Tasmota/tasmota/tasmota_xsns_sensor/xsns_100_ina3221.ino

736 lines
29 KiB
C++

/*
xsns_100_ina3221.ino - INA3221 3-channels Current Sensor support for Tasmota
Copyright (C) 2021 Barbudor and Theo Arends + fb-pilot
Based on Barbudor's CircuitPython_INA3221
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_INA3221
/*********************************************************************************************\
* INA3221 - 3 channels High-side DC voltage and current measurment
* https://www.ti.com/product/INA3221
*
* Up to 4 devices can be connected (12 channels)
* I2C Address: 0x40, 0x41, 0x43 or 0x43
*
* IMPORTANT INFORMATION
* By default the driver is enabled to support up to 4 INA3221 from hte above addresse
* If you want to enable less addresses in order to use other I2C chip on those addresses you
* can define in your user_config_override.h the following:
* #define INA3221_MAX_COUNT the max number of INA3221 to support
* #define INA3221_ADDRESS1 the I2C address of the 1st INA3221
* For example to support only 2 INA3221 at addresses 0x41 and 0x42 you can use:
* #define INA3221_MAX_COUNT 2
* #define INA3221_ADDRESS1 0x41
* That would leave 0x40 and 0x43 for other devices
* By defining INA3221_CALC_CHARGE_AH INA3221_CALC_ENERGY_WH the driver adds a estimation of
* energies in Ah and Wh to the output, To reset the energie calculation disable tge
* according INA3221 chanel by setting the shunt to 0.0 and enable it again
* For example :
* sensor100 1,0,0,0 (or sensor100 1,,,) and sensor100 1,0.1,0.1,0.2 will reset channel 1
* By defining INA3221_SUPPLY_SIDE the driver adds the measured Shunt Voltage to the Bus Voltage
* for the cannel with a negativ shunt (shunt <0) thus showing the values of the supply side (IN+)
* otherwise (shunt >0) the load-side (IN-) is shown.
* e.g. sensor100 1,-0.1,0.1,-0.2
* additionaly the bits set (bit 0,1,2) enable the scanning of the voltage in the according channel
* e.g. INA3221_SUPPLY_SIDE = 0x0005 enables enables voltage measurment of channel 1 and 3 for the device 1
* By defining INA3221_CYCLE_COUNT xx ... the device is scanned all xx * 250ms range 1 .. 127
* By defining USE_DEEPSLEEP the device is configured to Power down (reduces the supply current 1mA --> 15µA )
* Nevertheless, the driver tries to identifiy if the chip as an address is a IN3221
\*********************************************************************************************/
#define XSNS_100 100
#define XI2C_72 72 // See I2CDEVICES.md
// setup of INA3221 config
#ifndef INA3221_CONFIG_INIT
#define INA3221_CONFIG_INIT INA3221_AVERAGING_16_SAMPLES |\
INA3221_VBUS_CONV_TIME_1MS |\
INA3221_SHUNT_CONV_TIME_1MS
// that results in a complete conversions sequence in 6,6 ms and a slope time of 105,6 ms
#endif // end of setup of INA3221 config
#if !defined(INA3221_MAX_COUNT)
#define INA3221_MAX_COUNT 4
#elif (INA3221_MAX_COUNT > 4)
#undef INA3221_MAX_COUNT
#define INA3221_MAX_COUNT 4
#warning **** INA3221 bad INA3221_MAX_COUNT ****
#warning **** has to be 1 to 4 ... set to 4 ****
#elif (INA3221_MAX_COUNT < 1)
#undef INA3221_MAX_COUNT
#define INA3221_MAX_COUNT 1
#warning **** INA3221 bad INA3221_MAX_COUNT ****
#warning **** has to be 1 to 4 ... set to 1 ****
#endif
#if !defined(INA3221_CYCLE_COUNT)
#define INA3221_CYCLE_COUNT 1
#elif (INA3221_CYCLE_COUNT < 1)
#undef INA3221_CYCLE_COUNT
#define INA3221_CYCLE_COUNT 1
#warning **** INA3221 bad INA3221_CYCLE_COUNT ****
#warning **** must be 1 to 127 ... set to 1 ****
#elif (INA3221_CYCLE_COUNT > 127)
#undef INA3221_CYCLE_COUNT
#define INA3221_CYCLE_COUNT 127
