Tasmota/tasmota/tasmota_xdrv_driver/xdrv_52_3_berry_tasmota.ino

1119 lines
37 KiB
C++

/*
xdrv_52_3_berry_tasmota.ino - Berry scripting language, native fucnctions
Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_BERRY
#include <berry.h>
#include <Wire.h>
const uint32_t BERRY_MAX_LOGS = 16; // max number of print output recorded when outside of REPL, used to avoid infinite grow of logs
const uint32_t BERRY_MAX_REPL_LOGS = 50; // max number of print output recorded when inside REPL
// /*********************************************************************************************\
// * Return C callback from index
// *
// \*********************************************************************************************/
// extern "C" {
// extern int32_t be_cb__get_cb(struct bvm *vm);
// int32_t be_cb__get_cb(struct bvm *vm) {
// int32_t argc = be_top(vm); // Get the number of arguments
// if (argc >= 2 && be_isint(vm, 2)) {
// int32_t idx = be_toint(vm, 2);
// if (idx >= 0 && idx < ARRAY_SIZE(berry_callback_array)) {
// const berry_callback_t c_ptr = berry_callback_array[idx];
// be_pushcomptr(vm, (void*) c_ptr);
// be_return(vm);
// }
// }
// be_raise(vm, kTypeError, nullptr);
// }
// }
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
* import tasmota
*
* tasmota.get_free_heap() -> int
* tasmota.publish(topic:string, payload:string[, retain:bool]) -> nil
* tasmota.cmd(command:string) -> string
* tasmota.get_option(index:int) -> int
* tasmota.millis([delay:int]) -> int
* tasmota.time_reached(timer:int) -> bool
* tasmota.yield() -> nil
*
* tasmota.get_light([index:int = 0]) -> map
* tasmota.get_power([index:int = 0]) -> bool
* tasmota.set_power(idx:int, power:bool) -> bool or nil
* tasmota.set_light(idx:int, values:map) -> map
*
\*********************************************************************************************/
extern "C" {
// Berry: `tasmota.publish_result(payload:string, subtopic:string) -> nil``
//
int32_t l_publish_result(struct bvm *vm);
int32_t l_publish_result(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 3 && be_isstring(vm, 2) && be_isstring(vm, 3)) { // 2 mandatory string arguments
const char * payload = be_tostring(vm, 2);
const char * subtopic = be_tostring(vm, 3);
Response_P(PSTR("%s"), payload);
be_pop(vm, top);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, subtopic);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `tasmota.publish_rulet(payload:string) -> bool``
//
// Returns `true` if event was handled
int32_t l_publish_rule(struct bvm *vm);
int32_t l_publish_rule(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 2 && be_isstring(vm, 2)) { // 1 mandatory string argument
const char * payload = be_tostring(vm, 2);
be_pop(vm, top); // clear the stack before calling, because of re-entrant call to Berry in a Rule
bool handled = XdrvRulesProcess(0, payload);
be_pushbool(vm, handled);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `tasmota.cmd(command:string) -> string`
//
int32_t l_cmd(struct bvm *vm);
int32_t l_cmd(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted
const char * command = be_tostring(vm, 2);
be_pop(vm, top); // clear the stack before calling, because of re-entrant call to Berry in a Rule
ExecuteCommand(command, SRC_BERRY);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.millis([delay:int]) -> int
//
int32_t l_millis(struct bvm *vm);
int32_t l_millis(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 || (top == 2 && be_isint(vm, 2))) { // only 1 argument of type string accepted
uint32_t delay = 0;
if (top == 2) {
delay = be_toint(vm, 2);
}
uint32_t ret_millis = millis() + delay;
be_pushint(vm, ret_millis);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.get_option(index:int) -> int
//
int32_t l_getoption(struct bvm *vm);
int32_t l_getoption(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
uint32_t opt = GetOption(be_toint(vm, 2));
be_pushint(vm, opt);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.time_reached(timer:int) -> bool
//
int32_t l_timereached(struct bvm *vm);
