Tasmota/tasmota/tasmota_xsns_sensor/xsns_05_esp32_ds18x20.ino

473 lines
15 KiB
C++

/*
xsns_05_esp32_ds18x20.ino - DS18x20 temperature sensor support for ESP32 Tasmota
Copyright (C) 2021 Heiko Krupp, Theo Arends and md5sum-as (https://github.com/md5sum-as)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP32
#ifdef USE_DS18x20
/*********************************************************************************************\
* DS18B20 - Temperature - Multiple sensors
\*********************************************************************************************/
#define XSNS_05 5
//#define DS18x20_USE_ID_AS_NAME // Use last 3 bytes for naming of sensors
/* #define DS18x20_USE_ID_ALIAS in my_user_config.h or user_config_override.h
* Use alias for fixed sensor name in scripts by autoexec. Command: DS18Alias XXXXXXXXXXXXXXXX,N where XXXXXXXXXXXXXXXX full serial and N number 1-255
* Result in JSON: "DS18Sens_2":{"Id":"000003287CD8","Temperature":26.3} (example with N=2)
* Setting N to an alphanumeric value, the complete name is replaced with it
* Result in JSON: "Outside1":{"Id":"000003287CD8","Temperature":26.3} (example with N=Outside1)
*/
#define DS18S20_CHIPID 0x10 // +/-0.5C 9-bit
#define DS1822_CHIPID 0x22 // +/-2C 12-bit
#define DS18B20_CHIPID 0x28 // +/-0.5C 12-bit
#define MAX31850_CHIPID 0x3B // +/-0.25C 14-bit
#define W1_SKIP_ROM 0xCC
#define W1_CONVERT_TEMP 0x44
#define W1_READ_SCRATCHPAD 0xBE
#ifndef DS18X20_MAX_SENSORS // DS18X20_MAX_SENSORS fallback to 8 if not defined in user_config_override.h
#define DS18X20_MAX_SENSORS 8
#endif
#define DS18X20_ALIAS_LEN 17
const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850";
uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID };
struct {
#ifdef W1_PARASITE_POWER
float temperature;
#endif
float temp_sum;
uint16_t numread;
uint8_t address[8];
uint8_t index;
uint8_t valid;
int8_t pins_id;
#ifdef DS18x20_USE_ID_ALIAS
char *alias = (char*)calloc(DS18X20_ALIAS_LEN, 1);
#endif //DS18x20_USE_ID_ALIAS
} ds18x20_sensor[DS18X20_MAX_SENSORS];
#include <OneWire.h>
OneWire *ds = nullptr;
OneWire *ds18x20_gpios[MAX_DSB];
struct {
char name[17];
uint8_t sensors;
uint8_t gpios; // Count of GPIO found
uint8_t retryRead;
} DS18X20Data;
/********************************************************************************************/
void Ds18x20Init(void) {
DS18X20Data.retryRead = 0;
DS18X20Data.gpios = 0;
for (uint32_t pins = 0; pins < MAX_DSB; pins++) {
if (PinUsed(GPIO_DSB, pins)) {
int8_t pin_out = -1;
if (PinUsed(GPIO_DSB_OUT, pins)) {
pin_out = Pin(GPIO_DSB_OUT, pins);
}
ds18x20_gpios[pins] = new OneWire(Pin(GPIO_DSB, pins), pin_out);
DS18X20Data.gpios++;
}
}
Ds18x20Search();
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors);
}
void Ds18x20Search(void) {
uint8_t num_sensors = 0;
uint8_t sensor = 0;
for (uint8_t pins = 0; pins < DS18X20Data.gpios; pins++) {
ds = ds18x20_gpios[pins];
ds->reset_search();
for (num_sensors; num_sensors < DS18X20_MAX_SENSORS; num_sensors) {
if (!ds->search(ds18x20_sensor[num_sensors].address)) {
ds->reset_search();
break;
}
// If CRC Ok and Type DS18S20, DS1822, DS18B20 or MAX31850
if ((OneWire::crc8(ds18x20_sensor[num_sensors].address, 7) == ds18x20_sensor[num_sensors].address[7]) &&
