Tasmota/tasmota/tasmota_xnrg_energy/xnrg_03_pzem004t.ino

308 lines
8.8 KiB
C++

/*
xnrg_03_pzem004t.ino - PZEM004T energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_PZEM004T
/*********************************************************************************************\
* PZEM-004T V1 and V2 - Energy
*
* Source: Victor Ferrer https://github.com/vicfergar/Sonoff-MQTT-OTA-Arduino
* Based on: PZEM004T library https://github.com/olehs/PZEM004T
*
* Hardware Serial will be selected if GPIO1 = [62 PZEM0XX Tx] and GPIO3 = [63 PZEM004 Rx]
\*********************************************************************************************/
#define XNRG_03 3
const uint32_t PZEM_STABILIZE = 10; // Number of seconds to stabilize 1 pzem
const uint32_t PZEM_RETRY = 5; // Number of 250 ms retries
#include <TasmotaSerial.h>
TasmotaSerial *PzemSerial = nullptr;
#define PZEM_VOLTAGE (uint8_t)0xB0
#define RESP_VOLTAGE (uint8_t)0xA0
#define PZEM_CURRENT (uint8_t)0xB1
#define RESP_CURRENT (uint8_t)0xA1
#define PZEM_POWER (uint8_t)0xB2
#define RESP_POWER (uint8_t)0xA2
#define PZEM_ENERGY (uint8_t)0xB3
#define RESP_ENERGY (uint8_t)0xA3
#define PZEM_SET_ADDRESS (uint8_t)0xB4
#define RESP_SET_ADDRESS (uint8_t)0xA4
#define PZEM_POWER_ALARM (uint8_t)0xB5
#define RESP_POWER_ALARM (uint8_t)0xA5
#define PZEM_DEFAULT_READ_TIMEOUT 500
/*********************************************************************************************/
struct PZEM {
// float energy = 0;
// float last_energy = 0;
uint8_t send_retry = 0;
uint8_t read_state = 0; // Set address
uint8_t phase = 0;
uint8_t address = 0;
} Pzem;
struct PZEMCommand {
uint8_t command;
uint8_t addr[4];
uint8_t data;
uint8_t crc;
};
uint8_t PzemCrc(uint8_t *data)
{
uint16_t crc = 0;
for (uint32_t i = 0; i < sizeof(PZEMCommand) -1; i++) {
crc += *data++;
}
return (uint8_t)(crc & 0xFF);
}
void PzemSend(uint8_t cmd)
{
PZEMCommand pzem;
pzem.command = cmd;
pzem.addr[0] = 192; // Address 192.168.1.1 for Tasmota legacy reason
pzem.addr[1] = 168;
pzem.addr[2] = 1;
pzem.addr[3] = ((PZEM_SET_ADDRESS == cmd) && Pzem.address) ? Pzem.address : 1 + Pzem.phase;
pzem.data = 0;
uint8_t *bytes = (uint8_t*)&pzem;
pzem.crc = PzemCrc(bytes);
PzemSerial->flush();
PzemSerial->write(bytes, sizeof(pzem));
Pzem.address = 0;
}
bool PzemReceiveReady(void)
{
return PzemSerial->available() >= (int)sizeof(PZEMCommand);
}
bool PzemRecieve(uint8_t resp, float *data)
{
// 0 1 2 3 4 5 6
// A4 00 00 00 00 00 A4 - Set address
// A0 00 D4 07 00 00 7B - Voltage (212.7V)
// A1 00 00 0A 00 00 AB - Current (0.1A)
// A1 00 00 00 00 00 A1 - No current
// A2 00 16 00 00 00 B8 - Power (22W)
// A2 08 98 00 00 00 42 - Power (2200W)
// A2 00 00 00 00 00 A2 - No power
// A3 00 08 A4 00 00 4F - Energy (2.212kWh)
// A3 01 86 9F 00 00 C9 - Energy (99.999kWh)
uint8_t buffer[sizeof(PZEMCommand)] = { 0 };
unsigned long start = millis();
uint8_t len = 0;
while ((len < sizeof(PZEMCommand)) && (millis() - start < PZEM_DEFAULT_READ_TIMEOUT)) {
if (PzemSerial->available() > 0) {
uint8_t c = (uint8_t)PzemSerial->read();
if (!len && ((c & 0xF8) != 0xA0)) { // 10100xxx
continue; // fix skewed data
}
buffer[len++] = c;
}
}
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, len);
if (len != sizeof(PZEMCommand)) {
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem comms timeout"));
return false;
}
if (buffer[6] != PzemCrc(buffer)) {
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem crc error"));
return false;
}
if (buffer[0] != resp) {
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem bad response"));
return false;
}
switch (resp) {
case RESP_VOLTAGE:
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 10.0f); // 65535.x V