int32_t l_timereached(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 2);
bool reached = TimeReached(timer);
be_pushbool(vm, reached);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.locale() -> string
//
int32_t l_locale(struct bvm *vm);
int32_t l_locale(struct bvm *vm) {
be_pushstring(vm, D_HTML_LANGUAGE);
be_return(vm);
}
// Berry: tasmota.rtc() -> map
//
int32_t l_rtc(struct bvm *vm);
int32_t l_rtc(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 1 && be_isstring(vm, 1)) { // argument is name
be_pushnil(vm);
be_pushvalue(vm, 1);
// (-2) nil, (-1) string -> if key matches then update (-2)
} else {
be_newobject(vm, "map");
// (-2) map instance, (-1) map
}
be_map_insert_int(vm, "utc", Rtc.utc_time);
be_map_insert_int(vm, "local", Rtc.local_time);
be_map_insert_int(vm, "restart", Rtc.restart_time);
be_map_insert_int(vm, "timezone", Rtc.time_timezone);
be_pop(vm, 1);
be_return(vm);
}
// Berry: tasmota.rtc_utc() -> int
//
int32_t l_rtc_utc(struct bvm *vm);
int32_t l_rtc_utc(struct bvm *vm) {
be_pushint(vm, Rtc.utc_time);
be_return(vm);
}
// Berry: tasmota.memory() -> map
//
int32_t l_memory(struct bvm *vm);
int32_t l_memory(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 1 && be_isstring(vm, 1)) { // argument is name
be_pushnil(vm);
be_pushvalue(vm, 1);
// (-2) nil, (-1) string -> if key matches then update (-2)
} else {
be_newobject(vm, "map");
// (-2) map instance, (-1) map
}
be_map_insert_int(vm, "flash", ESP_getFlashChipMagicSize() / 1024);
be_map_insert_int(vm, "flash_real", ESP.getFlashChipSize() / 1024);
be_map_insert_int(vm, "program", ESP_getSketchSize() / 1024);
be_map_insert_int(vm, "program_free", ESP_getFreeSketchSpace() / 1024);
be_map_insert_int(vm, "heap_free", ESP_getFreeHeap() / 1024);
be_map_insert_int(vm, "frag", ESP_getHeapFragmentation());
// give info about stack size
be_map_insert_int(vm, "stack_size", SET_ESP32_STACK_SIZE / 1024);
be_map_insert_real(vm, "stack_low", ((float)uxTaskGetStackHighWaterMark(nullptr)) / 1024);
if (UsePSRAM()) {
be_map_insert_int(vm, "psram", ESP.getPsramSize() / 1024);
be_map_insert_int(vm, "psram_free", ESP.getFreePsram() / 1024);
}
// IRAM information
int32_t iram_free = (int32_t)heap_caps_get_free_size(MALLOC_CAP_32BIT) - (int32_t)heap_caps_get_free_size(MALLOC_CAP_8BIT);
be_map_insert_int(vm, "iram_free", iram_free / 1024);
be_pop(vm, 1);
be_return(vm);
}
// Berry: tasmota.wifi() -> map
//
int32_t l_wifi(struct bvm *vm);
int32_t l_wifi(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 1 && be_isstring(vm, 1)) { // argument is name
be_pushnil(vm);
be_pushvalue(vm, 1);
// (-2) nil, (-1) string -> if key matches then update (-2)
} else {
be_newobject(vm, "map");
// (-2) map instance, (-1) map
}
be_map_insert_str(vm, "mac", WiFiHelper::macAddress().c_str());
be_map_insert_bool(vm, "up", WifiHasIP());
if (Settings->flag4.network_wifi) {
int32_t rssi = WiFi.RSSI();
bool show_rssi = false;
#ifdef USE_IPV6
String ipv6_addr = WifiGetIPv6Str();
if (ipv6_addr != "") {
be_map_insert_str(vm, "ip6", ipv6_addr.c_str());
show_rssi = true;
}
ipv6_addr = WifiGetIPv6LinkLocalStr();
if (ipv6_addr != "") {
be_map_insert_str(vm, "ip6local", ipv6_addr.c_str());
show_rssi = true;
}
#endif // USE_IPV6
if (static_cast<uint32_t>(WiFi.localIP()) != 0) {
be_map_insert_str(vm, "ip", IPAddress((uint32_t)WiFi.localIP()).toString().c_str()); // quick fix for IPAddress bug
show_rssi = true;
}
if (show_rssi) {
be_map_insert_int(vm, "rssi", rssi);
be_map_insert_int(vm, "quality", WifiGetRssiAsQuality(rssi));
}
}
be_pop(vm, 1);
be_return(vm);
}
// Berry: tasmota.eth() -> map
//
int32_t l_eth(struct bvm *vm);
int32_t l_eth(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 1 && be_isstring(vm, 1)) { // argument is name
be_pushnil(vm);
be_pushvalue(vm, 1);
// (-2) nil, (-1) string -> if key matches then update (-2)
} else {
be_newobject(vm, "map");
// (-2) map instance, (-1) map
}
#ifdef USE_ETHERNET
be_map_insert_bool(vm, "up", EthernetHasIP());
String eth_mac = EthernetMacAddress().c_str();
if (eth_mac != "00:00:00:00:00:00") {