#warning **** INA3221 bad INA3221_CYCLE_COUNT ****
#warning **** must be 1 to 127 ... set to 127 ****
#endif
#ifndef INA3221_ADDRESS1
#define INA3221_ADDRESS1 (0x40) // 1000000 (A0=GND)
#define INA3221_ADDRESS2 (0x41) // 1000000 (A0=VS)
#define INA3221_ADDRESS3 (0x42) // 1000010 (A0=SDA)
#define INA3221_ADDRESS4 (0x43) // 1000011 (A0=SCL)
#endif
#define INA3221_ADDRESS(index) (INA3221_ADDRESS1+(index))
#if ((INA3221_ADDRESS1 + INA3221_MAX_COUNT) > 0x44)
#error "**** INA3221 bad combination for ADDRESS1 and MAX_COUNT ****"
#endif
#define INA3221_NB_CHAN (3)
#if (INA3221_NB_CHAN>4)
#error "**** INA3221 too manny channels ****"
#endif
// Config register - ch : 0..2
#define INA3221_REG_CONFIG (0x00)
#define INA3221_RESET (0x8000)
#define INA3221_ENABLE_MASK (0x7000)
#define INA3221_ENABLE_CH(ch) (0x4000>>(ch)) // default: set
#define INA3221_AVERAGING_MASK (0x0E00)
#define INA3221_AVERAGING_NONE (0x0000)
#define INA3221_AVERAGING_4_SAMPLES (0x0200)
#define INA3221_AVERAGING_16_SAMPLES (0x0400)
#define INA3221_AVERAGING_64_SAMPLES (0x0600)
#define INA3221_AVERAGING_128_SAMPLES (0x0800)
#define INA3221_AVERAGING_256_SAMPLES (0x0A00)
#define INA3221_AVERAGING_512_SAMPLES (0x0C00) // 1 sample
#define INA3221_AVERAGING_1024_SAMPLES (0x0E00)
#define INA3221_VBUS_CONV_TIME_MASK (0x01C0)
#define INA3221_VBUS_CONV_TIME_140US (0x0000)
#define INA3221_VBUS_CONV_TIME_204US (0x0040)
#define INA3221_VBUS_CONV_TIME_332US (0x0080)
#define INA3221_VBUS_CONV_TIME_588US (0x00C0)
#define INA3221_VBUS_CONV_TIME_1MS (0x0100) // 1.1ms
#define INA3221_VBUS_CONV_TIME_2MS (0x0140) // 2.116ms
#define INA3221_VBUS_CONV_TIME_4MS (0x0180) // 4.156ms
#define INA3221_VBUS_CONV_TIME_8MS (0x01C0) // 8.244ms
#define INA3221_SHUNT_CONV_TIME_MASK (0x0038)
#define INA3221_SHUNT_CONV_TIME_140US (0x0000)
#define INA3221_SHUNT_CONV_TIME_204US (0x0008)
#define INA3221_SHUNT_CONV_TIME_332US (0x0010)
#define INA3221_SHUNT_CONV_TIME_588US (0x0018)
#define INA3221_SHUNT_CONV_TIME_1MS (0x0020) // 1.1ms
#define INA3221_SHUNT_CONV_TIME_2MS (0x0028) // 2.116ms
#define INA3221_SHUNT_CONV_TIME_4MS (0x0030) // 4.156ms
#define INA3221_SHUNT_CONV_TIME_8MS (0x0038) // 8.244ms
#define INA3221_MODE_MASK (0x0007)
#define INA3221_MODE_POWER_DOWN (0x0000)
#define INA3221_MODE_SHUNT_VOLTAGE_TRIGGERED (0x0001)
#define INA3221_MODE_BUS_VOLTAGE_TRIGGERED (0x0002)
#define INA3221_MODE_SHUNT_AND_BUS_TRIGGERED (0x0003)
#define INA3221_MODE_POWER_DOWN2 (0x0004)
#define INA3221_MODE_SHUNT_VOLTAGE_CONTINUOUS (0x0005)
#define INA3221_MODE_BUS_VOLTAGE_CONTINUOUS (0x0006)
#define INA3221_MODE_SHUNT_AND_BUS_CONTINOUS (0x0007) // default
// Other registers - ch = 0..2
#define INA3221_REG_SHUNT_VOLTAGE_CH(ch) (0x01+((ch)<<1))
#define INA3221_REG_BUS_VOLTAGE_CH(ch) (0x02+((ch)<<1))
#define INA3221_REG_CRITICAL_ALERT_LIMIT_CH(ch) (0x07+((ch)<<1))
#define INA3221_REG_WARNING_ALERT_LIMIT_CH(ch) (0x08+((ch)<<1))
#define INA3221_REG_SHUNT_VOLTAGE_SUM (0x0D)
#define INA3221_REG_SHUNT_VOLTAGE_SUM_LIMIT (0x0E)
// Mask/enable register - ch = 1..3
#define INA3221_REG_MASK_ENABLE (0x0F)
#define INA3221_SUM_CONTROL_CH(ch) (0x4000>>((ch)-1))
#define INA3221_WARNING_LATCH_ENABLE (0x0800)
#define INA3221_CRITICAL_LATCH_ENABLE (0x0400)
#define INA3221_CRITICAL_FLAG_CH(ch) (0x0200>>((ch)-1))
#define INA3221_SUM_ALERT_FLAG (0x0040)
#define INA3221_WARNING_FLAG_CH(ch) (0x0020>>((ch)-1))
#define INA3221_POWER_ALERT_FLAG (0x0004)
#define INA3221_TIMING_ALERT_FLAG (0x0002)
#define INA3221_CONV_READY_FLAG (0x0001) // The conversion bit is set after all conversions are
// complete. Conversion ready clearsReading the Mask/Enable register.
