Tasmota/tasmota/tasmota_xsns_sensor/xsns_06_dht_v5.ino

328 lines
10 KiB
C++

/*
xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP8266
#ifdef USE_DHT_V5
/*********************************************************************************************\
* DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidity
*
* Reading temperature or humidity takes about 250 milliseconds!
* Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
*
* Changelog
* 20211229 - Change poll time from to 2 to 4 seconds for better results
* 20211226 - https://github.com/arendst/Tasmota/pull/14173
* 20210524 - https://github.com/arendst/Tasmota/issues/12180
* 20200621 - https://github.com/arendst/Tasmota/pull/7468#issuecomment-647067015
* 20200313 - https://github.com/arendst/Tasmota/issues/7717#issuecomment-585833243
\*********************************************************************************************/
#define XSNS_06 6
#ifndef DHT_MAX_SENSORS
#define DHT_MAX_SENSORS 4
#endif
#define DHT_MAX_RETRY 8
uint8_t dht_data[5];
uint8_t dht_sensors = 0;
uint8_t dht_pin_out = 0; // Shelly GPIO00 output only
bool dht_active = true; // DHT configured
bool dht_dual_mode = false; // Single pin mode
struct DHTSTRUCT {
float t = NAN;
float h = NAN;
int16_t raw;
char stype[12];
int8_t pin;
uint16_t type;
uint8_t lastresult;
} Dht[DHT_MAX_SENSORS];
bool DhtWaitState(uint32_t sensor, uint32_t level) {
unsigned long timeout = micros() + 100;
while (digitalRead(Dht[sensor].pin) != level) {
if (TimeReachedUsec(timeout)) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " %s " D_PULSE),
(level) ? D_START_SIGNAL_HIGH : D_START_SIGNAL_LOW);
return false;
}
delayMicroseconds(1);
}
return true;
}
bool DhtRead(uint32_t sensor) {
dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0;
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, OUTPUT);
digitalWrite(Dht[sensor].pin, LOW);
} else {
digitalWrite(dht_pin_out, LOW);
}
switch (Dht[sensor].type) {
case GPIO_DHT11: // DHT11
delay(19); // minimum 18ms
break;
case GPIO_DHT22: // DHT21, DHT22, AM2301, AM2302, AM2321
// delay(2); // minimum 1ms
delayMicroseconds(2000); // 20200621: See https://github.com/arendst/Tasmota/pull/7468#issuecomment-647067015
break;
case GPIO_SI7021: // iTead SI7021
delayMicroseconds(500);
break;
case GPIO_MS01: // Sonoff MS01
delayMicroseconds(450);
break;
}
if (!dht_dual_mode) {
pinMode(Dht[sensor].pin, INPUT_PULLUP);
} else {
digitalWrite(dht_pin_out, HIGH);
}
switch (Dht[sensor].type) {
case GPIO_DHT11: // DHT11
case GPIO_DHT22: // DHT21, DHT22, AM2301, AM2302, AM2321
delayMicroseconds(50);
break;
case GPIO_SI7021: // iTead SI7021
case GPIO_MS01: // Sonoff MS01
delayMicroseconds(30); // See: https://github.com/letscontrolit/ESPEasy/issues/1798 and 20210524: https://github.com/arendst/Tasmota/issues/12180
break;
}
uint32_t i = 0;
#ifdef ESP32
{ portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&mux);
#else
noInterrupts();
#endif
if (DhtWaitState(sensor, 0) && DhtWaitState(sensor, 1) && DhtWaitState(sensor, 0)) {
for (i = 0; i < 40; i++) {
if (!DhtWaitState(sensor, 1)) { break; }
delayMicroseconds(32); // Was 30
if (digitalRead(Dht[sensor].pin)) {
dht_data[i / 8] |= (1 << (7 - i % 8));
}
if (!DhtWaitState(sensor, 0)) { break; }
}
}
#ifdef ESP32
portEXIT_CRITICAL(&mux); }
#else
interrupts();
#endif
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("DHT: Read %5_H"), dht_data);
if (i < 40) { return false; }
uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF;
if (dht_data[4] != checksum) {
char hex_char[15];
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE " %s =? %02X"),
ToHex_P(dht_data, 5, hex_char, sizeof(hex_char), ' '), checksum);
return false;
}
float temperature = NAN;
float humidity = NAN;
switch (Dht[sensor].type) {
case GPIO_DHT11: // DHT11
humidity = dht_data[0];
// 20200313: DHT11 (Adafruit):
temperature = dht_data[2];
if (dht_data[3] & 0x80) {
temperature = -1 - temperature;
}
temperature += (dht_data[3] & 0x0f) * 0.1f;
/*
// DHT12 (Adafruit):
temperature = dht_data[2];
temperature += (dht_data[3] & 0x0f) * 0.1f;