be_map_insert_str(vm, "mac", eth_mac.c_str());
}
if (static_cast<uint32_t>(EthernetLocalIP()) != 0) {
be_map_insert_str(vm, "ip", IPAddress((uint32_t)EthernetLocalIP()).toString().c_str()); // quick fix for IPAddress bug
}
#ifdef USE_IPV6
String ipv6_addr = EthernetGetIPv6Str();
if (ipv6_addr != "") {
be_map_insert_str(vm, "ip6", ipv6_addr.c_str());
}
ipv6_addr = EthernetGetIPv6LinkLocalStr();
if (ipv6_addr != "") {
be_map_insert_str(vm, "ip6local", ipv6_addr.c_str());
}
#endif // USE_IPV6
#else // USE_ETHERNET
be_map_insert_bool(vm, "up", bfalse);
#endif // USE_ETHERNET
be_pop(vm, 1);
be_return(vm);
}
// Berry: tasmota.hostname() -> string
//
int32_t l_hostname(struct bvm *vm);
int32_t l_hostname(struct bvm *vm) {
be_pushstring(vm, NetworkHostname());
be_return(vm);
}
static void l_push_time(bvm *vm, struct tm *t, const char *unparsed) {
be_newobject(vm, "map");
be_map_insert_int(vm, "year", t->tm_year + 1900);
be_map_insert_int(vm, "month", t->tm_mon + 1);
be_map_insert_int(vm, "day", t->tm_mday);
be_map_insert_int(vm, "hour", t->tm_hour);
be_map_insert_int(vm, "min", t->tm_min);
be_map_insert_int(vm, "sec", t->tm_sec);
be_map_insert_int(vm, "weekday", t->tm_wday);
be_map_insert_int(vm, "epoch", mktime(t));
if (unparsed) be_map_insert_str(vm, "unparsed", unparsed);
be_pop(vm, 1);
}
int32_t l_time_dump(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
time_t ts = be_toint(vm, 2);
struct tm *t = gmtime(&ts);
l_push_time(vm, t, NULL);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_strftime(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 3 && be_isstring(vm, 2) && be_isint(vm, 3)) {
const char * format = be_tostring(vm, 2);
time_t ts = be_toint(vm, 3);
struct tm *t = gmtime(&ts);
char s[64] = {0};
strftime(s, sizeof(s), format, t);
be_pushstring(vm, s);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_strptime(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 3 && be_isstring(vm, 2) && be_isstring(vm, 3)) {
const char * input = be_tostring(vm, 2);
const char * format = be_tostring(vm, 3);
struct tm t = {0};
char * ret = strptime(input, format, &t);
if (ret) {
l_push_time(vm, &t, ret);
be_return(vm);
} else {
be_return_nil(vm);
}
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.delay(timer:int) -> nil
//
int32_t l_delay(struct bvm *vm);
int32_t l_delay(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 2);
delay(timer);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.delay_microseconds(timer:int) -> nil
//
int32_t l_delay_microseconds(struct bvm *vm);
int32_t l_delay_microseconds(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 2);
delayMicroseconds(timer);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `yield() -> nil`
// ESP object
int32_t l_yield(bvm *vm);
int32_t l_yield(bvm *vm) {
BrTimeoutYield();
be_return_nil(vm);
}
// Berry: tasmota.scale_uint(int * 5) -> int
//
int32_t l_scaleuint(struct bvm *vm);
int32_t l_scaleuint(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 5 && be_isint(vm, 1) && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4) && be_isint(vm, 5)) {
int32_t val = be_toint(vm, 1);
int32_t from_min = be_toint(vm, 2);
int32_t from_max = be_toint(vm, 3);
int32_t to_min = be_toint(vm, 4);
int32_t to_max = be_toint(vm, 5);
int32_t scaled = changeUIntScale(val, from_min, from_max, to_min, to_max);
be_pushint(vm, scaled);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.scale_int(int * 5) -> int
//
int32_t l_scaleint(struct bvm *vm);
int32_t l_scaleint(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 5 && be_isint(vm, 1) && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4) && be_isint(vm, 5)) {
int32_t val = be_toint(vm, 1);
int32_t from_min = be_toint(vm, 2);
int32_t from_max = be_toint(vm, 3);
int32_t to_min = be_toint(vm, 4);
int32_t to_max = be_toint(vm, 5);
int32_t scaled = changeIntScale(val, from_min, from_max, to_min, to_max);
be_pushint(vm, scaled);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
/*
Implements the 5-order polynomial approximation to sin(x).