// Other registers
#define INA3221_REG_POWER_VALID_UPPER_LIMIT (0x10)
#define INA3221_REG_POWER_VALID_LOWER_LIMIT (0x11)
#define INA3221_REG_MANUFACTURER_ID (0xFE)
#define INA3221_REG_DIE_ID (0xFF)
// Constants for manufacturer and device ID
#define INA3221_MANUFACTURER_ID (0x5449) // "TI"
#define INA3221_DIE_ID (0x3220)
// General constants
#define INA3221C_BUS_ADC_LSB (0.008f) // VBus ADC LSB is 8mV
#define INA3221C_SHUNT_ADC_LSB (0.00004f) // VShunt ADC LSB is 40µV
#define INA3221_DEFAULT_SHUNT_RESISTOR (0.1f)
#define INA3221_ENERGY_FACTOR (1.0f/(3600.0f*1000.0f)) // reading values all xx ms
#ifdef INA3221_SUPPLY_SIDE
#define INA3221_ENABLE_CHAN(device) (((INA3221_SUPPLY_SIDE >> ((device)*4)) & (0xF >> (4-INA3221_NB_CHAN))) << 4)
#endif
/* show final Defines :
#ifdef INA3221_CALC_CHARGE_AH
#define BF_DEF_CHARGE_AH defined
#else
#define BF_DEF_CHARGE_AH not defined
#endif
#ifdef INA3221_CALC_ENERGY_WH
#define BF_DEF_ENERGY_WH defined
#else
#define BF_DEF_ENERGY_WH not defined
#endif
#ifdef INA3221_SUPPLY_SIDE
#define BF_DEF_SUPPLY_SIDE defined ... INA3221_SUPPLY_SIDE
#else
#define BF_DEF_SUPPLY_SIDE not defined
#endif
#pragma message ("\n=========================>"\
"\n Sensor XSNS_ = " BF_TEXT(XSNS_100)" ... I2C-driver = " BF_TEXT(XI2C_72) \
"\n first Address = " BF_TEXT(INA3221_ADDRESS1)\
"\n init-config = " BF_TEXT(INA3221_CONFIG_INIT)\
"\n INA3221_MAX_COUNT = " BF_TEXT(INA3221_MAX_COUNT)\
"\n INA3221_CYCLE_COUNT = " BF_TEXT(INA3221_CYCLE_COUNT)\
"\n CHARGE_AH = " BF_TEXT(BF_DEF_CHARGE_AH)" ... ENERGY_WH = " BF_TEXT(BF_DEF_ENERGY_WH)\
"\n SUPPLY_SIDE = " BF_TEXT(BF_DEF_SUPPLY_SIDE) \
"\n=========================>\n\n")
// end show final Defines */
#ifdef DEBUG_TASMOTA_SENSOR
// temporary strings for floating point in debug messages
char _ina3221_dbg1[FLOATSZ];
char _ina3221_dbg2[FLOATSZ];
#endif
const char INA3221_SENSORCMND_START[] PROGMEM = "{\"" D_CMND_SENSOR "%d\":{\"idx\":%d,\"addr\":\"0x%02X\",\"rshunt\":[";
const char INA3221_SENSORCMND_END[] PROGMEM = "]}}";
#if defined(INA3221_CALC_CHARGE_AH) || defined(INA3221_CALC_ENERGY_WH)
uint32_t INA3221_last_millis;
uint32_t INA3221_delta_ms;
#endif
struct INA3221_Channel_Data {
float voltage;
float current;
float shunt;
#ifdef INA3221_CALC_CHARGE_AH
float charge_ah;
#endif
#ifdef INA3221_CALC_ENERGY_WH
float energy_wh;
#endif
};
struct INA3221_Data {
struct INA3221_Channel_Data chan[INA3221_NB_CHAN];
uint8_t enabled_chan;
uint8_t i2caddr;
};
struct INA3221_Data *Ina3221Data = nullptr;
uint8_t Ina3221count = 0;
static int8_t _ina3221_current_device = 0;
#define D_INA3221 "INA3221"
const char INA3221_TYPE[] = D_INA3221;
#ifdef INA3221_SUPPLY_SIDE
bool Ina3221WriteConfig(uint8_t device)
{
uint16_t config = 0x8000;
for (uint32_t ch = 0; ch < INA3221_NB_CHAN; ch++) {
if ((Ina3221Data[device].enabled_chan & (1 << ch)) || (Ina3221Data[device].enabled_chan & (1 << (ch+4)))){
config |= INA3221_ENABLE_CH(ch);
}
}
config |= INA3221_CONFIG_INIT;
// bf.. INA3221_MODE_SHUNT_AND_BUS_CONTINOUS ableiten aus Ina3221Data[device].enabled_chan device !!
