Tasmota/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_light.ino

340 lines
11 KiB
C++

/*
xdrv_52_3_berry_native.ino - Berry scripting language, native fucnctions
Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_BERRY
#ifdef USE_LIGHT
#include <berry.h>
#include <Wire.h>
/*********************************************************************************************\
*
*
\*********************************************************************************************/
extern "C" {
// push the light status object on the vm stack
void push_getlight(bvm *vm, uint32_t light_num) {
bool data_present = false; // do we have relevant data
be_newobject(vm, "map");
// check if the light exist
// TasmotaGlobal.devices_present
// Light.device
// Light.subtype
// Light.pwm_multi_channels
// light_controller.isCTRGBLinked()
if (Light.device > 0) {
// we have a light
uint8_t channels[LST_MAX];
char s_rgb[8] = {0}; // RGB raw levels
light_controller.calcLevels(channels);
uint8_t bri = light_state.getBri();
// be_map_insert_int(vm, "_devices_present", TasmotaGlobal.devices_present);
// be_map_insert_int(vm, "_light_device", Light.device);
// be_map_insert_int(vm, "_light_subtype", Light.subtype);
// be_map_insert_int(vm, "_light_multi", Light.pwm_multi_channels);
// be_map_insert_int(vm, "_light_linked", light_controller.isCTRGBLinked());
if (!Light.pwm_multi_channels) {
uint32_t subtype = Light.subtype; // virtual sub-type, for SO37 128
uint32_t chanidx = 0; // channel offset, for SO37 128
if (light_controller.isCTRGBLinked() && (light_num == 0)) {
data_present = true; // valid combination
if (subtype >= LST_RGBW) {
be_map_insert_str(vm, "colormode", (light_state.getColorMode() & LCM_RGB ? "rgb" : "ct"));
}
}
if (!light_controller.isCTRGBLinked()) {
if (light_num == 0) {
data_present = true; // valid combination
if (subtype > LST_RGB) { subtype = LST_RGB; } // limit to RGB
bri = light_state.getBriRGB();
}
if ((light_num == 1) && subtype > LST_RGB) {
data_present = true; // valid combination
subtype = subtype - LST_RGB;
chanidx = 3; // skip first 3 channels
bri = light_state.getBriCT();
}
}
if (data_present) {
// see ResponseLightState()
be_map_insert_bool(vm, "power", bitRead(TasmotaGlobal.power, light_num + Light.device - 1));
be_map_insert_int(vm, "bri", bri);
if (subtype >= LST_RGB) {
uint16_t hue;
uint8_t sat, bri;
light_state.getHSB(&hue, &sat, &bri);
be_map_insert_int(vm, "hue", hue);
be_map_insert_int(vm, "sat", sat);
}
if ((LST_COLDWARM == subtype) || (LST_RGBW <= subtype)) {
be_map_insert_int(vm, "ct", light_state.getCT());
}
if (subtype >= LST_RGB) {
snprintf(s_rgb, sizeof(s_rgb), PSTR("%02X%02X%02X"), channels[0], channels[1], channels[2]);
be_map_insert_str(vm, "rgb", s_rgb);
}
if (subtype > LST_NONE) {
be_map_insert_list_uint8(vm, "channels", &channels[chanidx], subtype);
}
}
} else { // Light.pwm_multi_channels
if ((light_num >= 0) && (light_num < LST_MAX)) {
data_present = true;
be_map_insert_bool(vm, "power", Light.power & (1 << light_num));
be_map_insert_int(vm, "bri", Light.current_color[light_num]);
be_map_insert_list_uint8(vm, "channels", &channels[light_num], 1);
}
}
be_pop(vm, 1);
if (!data_present) {
be_pop(vm, 1);
be_pushnil(vm);
}
} else {
be_pop(vm, 1);
be_pushnil(vm);
}
}
// get light
int32_t l_getlight(bvm *vm);
int32_t l_getlight(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 0 || (top == 1 && be_isint(vm, 1))) {
int32_t light_num = 0;
if (top > 1) {
light_num = be_toint(vm, 1);
}
push_getlight(vm, light_num);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// set light
int32_t l_setlight(bvm *vm);
int32_t l_setlight(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 1 && be_isinstance(vm, 1) && (top != 2 || be_isint(vm, 2))) {
int32_t idx = 0;
if (top >= 2) {
idx = be_toint(vm, 2);
be_pop(vm, 1); // remove last argument to have the map at the top of stack
}
// read all arguments first and clear stack when calling Tasmota APIs
bool has_power = map_find(vm, "power");
bool val_power;
if (has_power) { val_power = be_tobool(vm, -1); }
be_pop(vm, 1);
bool has_ct = map_find(vm, "ct");
int32_t val_ct;
if (has_ct) { val_ct = be_toint(vm, -1); }
be_pop(vm, 1);
bool has_hue = map_find(vm, "hue");