((ds18x20_sensor[num_sensors].address[0] == DS18S20_CHIPID) ||
(ds18x20_sensor[num_sensors].address[0] == DS1822_CHIPID) ||
(ds18x20_sensor[num_sensors].address[0] == DS18B20_CHIPID) ||
(ds18x20_sensor[num_sensors].address[0] == MAX31850_CHIPID))) {
#ifdef DS18x20_USE_ID_ALIAS
ds18x20_sensor[DS18X20Data.sensors].alias[0] = '0';
#endif
ds18x20_sensor[num_sensors].pins_id = pins;
num_sensors++;
}
}
}
for (uint32_t i = 0; i < num_sensors; i++) {
ds18x20_sensor[i].index = i;
}
for (uint32_t i = 0; i < num_sensors; i++) {
for (uint32_t j = i + 1; j < num_sensors; j++) {
if (uint32_t(ds18x20_sensor[ds18x20_sensor[i].index].address) > uint32_t(ds18x20_sensor[ds18x20_sensor[j].index].address)) {
std::swap(ds18x20_sensor[i].index, ds18x20_sensor[j].index);
}
}
}
DS18X20Data.sensors = num_sensors;
}
void Ds18x20Convert(void) {
for (uint32_t i = 0; i < DS18X20Data.gpios; i++) {
ds = ds18x20_gpios[i];
ds->reset();
#ifdef W1_PARASITE_POWER
// With parasite power held wire high at the end for parasitically powered devices
ds->write(W1_SKIP_ROM, 1); // Address all Sensors on Bus
ds->write(W1_CONVERT_TEMP, 1); // start conversion, no parasite power on at the end
#else
ds->write(W1_SKIP_ROM); // Address all Sensors on Bus
ds->write(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end
#endif
// delay(750); // 750ms should be enough for 12bit conv
}
}
bool Ds18x20Read(uint8_t sensor, float &t) {
uint8_t data[12];
int8_t sign = 1;
t = NAN;
uint8_t index = ds18x20_sensor[sensor].index;
if (ds18x20_sensor[index].valid) { ds18x20_sensor[index].valid--; }
ds = ds18x20_gpios[ds18x20_sensor[index].pins_id];
ds->reset();
ds->select(ds18x20_sensor[index].address);
#ifdef W1_PARASITE_POWER
// With parasite power held wire high at the end for parasitically powered devices
ds->write(W1_READ_SCRATCHPAD, 1); // Read Scratchpad
#else
ds->write(W1_READ_SCRATCHPAD); // Read Scratchpad
#endif
for (uint32_t i = 0; i < 9; i++) {
data[i] = ds->read();
}
if (OneWire::crc8(data, 8) == data[8]) {
switch(ds18x20_sensor[index].address[0]) {
case DS18S20_CHIPID: {
int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F);
t = ConvertTemp(tempS * 0.0625f - 0.250f);
#ifdef W1_PARASITE_POWER
ds18x20_sensor[index].temperature = t;
#endif
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
case DS1822_CHIPID:
case DS18B20_CHIPID: {
uint16_t temp12 = (data[1] << 8) + data[0];
if (temp12 > 2047) {
temp12 = (~temp12) +1;
sign = -1;
}
t = ConvertTemp(sign * temp12 * 0.0625f); // Divide by 16
#ifdef W1_PARASITE_POWER
ds18x20_sensor[index].temperature = t;
#endif
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
case MAX31850_CHIPID: {
int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC);
t = ConvertTemp(temp14 * 0.0625f); // Divide by 16
#ifdef W1_PARASITE_POWER
ds18x20_sensor[index].temperature = t;
#endif
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
}
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_CRC_ERROR));
return false;
}
void Ds18x20Name(uint8_t sensor) {
uint32_t sensor_index = ds18x20_sensor[sensor].index;
uint32_t index = sizeof(ds18x20_chipids);
while (--index) {
if (ds18x20_sensor[sensor_index].address[0] == ds18x20_chipids[index]) {
break;
}
}