if (Ina3221Data[device].enabled_chan < 0x0F){
config |= INA3221_MODE_SHUNT_VOLTAGE_CONTINUOUS;
}
else if (Ina3221Data[device].enabled_chan == (Ina3221Data[device].enabled_chan & 0xF0) ){
config |= INA3221_MODE_BUS_VOLTAGE_CONTINUOUS;
}
else{
config |= INA3221_MODE_SHUNT_AND_BUS_CONTINOUS;
}
/*
#define INA3221_ENABLE_MASK (0x7000)
#define INA3221_ENABLE_CH(ch) (0x4000>>(ch)) // default: set
#define INA3221_MODE_SHUNT_VOLTAGE_CONTINUOUS (0x0005)
#define INA3221_MODE_BUS_VOLTAGE_CONTINUOUS (0x0006)
#define INA3221_MODE_SHUNT_AND_BUS_CONTINOUS (0x0007) // default
*/
#ifdef DEBUG_TASMOTA_SENSOR
DEBUG_SENSOR_LOG(PSTR(D_INA3221 ":WriteConfig: device=%d, addr:0x%02X, onfiguration register=0x%04X"),device+1, Ina3221Data[device].i2caddr, config);
#endif
// Set Config register
if (!I2cWrite16(Ina3221Data[device].i2caddr, INA3221_REG_CONFIG, config))
return false;
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_INA3221 ":WriteConfig: device=%d, addr:0x%02X, onfiguration register=0x%04X"),device+1, Ina3221Data[device].i2caddr, config);
return true;
}
#endif
bool Ina3221SetConfig(uint8_t addr)
{
// check if device is a INA3221
uint16_t manufacturer_id = 0, die_id = 0;
if (!I2cValidRead16(&manufacturer_id, addr, INA3221_REG_MANUFACTURER_ID)
|| (manufacturer_id != INA3221_MANUFACTURER_ID)
|| !I2cValidRead16(&die_id, addr, INA3221_REG_DIE_ID)
|| (die_id != INA3221_DIE_ID)) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_INA3221 ":Skipping device at addr:0x%02X not an " D_INA3221), addr);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_INA3221 ":SetConfig: manId=0x%04X, dieId=0x%04X"), manufacturer_id, die_id);
return false;
}
#ifndef INA3221_SUPPLY_SIDE
uint16_t config = INA3221_ENABLE_MASK |
INA3221_CONFIG_INIT |
INA3221_MODE_SHUNT_AND_BUS_CONTINOUS;
DEBUG_SENSOR_LOG(PSTR(D_INA3221 ":SetConfig: addr:0x%02X, config=0x%04X"), addr, config);
// Set Config register
if (!I2cWrite16(addr, INA3221_REG_CONFIG, config))
return false;
#endif
return true;
}
#ifdef USE_DEEPSLEEP
bool Ina3221PowerDown(uint8_t device)
{
uint8_t addr = Ina3221Data[device].i2caddr;
// write default configuration
uint16_t config = INA3221_MODE_POWER_DOWN;
DEBUG_SENSOR_LOG(PSTR(D_INA3221 ":PowerDown: addr:0x%02X, config=0x%04X"), addr, config);
// Set Config register
if (!I2cWrite16(addr, INA3221_REG_CONFIG, config))
return false;
return true;
}
#endif
void Ina3221SetShunt(uint8_t device, uint8_t channel, float shunt)
{
Ina3221Data[device].chan[channel].shunt = shunt;
#ifdef INA3221_SUPPLY_SIDE
if (fabs(shunt) > 0.0f){
#else
if (shunt > 0.0f){
#endif
#if (defined(INA3221_CALC_CHARGE_AH) || defined(INA3221_CALC_ENERGY_WH))
if (!(Ina3221Data[device].enabled_chan & (1<<channel))){
#ifdef INA3221_CALC_CHARGE_AH
Ina3221Data[device].chan[channel].charge_ah = 0.0f;
#endif
#ifdef INA3221_CALC_ENERGY_WH
