin:int) -> int
//
// Read the value of a PWM within resolution
// Returns -1 if pin is not a PWM pin
int gp_get_duty(int32_t pin);
int gp_get_duty(int32_t pin) {
return ledcRead2(pin);
}
// gpio.get_duty_resolution(pin:int) -> int
//
// Read the resolution of a PWM
// Returns -1 if pin is not a PWM pin
int gp_get_duty_resolution(int32_t pin);
int gp_get_duty_resolution(int32_t pin) {
int32_t channel = analogGetChannel2(pin);
if (channel >= 0) {
return (1 << ledcReadResolution(channel));
}
return -1;
}
// gpio.get_pin_type(phy_gpio:int) -> int
//
// Get the type configured for physical GPIO
// Return 0 if GPIO is not configured
extern int gp_get_pin(int32_t pin);
extern int gp_get_pin(int32_t pin) {
return GetPin(pin) / 32;
}
// gpio.get_pin_type_index(phy_gpio:int) -> int
//
// Get the sub-index for the type configured for physical GPIO
// Return 0 if GPIO is not configured
extern int gp_get_pin_index(int32_t pin);
extern int gp_get_pin_index(int32_t pin) {
return GetPin(pin) % 32;
}
}
#endif // USE_BERRY