// DS18B20
GetTextIndexed(DS18X20Data.name, sizeof(DS18X20Data.name), index, kDs18x20Types);
#ifdef DS18x20_USE_ID_AS_NAME
char address[17];
for (uint32_t j = 0; j < 3; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[sensor_index].address[3-j]); // Only last 3 bytes
}
// DS18B20-8EC44C
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%s"), DS18X20Data.name, IndexSeparator(), address);
return;
#elif defined(DS18x20_USE_ID_ALIAS)
if (ds18x20_sensor[sensor_index].alias[0] && (ds18x20_sensor[sensor_index].alias[0] != '0')) {
if (isdigit(ds18x20_sensor[sensor_index].alias[0])) {
// DS18Sens-1
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("DS18Sens%c%d"), IndexSeparator(), atoi(ds18x20_sensor[sensor_index].alias));
} else {
// UserText
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s"), ds18x20_sensor[sensor_index].alias);
}
return;
}
#endif // DS18x20_USE_ID_AS_NAME or DS18x20_USE_ID_ALIAS
if (DS18X20Data.sensors > 1) {
// DS18B20-1
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%d"), DS18X20Data.name, IndexSeparator(), sensor + 1);
}
}
/********************************************************************************************/
void Ds18x20EverySecond(void) {
if (!DS18X20Data.sensors) { return; }
if (TasmotaGlobal.uptime & 1) {
// 2mS
// Ds18x20Search(); // Check for changes in sensors number
Ds18x20Convert(); // Start Conversion, takes up to one second
} else {
float t;
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
// 12mS per device
bool result = false;
uint8_t counter = 0;
while (counter++ < DS18X20Data.retryRead+1) {
if(Ds18x20Read(i, t)) {
result = true;
break;
}
}
if (!result)
AddLog(LOG_LEVEL_ERROR, PSTR("Read sensor %u failed in Ds18x20EverySecond."), i);
if (result) { // Read temperature
if (Settings->flag5.ds18x20_mean) {
if (ds18x20_sensor[i].numread++ == 0) {
ds18x20_sensor[i].temp_sum = 0;
}
ds18x20_sensor[i].temp_sum += t;
}
} else {
Ds18x20Name(i);
AddLogMissed(DS18X20Data.name, ds18x20_sensor[ds18x20_sensor[i].index].valid);
}
}
}
}
void Ds18x20Show(bool json) {
float t;
uint8_t dsxflg = 0;
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
#ifdef W1_PARASITE_POWER
// With parasite power read one sensor at a time
if (ds18x20_sensor[i].valid) {
t = ds18x20_sensor[i].temperature;
#else
bool result = false;
uint8_t counter = 0;
while (counter++ < DS18X20Data.retryRead+1) {
if(Ds18x20Read(i, t)) {
result = true;
break;
}
}
if (!result)
AddLog(LOG_LEVEL_ERROR, PSTR("Read sensor %u failed in Ds18x20Show."), i);
if (result) { // Check if read failed
#endif
Ds18x20Name(i);
if (json) {
if (Settings->flag5.ds18x20_mean) {
if ((0 == TasmotaGlobal.tele_period) && ds18x20_sensor[i].numread) {
t = ds18x20_sensor[i].temp_sum / ds18x20_sensor[i].numread;
ds18x20_sensor[i].numread = 0;
}
}
char address[17];
for (uint32_t j = 0; j < 6; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[6-j]); // Skip sensor type and crc
}
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ID "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%*_f}"),
DS18X20Data.name, address, Settings->flag2.temperature_resolution, &t);
dsxflg++;
#ifdef USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) {