@param i angle (with 2^15 units/circle)
@return 16 bit fixed point Sine value (4.12) (ie: +4096 = +1 & -4096 = -1)
The result is accurate to within +- 1 count. ie: +/-2.44e-4.
*/
int16_t fpsin(int16_t i)
{
/* Convert (signed) input to a value between 0 and 8192. (8192 is pi/2, which is the region of the curve fit). */
/* ------------------------------------------------------------------- */
i <<= 1;
uint8_t c = i<0; //set carry for output pos/neg
if(i == (i|0x4000)) // flip input value to corresponding value in range [0..8192)
i = (1<<15) - i;
i = (i & 0x7FFF) >> 1;
/* ------------------------------------------------------------------- */
/* The following section implements the formula:
= y * 2^-n * ( A1 - 2^(q-p)* y * 2^-n * y * 2^-n * [B1 - 2^-r * y * 2^-n * C1 * y]) * 2^(a-q)
Where the constants are defined as follows:
*/
// enum {A1=3370945099UL, B1=2746362156UL, C1=292421UL};
// enum {n=13, p=32, q=31, r=3, a=12};
uint32_t y = (292421UL*((uint32_t)i))>>13;
y = 2746362156UL - (((uint32_t)i*y)>>3);
y = (uint32_t)i * (y>>13);
y = (uint32_t)i * (y>>13);
y = 3370945099UL - (y>>(32-31));
y = (uint32_t)i * (y>>13);
y = (y+(1UL<<(31-12-1)))>>(31-12); // Rounding
return c ? -y : y;
}
// Berry: tasmota.sine_int(int) -> int
//
// Input: 8192 is pi/2
// Output: -4096 is -1, 4096 is +1
//
// https://www.nullhardware.com/blog/fixed-point-sine-and-cosine-for-embedded-systems/
int32_t l_sineint(struct bvm *vm);
int32_t l_sineint(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && be_isint(vm, 1)) {
int32_t val = be_toint(vm, 1);
be_pushint(vm, fpsin(val));
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmnd(bvm *vm);
int32_t l_respCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2) {
const char *msg = be_tostring(vm, 2);
Response_P("%s", msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndStr(bvm *vm);
int32_t l_respCmndStr(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2) {
const char *msg = be_tostring(vm, 2);
ResponseCmndChar(msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndDone(bvm *vm);
int32_t l_respCmndDone(bvm *vm) {
return be_call_c_func(vm, (void*) &ResponseCmndDone, NULL, "-");
}
int32_t l_respCmndError(bvm *vm);
int32_t l_respCmndError(bvm *vm) {
return be_call_c_func(vm, (void*) &ResponseCmndError, NULL, "-");
}
int32_t l_respCmndFailed(bvm *vm);
int32_t l_respCmndFailed(bvm *vm) {
return be_call_c_func(vm, (void*) &ResponseCmndFailed, NULL, "-");
}
// update XdrvMailbox.command with actual command
int32_t l_resolveCmnd(bvm *vm);
int32_t l_resolveCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
strlcpy(XdrvMailbox.command, msg, CMDSZ);
be_return_nil(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Response_append
int32_t l_respAppend(bvm *vm);
int32_t l_respAppend(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
be_pop(vm, top); // avoid Error be_top is non zero message
ResponseAppend_P(PSTR("%s"), msg);
be_return_nil(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Find for an operator in the string
// returns -1 if not found, or returns start in low 16 bits, end in high 16 bits
//
// Detects the following operators: `=`, `==`, `!=`, `!==`, `<`, `<=`, `>`, `>=`, `$<`, `$>`, `$!`, `$|`, `$^`, `|`
int32_t tasm_find_op(bvm *vm);
int32_t tasm_find_op(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
int32_t ret = -1;
if (top >= 2 && be_isstring(vm, 2)) {
const char *c = be_tostring(vm, 2);
// new version, two phases in 1, return start in low 16 bits, end in high 16 bits
int32_t idx_start = -1;
int32_t idx = 0;
int32_t idx_end = -1;
// search for `=`, `==`, `!=`, `!==`, `<`, `<=`, `>`, `>=`, `$<`, `$>`, `$!`, `$|`, `$^`, `|`