if ((Ina3221Data[device].enabled_chan & (1<<(channel+4)))){
Ina3221Data[device].chan[channel].energy_wh = 0.0f;
}
#endif
}
#endif
Ina3221Data[device].enabled_chan |= (1<<channel);
}
else{
Ina3221Data[device].enabled_chan &= ~(1<<channel);
Ina3221Data[device].chan[channel].current = NAN;
#ifdef INA3221_CALC_CHARGE_AH
Ina3221Data[device].chan[channel].charge_ah = NAN;
#endif
#ifdef INA3221_CALC_ENERGY_WH
Ina3221Data[device].chan[channel].energy_wh = NAN;
#endif
}
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_INA3221 ":enabled: device/channel=%d/%d,shunt=%-3_f enabled=0x%02X"), device+1,channel,&shunt,Ina3221Data[device].enabled_chan);
}
bool Ina3221Read(uint8_t device, uint8_t channel)
{
// if (channel>INA3221_NB_CHAN)
// return false;
uint8_t addr = Ina3221Data[device].i2caddr;
int16_t bus_voltage, shunt_voltage;
struct INA3221_Channel_Data *pChannel = &Ina3221Data[device].chan[channel];
#ifdef INA3221_SUPPLY_SIDE
if (Ina3221Data[device].enabled_chan & (0x01 << (channel+4))){
#endif
bus_voltage = I2cReadS16(addr, INA3221_REG_BUS_VOLTAGE_CH(channel));
#ifdef DEBUG_TASMOTA_SENSOR
DEBUG_SENSOR_LOG(D_INA3221 ":GetBusVoltage: RegVBus[%d:%d](0x%02X) = 0x%04X = %d", device, channel, INA3221_REG_BUS_VOLTAGE_CH(channel), bus_voltage, bus_voltage);
#endif
// Convert to VBus voltage in V
pChannel->voltage = INA3221C_BUS_ADC_LSB * (float)(bus_voltage >> 3);
#ifdef INA3221_SUPPLY_SIDE
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_INA3221 ":GetBusVoltage: RegVBus[0x%02X:%d:%d](0x%02X) = 0x%04X = %d voltage=%5_f"),addr ,device, channel, INA3221_REG_BUS_VOLTAGE_CH(channel), bus_voltage, bus_voltage, &pChannel->voltage);
}
else{
pChannel->voltage = NAN;
}
if ((fabs(pChannel->shunt)) > 0.0f) {
shunt_voltage = I2cReadS16(addr, INA3221_REG_SHUNT_VOLTAGE_CH(channel));
#ifdef DEBUG_TASMOTA_SENSOR
DEBUG_SENSOR_LOG(D_INA3221 ":GetShuntVoltage: RegSh[%d:%d](0x%02X) = 0x%04X = %d", device, channel, INA3221_REG_SHUNT_VOLTAGE_CH(channel), shunt_voltage, shunt_voltage);
#endif
// convert to shunt voltage in V
if (pChannel->shunt < 0){
pChannel->voltage += INA3221C_SHUNT_ADC_LSB * (float)(shunt_voltage >> 3);
}
pChannel->current = INA3221C_SHUNT_ADC_LSB * (float)(shunt_voltage >> 3) / (fabs(pChannel->shunt));
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_INA3221 ":GetShuntVoltage: RegSh[%d:%d](0x%02X) = 0x%04X = %d current=%5_f"),device, channel, INA3221_REG_SHUNT_VOLTAGE_CH(channel), shunt_voltage, shunt_voltage, &pChannel->current);
#else
if (pChannel->shunt > 0.0f) {
shunt_voltage = I2cReadS16(addr, INA3221_REG_SHUNT_VOLTAGE_CH(channel));
#ifdef DEBUG_TASMOTA_SENSOR
DEBUG_SENSOR_LOG(D_INA3221 ":GetShuntVoltage: RegSh[%d:%d](0x%02X) = 0x%04X = %d", device, channel, INA3221_REG_SHUNT_VOLTAGE_CH(channel), shunt_voltage, shunt_voltage);
#endif
// convert to shunt voltage in V