int32_t val_hue;
if (has_hue) { val_hue = be_toint(vm, -1); }
be_pop(vm, 1);
bool has_sat = map_find(vm, "sat");
int32_t val_sat;
if (has_sat) { val_sat = be_toint(vm, -1); }
be_pop(vm, 1);
bool has_rgb = map_find(vm, "rgb");
const char * val_rgb_s;
if (has_rgb) { val_rgb_s = be_tostring(vm, -1); }
be_pop(vm, 1);
bool has_bri = map_find(vm, "bri");
int32_t val_bri;
if (has_bri) { val_bri = be_toint(vm, -1); }
be_pop(vm, 1);
bool has_channels = map_find(vm, "channels");
uint8_t channels[LST_MAX] = {}; // initialized with all zeroes
bool val_on = false; // if all are zero, then only set power off
if (has_channels) {
if (be_isinstance(vm, -1)) {
be_getbuiltin(vm, "list"); // add "list" class
if (be_isderived(vm, -2)) {
be_pop(vm, 1); // remove "list" class from top
int32_t list_size = get_list_size(vm);
// AddLog(LOG_LEVEL_INFO, "Instance is list size = %d", list_size);
uint8_t channels[LST_MAX] = {}; // initialized with all zeroes
if (list_size > LST_MAX) { list_size = LST_MAX; } // no more than 5 channels, no need to test for positive, any negative will be discarded by loop
for (uint32_t i = 0; i < list_size; i++) {
// be_dumpstack(vm);
get_list_item(vm, i);
// be_dumpstack(vm);
int32_t val = be_toint(vm, -1);
be_pop(vm, 1); // remove result from stack
channels[i] = to_u8(val);
if (channels[i]) { val_on = true; }
}
} else {
has_channels = false;
be_pop(vm, 1); // remove "list" class from top
}
}
}
be_pop(vm, 1);
be_pop(vm, be_top(vm)); // clear all stack for re_entrance
// power
if (has_power) {
bool current_power = bitRead(TasmotaGlobal.power, idx + Light.device - 1);
if (val_power != current_power) { // only send command if needed
ExecuteCommandPower(idx + Light.device, (val_power) ? POWER_ON : POWER_OFF, SRC_BERRY);
}
}
// ct
if (has_ct) {
light_controller.changeCTB(val_ct, light_state.getBriCT());
}
// hue
if (has_hue) {
uint8_t sat;
uint8_t bri;
light_state.getHSB(nullptr, &sat, &bri);
light_controller.changeHSB(val_hue, sat, bri);
}
// sat
if (has_sat) {
uint16_t hue;
uint8_t bri;
light_state.getHSB(&hue, nullptr, &bri);
light_controller.changeHSB(hue, val_sat, bri);
}
// rgb
if (has_rgb) {
SBuffer buf = SBuffer::SBufferFromHex(val_rgb_s, strlen(val_rgb_s));
uint8_t channels[LST_MAX] = {};
memcpy(channels, buf.buf(), buf.len() > LST_MAX ? LST_MAX : buf.len());
bool on = false; // if all are zero, then only set power off
for (uint32_t i = 0; i < LST_MAX; i++) {
if (channels[i] != 0) { on = true; }
}
if (on) {
light_controller.changeChannels(channels);
} else {
ExecuteCommandPower(idx + 1, POWER_OFF, SRC_BERRY);
}
}
// channels
if (has_channels) {
if (val_on) {
light_controller.changeChannels(channels);
} else {
ExecuteCommandPower(idx + 1, POWER_OFF, SRC_BERRY);
}
}
// bri is done after channels and rgb
// bri
if (has_bri) {
light_controller.changeBri(val_bri);
}
push_getlight(vm, idx);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
int l_gamma8(bvm *vm);
int l_gamma8(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 1 && be_isint(vm, 1)) {
int32_t val = be_toint(vm, 1);
if (val < 0) { val = 0; }
if (val >= (1<<8)) { val = (1<<8) - 1; };
int32_t gamma = ledGamma(val);
be_pushint(vm, gamma);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
int l_gamma10(bvm *vm);
int l_gamma10(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 1 && be_isint(vm, 1)) {
int32_t val = be_toint(vm, 1);
if (val < 0) { val = 0; }
if (val >= (1<<10)) { val = (1<<10) - 1; };
int32_t gamma = ledGamma10_10(val);
be_pushint(vm, gamma);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
int l_rev_gamma10(bvm *vm);
int l_rev_gamma10(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 1 && be_isint(vm, 1)) {
int32_t val = be_toint(vm, 1);
if (val < 0) { val = 0; }
if (val >= (1<<10)) { val = (1<<10) - 1; };
int32_t rev_gamma = ledGammaReverse(val);
be_pushint(vm, rev_gamma);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// light.set_bri(bri:int) -> nil
void l_set_bri(int bri) {
light_controller.changeBri(bri);
}
}
#endif // USE_LIGHT
extern "C" {
int32_t b_light_missing(struct bvm *vm) {
be_raise(vm, "feature_error", "LIGHT is not enabled, use '#define USE_LIGHT'");
}
}
#endif // USE_BERRY