while (*c && idx_start < 0) {
switch (c[0]) {
case '=':
case '<':
case '>':
idx_start = idx;
if (c[1] == '=') { idx_end = idx_start + 2; } // `<=` or `>=` or `==`
else { idx_end = idx_start + 1; } // `<` or `>` or `=`
break;
case '!':
if (c[1] == '=') { // this is invalid if isolated `!`
idx_start = idx;
if (c[2] != '=') { idx_end = idx_start + 2; } // `!=`
else { idx_end = idx_start + 3; } // `!==`
}
break;
case '$':
switch (c[1]) {
case '<':
case '>':
case '!':
case '|':
case '^':
idx_start = idx; // `$<`, `$>`, `$!`, `$|`, `$^`
idx_end = idx_start + 2;
break;
default:
break;
}
break;
case '|':
idx_start = idx; // `|`
idx_end = idx_start + 1;
break;
default:
break;
}
c++;
idx++;
}
if (idx_start >= 0 && idx_end >= idx_start) {
ret = ((idx_end & 0x7FFF) << 16) | (idx_start & 0x7FFF);
}
}
be_pushint(vm, ret);
be_return(vm);
}
int32_t be_Tasmota_version(void) {
return Settings->version;
}
/*
# test patterns for all-in-one version
assert(tasmota._find_op("aaa#bbc==23") == 0x80007)
assert(tasmota._find_op("az==23") == 0x30002)
assert(tasmota._find_op("a>23") == 0x10001)
assert(tasmota._find_op("aaa#bbc!23") == -1)
*/
// String utilities
// From https://stackoverflow.com/questions/68816324/substring-exists-in-string-in-c
//
// changed to case-insensitive version
static const char* substr_i(const char *haystack, const char *needle) {
do {
const char *htmp = haystack;
const char *ntmp = needle;
while (toupper(*htmp) == toupper(*ntmp) && *ntmp) {
htmp++;
ntmp++;
}
if (!*ntmp) {
return haystack; // Beginning of match
}
} while (*haystack++);
return NULL;
}
static bool startswith_i(const char *haystack, const char *needle) {
const char *htmp = haystack;
const char *ntmp = needle;
while (toupper(*htmp) == toupper(*ntmp) && *ntmp) {
htmp++;
ntmp++;
}
return !*ntmp;
}
static bool endswith_i(const char *haystack, const char *needle) {
size_t h_len = strlen(haystack);
size_t n_len = strlen(needle);
if (h_len >= n_len) {
const char *htmp = haystack + h_len - n_len;
const char *ntmp = needle;
return (strcasecmp(htmp, ntmp) == 0);
}
return false;
}
// Apply a string operator, without allocating any object (no pressure on GC)
//
// `tasmota._apply_str_op(op, a, b)`
// Args:
// op: operator (int)
// 1: `==` (equals) case insensitive
// 2: `!==` or `$!` (not equals) case insensitive
// 3: `$<` (starts with) case insensitive
// 4: `$>` (ends with) case insensitive
// 5: `$|` (contains) case insensitive
// 6: `$^` (does not contain) case insensitive
// a: first string
// b: second string
//
int32_t tasm_apply_str_op(bvm *vm);
int32_t tasm_apply_str_op(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
bbool ret = bfalse;
if (top >= 4 && be_isint(vm, 2) && be_isstring(vm, 3) && be_isstring(vm, 4)) {
int32_t op = be_toint(vm, 2);
const char *a = be_tostring(vm, 3);
const char *b = be_tostring(vm, 4);
switch (op) {
case 1: // `==` (equals) case insensitive
ret = (strcasecmp(a, b) == 0);
break;
case 2: // `!==` or `$!` (not equals) case insensitive
ret = (strcasecmp(a, b) != 0);
break;
case 3: // `$<` (starts with) case insensitive
ret = startswith_i(a, b);
break;
case 4: // `$>` (ends with) case insensitive
ret = endswith_i(a, b);
break;
case 5: // `$|` (contains) case insensitive
ret = (substr_i(a, b) != NULL);
break;
case 6: // `$^` (does not contain) case insensitive
ret = (substr_i(a, b) == NULL);
break;
}
}
be_pushbool(vm, ret);
be_return(vm);
}
/*
# unit tests
# equals
assert(tasmota._apply_str_op(1, "aa", "AA") == true)
assert(tasmota._apply_str_op(1, "aa", "AAA") == false)
assert(tasmota._apply_str_op(1, "a", "AA") == false)
assert(tasmota._apply_str_op(1, "", "AA") == false)