pChannel->current = INA3221C_SHUNT_ADC_LSB * (float)(shunt_voltage >> 3) / pChannel->shunt;
#endif
#ifdef INA3221_CALC_CHARGE_AH
pChannel->charge_ah += (pChannel->current * (float)INA3221_delta_ms * INA3221_ENERGY_FACTOR);
#endif
#ifdef INA3221_CALC_ENERGY_WH
pChannel->energy_wh += (pChannel->current * pChannel->voltage * (float)INA3221_delta_ms * INA3221_ENERGY_FACTOR);
#endif
}
else {
pChannel->current = INFINITY;
#ifdef INA3221_CALC_CHARGE_AH
pChannel->charge_ah = INFINITY;
#endif
#ifdef INA3221_CALC_ENERGY_WH
pChannel->energy_wh = INFINITY;
#endif
}
#ifdef DEBUG_TASMOTA_SENSOR
dtostrfd(pChannel->voltage,5,_ina3221_dbg1);
dtostrfd(pChannel->current,5,_ina3221_dbg2);
#ifdef DEBUG_TASMOTA_SENSOR
DEBUG_SENSOR_LOG(D_INA3221 ":Read[%d:%d]: V=%sV, I=%sA", device, channel, _ina3221_dbg1, _ina3221_dbg2);
#endif
#endif
return true;
}
/*********************************************************************************************\
* Command Sensor
\*********************************************************************************************/
bool Ina3221CmndSensor(void)
{
int argc = ArgC();
if(argc != 1 && argc != (INA3221_NB_CHAN+1)) {
AddLog(LOG_LEVEL_INFO, PSTR(D_INA3221 ": Not enough arguments (1 or %d)"),(INA3221_NB_CHAN+1));
return false;
}
char argument[XdrvMailbox.data_len+FLOATSZ];
uint32_t device = atoi(ArgV(argument,1)) -1;
if (device >= INA3221_MAX_COUNT || !Ina3221Data[device].i2caddr) {
AddLog(LOG_LEVEL_INFO, PSTR(D_INA3221 ":invalid device %d"),device+1);
return false;
}
if (argc > 1) {
for (int channel = 0 ; channel < INA3221_NB_CHAN ; channel++) {
float shunt = CharToFloat(ArgV(argument,2+channel));
Ina3221SetShunt(device, channel, shunt);
}
#ifdef INA3221_SUPPLY_SIDE
if (!Ina3221WriteConfig(device)){
#ifdef DEBUG_TASMOTA_SENSOR
DEBUG_SENSOR_LOG(D_INA3221 "error write configuration %d", device+1);
#endif
return false;
}
#endif
}
Response_P(INA3221_SENSORCMND_START, XSNS_100, device +1, Ina3221Data[device].i2caddr);
for (int channel = 0 ; channel < INA3221_NB_CHAN ; channel++ ) {
ResponseAppend_P(PSTR("%5_f%c"),&Ina3221Data[device].chan[channel].shunt , ((channel < (INA3221_NB_CHAN-1))?',':'\0'));
}
ResponseAppend_P(INA3221_SENSORCMND_END);
return true;
}
/********************************************************************************************/
void Ina3221Detect(void)
{
_ina3221_current_device = 0;
Ina3221count = 0;
// ????
for (uint32_t i = 0; i < INA3221_MAX_COUNT; i++) {
uint16_t addr = INA3221_ADDRESS(i);
if (!I2cSetDevice(addr)) { continue; }
if (!Ina3221Data) {
// bf ... calloc(INA3221_MAX_COUNT ... ??
Ina3221Data = (struct INA3221_Data*)calloc(INA3221_MAX_COUNT,sizeof(struct INA3221_Data));
if (!Ina3221Data) {
AddLog(LOG_LEVEL_ERROR,PSTR(D_INA3221 ": Mem allocation error"));
return;
}
}
// bf.. Ina3221SetConfig(addr)) erweitern om device !!