break;
case RESP_CURRENT:
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 100.0f); // 65535.xx A
break;
case RESP_POWER:
*data = (float)(buffer[1] << 8) + buffer[2]; // 65535 W
break;
case RESP_ENERGY:
*data = (float)((uint32_t)buffer[1] << 16) + ((uint16_t)buffer[2] << 8) + buffer[3]; // 16777215 Wh
break;
}
return true;
}
/*********************************************************************************************/
const uint8_t pzem_commands[] { PZEM_SET_ADDRESS, PZEM_VOLTAGE, PZEM_CURRENT, PZEM_POWER, PZEM_ENERGY };
const uint8_t pzem_responses[] { RESP_SET_ADDRESS, RESP_VOLTAGE, RESP_CURRENT, RESP_POWER, RESP_ENERGY };
void PzemEvery250ms(void)
{
bool data_ready = PzemReceiveReady();
if (data_ready) {
float value = 0;
if (PzemRecieve(pzem_responses[Pzem.read_state], &value)) {
Energy->data_valid[Pzem.phase] = 0;
switch (Pzem.read_state) {
case 1: // Voltage as 230.2V
Energy->voltage[Pzem.phase] = value;
break;
case 2: // Current as 17.32A
Energy->current[Pzem.phase] = value;
break;
case 3: // Power as 20W
Energy->active_power[Pzem.phase] = value;
break;
case 4: // Total energy as 99999Wh
Energy->import_active[Pzem.phase] = value / 1000.0f; // 99.999kWh
if (Pzem.phase == Energy->phase_count -1) {
if (TasmotaGlobal.uptime > (PZEM_STABILIZE * ENERGY_MAX_PHASES)) {
EnergyUpdateTotal();
}
}
break;
}
Pzem.read_state++;
if (5 == Pzem.read_state) {
Pzem.read_state = 1;
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("PZM: Retry %d"), PZEM_RETRY - Pzem.send_retry);
}
}
if (0 == Pzem.send_retry || data_ready) {
if (1 == Pzem.read_state) {
if (0 == Pzem.phase) {
Pzem.phase = Energy->phase_count -1;
} else {
Pzem.phase--;
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("PZM: Probing address %d, Max phases %d"), Pzem.phase +1, Energy->phase_count);
}
if (Pzem.address) {
Pzem.read_state = 0; // Set address
}
Pzem.send_retry = PZEM_RETRY;
PzemSend(pzem_commands[Pzem.read_state]);
}
else {
Pzem.send_retry--;
if ((Energy->phase_count > 1) && (0 == Pzem.send_retry) && (TasmotaGlobal.uptime < (PZEM_STABILIZE * ENERGY_MAX_PHASES))) {
Energy->phase_count--; // Decrement phases if no response after retry within 30 seconds after restart
if (TasmotaGlobal.discovery_counter) {
TasmotaGlobal.discovery_counter += (PZEM_RETRY / 4) + 1; // Don't send Discovery yet, delay by 5 * 250ms + 1s
}
}
}
}
void PzemSnsInit(void)
{
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
PzemSerial = new TasmotaSerial(Pin(GPIO_PZEM004_RX), Pin(GPIO_PZEM0XX_TX), 1);
if (PzemSerial->begin(9600)) {
if (PzemSerial->hardwareSerial()) {
ClaimSerial();
}
#ifdef ESP32
AddLog(LOG_LEVEL_DEBUG, PSTR("PZM: Serial UART%d"), PzemSerial->getUart());
#endif
Energy->phase_count = ENERGY_MAX_PHASES; // Start off with three phases
Pzem.phase = 0;
Pzem.read_state = 1;
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void PzemDrvInit(void)
{
if (PinUsed(GPIO_PZEM004_RX) && PinUsed(GPIO_PZEM0XX_TX)) { // Any device with a Pzem004T
TasmotaGlobal.energy_driver = XNRG_03;
}
}
bool PzemCommand(void)
{
bool serviced = true;
if (CMND_MODULEADDRESS == Energy->command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= ENERGY_MAX_PHASES)) {
Pzem.address = XdrvMailbox.payload; // Valid addresses are 1, 2 and 3
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg03(uint32_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_250_MSECOND:
if (PzemSerial) { PzemEvery250ms(); }
break;
case FUNC_COMMAND:
result = PzemCommand();
break;
case FUNC_INIT:
PzemSnsInit();
break;
case FUNC_PRE_INIT:
PzemDrvInit();
break;
}
return result;
}
#endif // USE_PZEM004T
#endif // USE_ENERGY_SENSOR