assert(tasmota._apply_str_op(1, "aa", "") == false)
assert(tasmota._apply_str_op(1, "", "") == true)
# not equals
assert(tasmota._apply_str_op(2, "aa", "AA") == false)
assert(tasmota._apply_str_op(2, "aa", "AAA") == true)
assert(tasmota._apply_str_op(2, "a", "AA") == true)
assert(tasmota._apply_str_op(2, "", "AA") == true)
assert(tasmota._apply_str_op(2, "aa", "") == true)
assert(tasmota._apply_str_op(2, "", "") == false)
# starts with
assert(tasmota._apply_str_op(3, "aabbcc", "AA") == true)
assert(tasmota._apply_str_op(3, "aaabbcc", "AA") == true)
assert(tasmota._apply_str_op(3, "abbaacc", "AA") == false)
assert(tasmota._apply_str_op(3, "aabbcc", "a") == true)
assert(tasmota._apply_str_op(3, "aabbcc", "") == true)
assert(tasmota._apply_str_op(3, "", "") == true)
assert(tasmota._apply_str_op(3, "", "a") == false)
assert(tasmota._apply_str_op(3, "azeaze", "az") == true)
assert(tasmota._apply_str_op(3, "azeaze", "ze") == false)
# ends with
assert(tasmota._apply_str_op(4, "azeaze", "az") == false)
assert(tasmota._apply_str_op(4, "azeaze", "ze") == true)
assert(tasmota._apply_str_op(4, "azeaze", "") == true)
assert(tasmota._apply_str_op(4, "", "aa") == false)
assert(tasmota._apply_str_op(4, "aa", "aa") == true)
assert(tasmota._apply_str_op(4, "aabaa", "aa") == true)
# contains
assert(tasmota._apply_str_op(5, "azeaze", "az") == true)
assert(tasmota._apply_str_op(5, "azeaze", "ze") == true)
assert(tasmota._apply_str_op(5, "azeaze", "") == true)
assert(tasmota._apply_str_op(5, "azeaze", "e") == true)
assert(tasmota._apply_str_op(5, "azeaze", "a") == true)
assert(tasmota._apply_str_op(5, "azeaze", "z") == true)
assert(tasmota._apply_str_op(5, "azertyuiop", "tyui") == true)
assert(tasmota._apply_str_op(5, "azertyuiop", "azr") == false)
assert(tasmota._apply_str_op(5, "", "aze") == false)
# not contains
assert(tasmota._apply_str_op(6, "azeaze", "az") == false)
assert(tasmota._apply_str_op(6, "azeaze", "ze") == false)
assert(tasmota._apply_str_op(6, "azeaze", "") == false)
assert(tasmota._apply_str_op(6, "azeaze", "e") == false)
assert(tasmota._apply_str_op(6, "azeaze", "a") == false)
assert(tasmota._apply_str_op(6, "azeaze", "z") == false)
assert(tasmota._apply_str_op(6, "azertyuiop", "tyui") == false)
assert(tasmota._apply_str_op(6, "azertyuiop", "azr") == true)
assert(tasmota._apply_str_op(6, "", "aze") == true)
*/
// web append without decimal conversion
int32_t l_webSend(bvm *vm);
int32_t l_webSend(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
be_pop(vm, top); // avoid Error be_top is non zero message
#ifdef USE_WEBSERVER
WSContentSend_P(PSTR("%s"), msg);
#endif // USE_WEBSERVER
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// web append with decimal conversion
int32_t l_webSendDecimal(bvm *vm);
int32_t l_webSendDecimal(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
be_pop(vm, top); // avoid Error be_top is non zero message
#ifdef USE_WEBSERVER
WSContentSend_PD(PSTR("%s"), msg);
WSContentSeparator(0);
#endif // USE_WEBSERVER
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// get webcolors
int32_t l_webcolor(bvm *vm);
int32_t l_webcolor(bvm *vm) {
char tmp[16];
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 1 && be_isint(vm, 1)) { // argument is int
int32_t idx = be_toint(vm, 1);
if (idx >= 0 && idx < COL_LAST) {
snprintf_P(tmp, sizeof(tmp), PSTR("#%06x"), WebColor(idx));
be_pushstring(vm, tmp);
be_return(vm);
} else {
be_return_nil(vm);
}
} else {
be_newobject(vm, "list");
for (uint32_t i = 0; i < COL_LAST; i++) {
snprintf_P(tmp, sizeof(tmp), PSTR("#%06x"), WebColor(i));
be_pushstring(vm, tmp);
be_data_push(vm, -2);
be_pop(vm, 1);
}
be_pop(vm, 1);
be_return(vm);
}
}
// get power