if (Ina3221SetConfig(addr)) {
I2cSetActiveFound(addr, INA3221_TYPE);
Ina3221Data[Ina3221count].i2caddr = addr;
#ifdef INA3221_SUPPLY_SIDE
Ina3221Data[Ina3221count].enabled_chan = INA3221_ENABLE_CHAN(i);
if (!Ina3221WriteConfig(Ina3221count)){
Ina3221count++;
continue;
}
#else
Ina3221Data[Ina3221count].enabled_chan = 0;
#endif
for (uint32_t j = 0; j < INA3221_NB_CHAN; j++) {
Ina3221Data[Ina3221count].chan[j].shunt = 0.0f;
#ifdef INA3221_CALC_CHARGE_AH
Ina3221Data[Ina3221count].chan[j].charge_ah = 0.0f;
#endif
#ifdef INA3221_CALC_ENERGY_WH
Ina3221Data[Ina3221count].chan[j].energy_wh = 0.0f;
#endif
}
Ina3221count++;
}
}
if (!Ina3221count && Ina3221Data) {
free(Ina3221Data);
Ina3221Data = nullptr;
}
#if defined(INA3221_CALC_CHARGE_AH) || defined(INA3221_CALC_ENERGY_WH)
INA3221_last_millis = millis();
#endif
}
void Ina3221Every250ms(void)
{
if (++_ina3221_current_device < 0 ){
return;
}
// Conversion-ready flag. CVRF ?? ==> INA3221_CONV_READY_FLAG
#ifdef DEBUG_TASMOTA_SENSOR
DEBUG_SENSOR_LOG(PSTR(D_INA3221 ": cur:%d, en:%d"), _ina3221_current_device, Ina3221Data[(uint8_t) _ina3221_current_device].enabled_chan);
#endif
uint8_t enabled_chan = Ina3221Data[(uint8_t)(_ina3221_current_device)].enabled_chan;
if (_ina3221_current_device >= INA3221_MAX_COUNT){
_ina3221_current_device = (-INA3221_CYCLE_COUNT);
#if defined(INA3221_CALC_CHARGE_AH) || defined(INA3221_CALC_ENERGY_WH)
INA3221_delta_ms = millis()-INA3221_last_millis;
INA3221_last_millis = millis();
#endif
}
else{
for (int chan = 0 ; enabled_chan ; chan++, enabled_chan>>=1, enabled_chan &= 0xF7) {
if (0x11 & enabled_chan)
Ina3221Read((uint8_t)(_ina3221_current_device), chan);
}
}
}
#ifdef USE_WEBSERVER
// {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
#define INA3221_AL "<td style='text-align:right'>"
const char HTTP_SNS_INA3221_HEADER[] PROGMEM =
"{s}" D_INA3221 "&nbsp;&nbsp;&nbsp;&nbsp;</th>" INA3221_AL D_VOLTAGE " </td><td>&nbsp;</td>" INA3221_AL D_CURRENT " </td><td>&nbsp;</td>" INA3221_AL D_POWERUSAGE
#ifdef INA3221_CALC_CHARGE_AH
"</td><td>&nbsp;</td>" INA3221_AL D_CHARGE
#endif
#ifdef INA3221_CALC_ENERGY_WH
"</td><td>&nbsp;</td>" INA3221_AL D_ENERGY
#endif
"{e}";
const char HTTP_SNS_INA3221_DATA[] PROGMEM =
"{s}%s </th>" INA3221_AL " %*_f " D_UNIT_VOLT " </td><td>&nbsp;</td>" INA3221_AL " %*_f " D_UNIT_AMPERE " </td><td>&nbsp;</td>" INA3221_AL " %*_f " D_UNIT_WATT
#ifdef INA3221_CALC_CHARGE_AH
"</td><td>&nbsp;</td>" INA3221_AL " %*_f " D_UNIT_CHARGE
#endif
#ifdef INA3221_CALC_ENERGY_WH
"</td><td>&nbsp;</td>" INA3221_AL " %*_f " D_UNIT_WATTHOUR
#endif
"{e}";
#endif // USE_WEBSERVER
void Ina3221Show(bool json)
{
char name[FLOATSZ];
// char temp[FLOATSZ];
char voltage[INA3221_NB_CHAN*FLOATSZ+3];
char current[INA3221_NB_CHAN*FLOATSZ+3];
char power[INA3221_NB_CHAN*FLOATSZ+3];
#ifdef INA3221_CALC_CHARGE_AH
char charge_ah[INA3221_NB_CHAN*FLOATSZ+3];
#endif
#ifdef INA3221_CALC_ENERGY_WH
char energy_wh[INA3221_NB_CHAN*FLOATSZ+3];
#endif
float pw = 0.0f;
if (json) {
// data
for (int device=0 ; device < Ina3221count ; device++) {
uint8_t enabled_chan = Ina3221Data[device].enabled_chan;
if (!enabled_chan) continue;
if (Ina3221count > 1){
snprintf_P(name, sizeof(name), PSTR("%s%c%d"), INA3221_TYPE, IndexSeparator(), device +1);
}
else{
snprintf_P(name, sizeof(name), PSTR("%s"), INA3221_TYPE);
}
int32_t count_v = 0, count_i = 0, count_p = 0, count_ah = 0, count_wh = 0;
for (int32_t chan=0 ; enabled_chan; chan++, enabled_chan>>=1, enabled_chan &= 0xF7) {
// if (0x11 & enabled_chan) {