DomoticzFloatSensor(DZ_TEMP, t);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) {
KnxSensor(KNX_TEMPERATURE, t);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_Temp(DS18X20Data.name, t);
#endif // USE_WEBSERVER
}
}
}
}
#ifdef DS18x20_USE_ID_ALIAS
const char kds18Commands[] PROGMEM = "DS18|" // prefix
D_CMND_DS_ALIAS "|" D_CMND_DS_RESCAN "|" D_CMND_DS_RETRYREAD;
void (* const DSCommand[])(void) PROGMEM = {
&CmndDSAlias, &CmndDSRescan ,&CmndDSRetryRead };
void CmndDSRetryRead(void) {
char argument[XdrvMailbox.data_len];
if (ArgC() == 1) {
DS18X20Data.retryRead = atoi(ArgV(argument, 1));
}
Response_P(PSTR("{\"DS18" D_CMND_DS_RETRYREAD "\": %d}"), DS18X20Data.retryRead);
}
void CmndDSRescan(void) {
char argument[XdrvMailbox.data_len];
uint8_t retries = 1;
uint8_t sensorsToFind = 1;
if ((ArgC() > 0) && (ArgC() < 3)) {
sensorsToFind = atoi(ArgV(argument, 1));
}
if (ArgC() == 2) {
retries = atoi(ArgV(argument, 2));
}
DS18X20Data.sensors = 0;
memset(&ds18x20_sensor, 0, sizeof(ds18x20_sensor));
while ((DS18X20Data.sensors < sensorsToFind) && (retries-- > 0)) {
Ds18x20Search();
AddLog(LOG_LEVEL_ERROR, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors);
}
Response_P(PSTR("{"));
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
Ds18x20Name(i);
char address[17];
for (uint32_t j = 0; j < 8; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[7-j]); // Skip sensor type and crc
}
ResponseAppend_P(PSTR("\"%s\":{\"" D_JSON_ID "\":\"%s\"}"), DS18X20Data.name, address);
if (i < DS18X20Data.sensors-1) { ResponseAppend_P(PSTR(",")); }
}
ResponseAppend_P(PSTR("}"));
}
void CmndDSAlias(void) {
// Ds18Alias 430516707FA6FF28,SensorName - Use SensorName instead of DS18B20
// Ds18Alias 430516707FA6FF28,0 - Disable alias (default)
char Argument1[XdrvMailbox.data_len];
char Argument2[XdrvMailbox.data_len];
char address[17];
if (ArgC() == 2) {
ArgV(Argument1, 1);
ArgV(Argument2, 2);
TrimSpace(Argument2);
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
for (uint32_t j = 0; j < 8; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[i].address[7-j]);
}
if (!strncmp(Argument1, address, 12) && Argument2[0]) {
snprintf_P(ds18x20_sensor[i].alias, DS18X20_ALIAS_LEN, PSTR("%s"), Argument2);
break;
}
}
}
Response_P(PSTR("{"));
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
Ds18x20Name(i);
char address[17];
for (uint32_t j = 0; j < 8; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[7-j]); // Skip sensor type and crc
}
ResponseAppend_P(PSTR("\"%s\":{\"" D_JSON_ID "\":\"%s\"}"), DS18X20Data.name, address);
if (i < DS18X20Data.sensors-1) { ResponseAppend_P(PSTR(",")); }
}
ResponseAppend_P(PSTR("}"));
}
#endif // DS18x20_USE_ID_ALIAS
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns05(uint32_t function) {
bool result = false;
if (PinUsed(GPIO_DSB, GPIO_ANY)) {
switch (function) {
case FUNC_INIT:
Ds18x20Init();
break;
case FUNC_EVERY_SECOND:
Ds18x20EverySecond();
break;
case FUNC_JSON_APPEND:
Ds18x20Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Ds18x20Show(0);
break;
#endif // USE_WEBSERVER
#ifdef DS18x20_USE_ID_ALIAS
case FUNC_COMMAND:
result = DecodeCommand(kds18Commands, DSCommand);
break;
#endif // DS18x20_USE_ID_ALIAS
}
}
return result;
}
#endif // USE_DS18x20
#endif // ESP32