int32_t l_getpower(bvm *vm);
int32_t l_getpower(bvm *vm) {
power_t pow = TasmotaGlobal.power;
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 2 && be_isint(vm, 2)) {
int32_t idx = be_toint(vm, 2);
if (idx >= 0 && idx < TasmotaGlobal.devices_present) {
be_pushbool(vm, bitRead(pow, idx));
be_return(vm);
} else {
be_return_nil(vm);
}
} else {
// no parameter, return an array of all values
be_newobject(vm, "list");
for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) {
be_pushbool(vm, bitRead(pow, i));
be_data_push(vm, -2);
be_pop(vm, 1);
}
be_pop(vm, 1);
be_return(vm); // Return
}
}
int32_t l_setpower(bvm *vm);
int32_t l_setpower(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 3 && be_isint(vm, 2) && be_isbool(vm, 3)) {
int32_t idx = be_toint(vm, 2);
bool power = be_tobool(vm, 3);
if ((idx >= 0) && (idx < TasmotaGlobal.devices_present)) {
be_pop(vm, top); // avoid Error be_top is non zero message
ExecuteCommandPower(idx + 1, (power) ? POWER_ON : POWER_OFF, SRC_BERRY);
be_pushbool(vm, power);
be_return(vm); // Return
} else {
be_return_nil(vm);
}
}
be_raise(vm, kTypeError, nullptr);
}
// get power
int32_t l_getswitch(bvm *vm);
int32_t l_getswitch(bvm *vm) {
be_newobject(vm, "list");
for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) {
if (SwitchUsed(i)) {
be_pushbool(vm, SwitchGetState(i) == PRESSED);
be_data_push(vm, -2);
be_pop(vm, 1);
}
}
be_pop(vm, 1);
be_return(vm); // Return
}
#ifdef USE_I2C
// I2C specific
// Berry: `i2c_enabled(index:int) -> bool` is I2C device enabled
int32_t l_i2cenabled(struct bvm *vm);
int32_t l_i2cenabled(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
int32_t index = be_toint(vm, 2);
be_pop(vm, top); // avoid Error be_top is non zero message
bool enabled = I2cEnabled(index);
be_pushbool(vm, enabled);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
#else // USE_I2C
int32_t l_i2cenabled(struct bvm *vm) __attribute__ ((weak, alias ("b_wire_i2cmissing")));
#endif // USE_I2C
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
\*********************************************************************************************/
extern "C" {
// Berry: `loglevel() -> int`
// or
// Berry: `loglevel(int) -> bool`
// return the highest log level currently in place
int32_t l_loglevel(struct bvm *vm);
int32_t l_loglevel(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
uint32_t highest_loglevel = HighestLogLevel();
if (top >= 2 && be_isint(vm, 2)) {
int32_t log_level = be_toint(vm, 2);
be_pushbool(vm, log_level <= highest_loglevel);
} else {
be_pushint(vm, HighestLogLevel());
}
be_return(vm);
}
// Berry: `log(msg:string [,log_level:int]) ->nil`
// Logs the string at LOG_LEVEL_INFO (loglevel=2)
// We allow this function to be called as a method or a direct function
// if the first argument is an instance, we remove it
int32_t l_logInfo(struct bvm *vm);
int32_t l_logInfo(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted
const char * msg = be_tostring(vm, 2);
uint32_t log_level = LOG_LEVEL_INFO;
if (top >= 3 && be_isint(vm, 3)) {
log_level = be_toint(vm, 3);
if (log_level > LOG_LEVEL_DEBUG_MORE) { log_level = LOG_LEVEL_DEBUG_MORE; }
}
AddLog(log_level, PSTR("%s"), msg);
be_return(vm); // Return
}
be_return_nil(vm); // Return nil when something goes wrong
}
// Berry: `getFreeHeap() -> int`
// ESP object
int32_t l_getFreeHeap(bvm *vm);
int32_t l_getFreeHeap(bvm *vm) {
be_pushint(vm, ESP.getFreeHeap());
be_return(vm);
}
// Berry: `arvh() -> string`
// ESP object
int32_t l_arch(bvm *vm);
int32_t l_arch(bvm *vm) {
be_pushstring(vm, ESP32_ARCH);
be_return(vm);
}
// Berry: `save(file:string, f:closure) -> bool`
int32_t l_save(struct bvm *vm);