if (dht_data[2] & 0x80) {
temperature *= -1;
}
*/
break;
case GPIO_DHT22: // DHT21, DHT22, AM2301, AM2302, AM2321
case GPIO_SI7021: { // iTead SI7021
humidity = ((dht_data[0] << 8) | dht_data[1]) * 0.1f;
// DHT21/22 (Adafruit):
int16_t temp16 = dht_data[2] << 8 | dht_data[3]; // case 1 : signed 16 bits
if ((dht_data[2] & 0xF0) == 0x80) { // case 2 : negative when high nibble = 0x80
temp16 = -(0xFFF & temp16);
}
temperature = 0.1f * temp16;
break;
}
case GPIO_MS01: { // Sonoff MS01
int16_t voltage = ((dht_data[0] << 8) | dht_data[1]);
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("DHT: MS01 %d"), voltage);
// Rough approximate of soil moisture % (based on values observed in the eWeLink app)
// Observed values are available here: https://gist.github.com/minovap/654cdcd8bc37bb0d2ff338f8d144a509
float x;
if (voltage < 15037) {
x = voltage - 15200;
humidity = - FastPrecisePowf(0.0024f * x, 3) - 0.0004f * x + 20.1f;
}
else if (voltage < 22300) {
humidity = - 0.00069f * voltage + 30.6f;
}
else {
x = voltage - 22800;
humidity = - FastPrecisePowf(0.00046f * x, 3) - 0.0004f * x + 15;
}
temperature = 0;
Dht[sensor].raw = voltage;
break;
}
}
if (isnan(temperature) || isnan(humidity)) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "Invalid reading"));
return false;
}
if (humidity > 100) { humidity = 100.0f; }
if (humidity < 0) { humidity = 0.1f; }
Dht[sensor].h = ConvertHumidity(humidity);
Dht[sensor].t = ConvertTemp(temperature);
Dht[sensor].lastresult = 0;
return true;
}
/********************************************************************************************/
bool DhtPinState() {
if (((XdrvMailbox.index >= AGPIO(GPIO_DHT11)) && (XdrvMailbox.index <= AGPIO(GPIO_SI7021))) ||
(XdrvMailbox.index == AGPIO(GPIO_MS01))) {
if (dht_sensors < DHT_MAX_SENSORS) {
Dht[dht_sensors].pin = XdrvMailbox.payload;
Dht[dht_sensors].type = BGPIO(XdrvMailbox.index);
dht_sensors++;
XdrvMailbox.index = AGPIO(GPIO_DHT11);
} else {
XdrvMailbox.index = 0;
}
return true;
}
return false;
}
void DhtInit(void) {
if (dht_sensors) {
if (PinUsed(GPIO_DHT11_OUT)) {
dht_pin_out = Pin(GPIO_DHT11_OUT);
dht_dual_mode = true; // Dual pins mode as used by Shelly
dht_sensors = 1; // We only support one sensor in pseudo mode
pinMode(dht_pin_out, OUTPUT);
}
for (uint32_t i = 0; i < dht_sensors; i++) {
pinMode(Dht[i].pin, INPUT_PULLUP);
Dht[i].lastresult = DHT_MAX_RETRY; // Start with NAN
GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames);
if (dht_sensors > 1) {
snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin);
}
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "(v5) " D_SENSORS_FOUND " %d"), dht_sensors);
} else {
dht_active = false;
}
}
void DhtEverySecond(void) {
if (!(TasmotaGlobal.uptime %4)) { // Every 4 seconds
for (uint32_t sensor = 0; sensor < dht_sensors; sensor++) {
// DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor
if (!DhtRead(sensor)) {
Dht[sensor].lastresult++;
if (Dht[sensor].lastresult > DHT_MAX_RETRY) { // Reset after 8 misses
Dht[sensor].t = NAN;
Dht[sensor].h = NAN;
}
}
}
}
}
void DhtShow(bool json) {
for (uint32_t i = 0; i < dht_sensors; i++) {
if (GPIO_MS01 == Dht[i].type) {
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_HUMIDITY "\":%*_f,\"Raw\":%d}"),
Dht[i].stype, Settings->flag2.humidity_resolution, &Dht[i].h, Dht[i].raw);
#ifdef USE_WEBSERVER
} else {
char parameter[FLOATSZ];
dtostrfd(Dht[i].h, Settings->flag2.humidity_resolution, parameter);
WSContentSend_PD(HTTP_SNS_HUM, Dht[i].stype, parameter);
#endif // USE_WEBSERVER
}
} else {
TempHumDewShow(json, ((0 == TasmotaGlobal.tele_period) && (0 == i)), Dht[i].stype, Dht[i].t, Dht[i].h);
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns06(uint32_t function) {
bool result = false;
if (dht_active) {
switch (function) {
case FUNC_EVERY_SECOND:
DhtEverySecond();
break;
case FUNC_JSON_APPEND:
DhtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
DhtShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
DhtInit();
break;
case FUNC_PIN_STATE:
result = DhtPinState();
break;
}
}
return result;
}
#endif // USE_DHT_V5
#endif // ESP8266