count_v += ext_snprintf_P(&voltage[count_v], sizeof(voltage) - count_v, PSTR("%s%*_f"), (chan>0 ? ",":""), Settings->flag2.voltage_resolution, &Ina3221Data[device].chan[chan].voltage);
count_i += ext_snprintf_P(&current[count_i], sizeof(current) - count_i, PSTR("%s%*_f"), (chan>0 ? ",":""), Settings->flag2.current_resolution, &Ina3221Data[device].chan[chan].current);
pw = Ina3221Data[device].chan[chan].voltage * Ina3221Data[device].chan[chan].current;
count_p += ext_snprintf_P(&power[count_p], sizeof(power) - count_p, PSTR("%s%*_f"), (chan>0 ? ",":""), Settings->flag2.wattage_resolution, &pw);
#ifdef INA3221_CALC_CHARGE_AH
count_ah += ext_snprintf_P(&charge_ah[count_ah], sizeof(charge_ah) - count_ah, PSTR("%s%*_f"), (chan>0 ? ",":""), Settings->flag2.energy_resolution, &Ina3221Data[device].chan[chan].charge_ah);
#endif
#ifdef INA3221_CALC_ENERGY_WH
count_wh += ext_snprintf_P(&energy_wh[count_wh], sizeof(energy_wh) - count_wh, PSTR("%s%*_f"), (chan>0 ? ",":""), Settings->flag2.energy_resolution, &Ina3221Data[device].chan[chan].energy_wh);
#endif
// } //if enabled
} // for channel
ResponseAppend_P(PSTR(",\"%s\":{\"Id\":\"0x%02x\",\"" D_JSON_VOLTAGE "\":[%s],\"" D_JSON_CURRENT "\":[%s],\"" D_JSON_POWERUSAGE "\":[%s]"
#ifdef INA3221_CALC_CHARGE_AH
",\"" D_JSON_CHARGE "\":[%s]"
#endif
#ifdef INA3221_CALC_ENERGY_WH
",\"" D_JSON_ENERGY "\":[%s]"
#endif
"}"),name, Ina3221Data[device].i2caddr, voltage, current, power
#ifdef INA3221_CALC_CHARGE_AH
, charge_ah
#endif
#ifdef INA3221_CALC_ENERGY_WH
, energy_wh
#endif
);
#ifdef USE_DOMOTICZ
if (0 == TasmotaGlobal.tele_period) {
DomoticzSensor(DZ_VOLTAGE, voltage);
DomoticzSensor(DZ_CURRENT, current);
}
#endif // USE_DOMOTICZ
} // for device
} // if json
#ifdef USE_WEBSERVER
else {
// header
WSContentSend_PD(HTTP_SNS_INA3221_HEADER);
// data
for (int device=0 ; device < Ina3221count ; device++) {
uint8_t enabled_chan = Ina3221Data[device].enabled_chan;
for (int chan=0 ; enabled_chan ; chan++, enabled_chan>>=1, enabled_chan &= 0xF7) {
if (0x11 & enabled_chan) {
if (Ina3221count > 1){
snprintf_P(name, sizeof(name), PSTR("%s%c%d:%d"), INA3221_TYPE, IndexSeparator(), device +1, chan);
}
else{
snprintf_P(name, sizeof(name), PSTR("%s:%d"), INA3221_TYPE, chan);
}
pw = Ina3221Data[device].chan[chan].voltage * Ina3221Data[device].chan[chan].current;
WSContentSend_PD(HTTP_SNS_INA3221_DATA, name, Settings->flag2.voltage_resolution, &Ina3221Data[device].chan[chan].voltage, Settings->flag2.current_resolution, &Ina3221Data[device].chan[chan].current, Settings->flag2.wattage_resolution, &pw
#ifdef INA3221_CALC_CHARGE_AH
, Settings->flag2.energy_resolution, &Ina3221Data[device].chan[chan].charge_ah
#endif
#ifdef INA3221_CALC_ENERGY_WH
, Settings->flag2.energy_resolution, &Ina3221Data[device].chan[chan].energy_wh
#endif
);
} // if active
} // for channel
} // for device
}
#endif
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns100(uint32_t function)
{
if (!I2cEnabled(XI2C_72)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
Ina3221Detect();
}
else if (Ina3221Data) {
switch (function) {
case FUNC_COMMAND_SENSOR:
if (XSNS_100 == XdrvMailbox.index) {
result = Ina3221CmndSensor();
}
break;
case FUNC_EVERY_250_MSECOND:
Ina3221Every250ms();
break;
case FUNC_JSON_APPEND:
Ina3221Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Ina3221Show(0);
break;
#endif // USE_WEBSERVER
#ifdef USE_DEEPSLEEP
case FUNC_SAVE_BEFORE_RESTART:
for (uint8_t device; device < Ina3221count ; device++)
Ina3221PowerDown(device);
break;
#endif // USE_DEEPSLEEP }
}
}
return result;
}
#endif // USE_INA3221
#endif // USE_I2C