int32_t l_save(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 3 && be_isstring(vm, 2) && be_isclosure(vm, 3)) { // only 1 argument of type string accepted
const char *fname = be_tostring(vm, 2);
int32_t ret = be_savecode(vm, fname);
be_pushint(vm, ret);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* read_sensors(show_sensor:bool) -> string
*
\*********************************************************************************************/
extern "C" {
int32_t l_read_sensors(struct bvm *vm);
int32_t l_read_sensors(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
bool sensor_display = false; // don't trigger a display by default
if (top >= 2) {
sensor_display = be_tobool(vm, 2);
}
be_pop(vm, top); // clear stack to avoid `Error be_top is non zero=1` errors
ResponseClear();
if (MqttShowSensor(sensor_display)) {
// return string
be_pushstring(vm, ResponseData());
be_return(vm);
} else {
be_return_nil(vm);
}
}
}
/*********************************************************************************************\
* Tasmota Log Reader
*
\*********************************************************************************************/
extern "C" {
uint32_t* tlr_init(void) {
uint32_t* idx = new uint32_t();
*idx = 0;
return idx;
}
char* tlr_get_log(uint32_t* idx, int32_t log_level) {
// bool GetLog(uint32_t req_loglevel, uint32_t* index_p, char** entry_pp, size_t* len_p) {
if (log_level < 0 || log_level > 4) { log_level = 2; } // default to LOG_LEVEL_INFO
char* line;
size_t len;
if (GetLog(log_level, idx, &line, &len) && len > 0) {
char* s = (char*) malloc(len+1);
memmove(s, line, len);
s[len] = 0;
return s; // caller will free()
} else {
return NULL;
}
}
}
/*********************************************************************************************\
* Logging functions
*
\*********************************************************************************************/
// called as a replacement to Berry `print()`
void berry_log(const char * berry_buf);
void berry_log(const char * berry_buf) {
const char * pre_delimiter = nullptr; // do we need to prepend a delimiter if no REPL command
size_t max_logs = berry.repl_active ? BERRY_MAX_REPL_LOGS : BERRY_MAX_LOGS;
if (berry.log.log.length() == 0) {
pre_delimiter = BERRY_CONSOLE_CMD_DELIMITER;
}
if (berry.log.log.length() >= max_logs) {
berry.log.log.remove(berry.log.log.head());
}
berry.log.addString(berry_buf, pre_delimiter, "\n");
AddLog(LOG_LEVEL_INFO, PSTR("%s"), berry_buf);
}
const uint16_t LOGSZ = 128; // Max number of characters in log line
extern "C" {
void serial_debug(const char * berry_buf, ...) {
// To save stack space support logging for max text length of 128 characters
char log_data[LOGSZ];
va_list arg;
va_start(arg, berry_buf);
uint32_t len = ext_vsnprintf_P(log_data, LOGSZ-3, berry_buf, arg);
va_end(arg);
if (len+3 > LOGSZ) { strcat(log_data, "..."); } // Actual data is more
TasConsole.printf(log_data);
#ifdef USE_SERIAL_BRIDGE
SerialBridgePrintf(log_data);
#endif // USE_SERIAL_BRIDGE
}
void berry_log_C(const char * berry_buf, ...) {
// To save stack space support logging for max text length of 128 characters
char log_data[LOGSZ];
va_list arg;
va_start(arg, berry_buf);
uint32_t len = ext_vsnprintf_P(log_data, LOGSZ-3, berry_buf, arg);
va_end(arg);
if (len+3 > LOGSZ) { strcat(log_data, "..."); } // Actual data is more
berry_log(log_data);
}
void tasmota_log_C(int32_t loglevel, const char * berry_buf, ...) {
va_list arg;
va_start(arg, berry_buf);
char* log_data = ext_vsnprintf_malloc_P(berry_buf, arg);
va_end(arg);
if (log_data == nullptr) { return; }
AddLogData(loglevel, log_data);
free(log_data);
}
}
#endif // USE_BERRY