Tasmota/tasmota/tasmota_xsns_sensor/xsns_12_ads1115.ino

350 lines
15 KiB
C++

/*
xsns_12_ads1115_ada.ino - ADS1115 A/D Converter support for Tasmota
Copyright (C) 2021 Syssi, stefanbode
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_ADS1115
/*********************************************************************************************\
* ADS1115 - 4 channel 16BIT A/D converter
*
* Required library: none but based on Adafruit Industries ADS1015 library
*
* I2C Address: 0x48, 0x49, 0x4A or 0x4B
*
* The ADC input range (or gain) can be changed via the following
* defines, but be careful never to exceed VDD +0.3V max, or to
* exceed the upper and lower limits if you adjust the input range!
* Setting these values incorrectly may destroy your ADC!
* ADS1115
* -------
* ADS1115_REG_CONFIG_PGA_6_144V // 2/3x gain +/- 6.144V 1 bit = 0.1875mV (default)
* ADS1115_REG_CONFIG_PGA_4_096V // 1x gain +/- 4.096V 1 bit = 0.125mV
* ADS1115_REG_CONFIG_PGA_2_048V // 2x gain +/- 2.048V 1 bit = 0.0625mV
* ADS1115_REG_CONFIG_PGA_1_024V // 4x gain +/- 1.024V 1 bit = 0.03125mV
* ADS1115_REG_CONFIG_PGA_0_512V // 8x gain +/- 0.512V 1 bit = 0.015625mV
* ADS1115_REG_CONFIG_PGA_0_256V // 16x gain +/- 0.256V 1 bit = 0.0078125mV
\*********************************************************************************************/
#define XSNS_12 12
#define XI2C_13 13 // See I2CDEVICES.md
#define ADS1115_ADDRESS_ADDR_GND 0x48 // address pin low (GND)
#define ADS1115_ADDRESS_ADDR_VDD 0x49 // address pin high (VCC)
#define ADS1115_ADDRESS_ADDR_SDA 0x4A // address pin tied to SDA pin
#define ADS1115_ADDRESS_ADDR_SCL 0x4B // address pin tied to SCL pin
#define ADS1115_CONVERSIONDELAY (8) // CONVERSION DELAY (in mS)
#define ADS1115_SINGLE_CHANNELS (4)
#define ADS1115_DIFFERENTIAL_CHANNELS (2)
/*======================================================================
POINTER REGISTER
-----------------------------------------------------------------------*/
#define ADS1115_REG_POINTER_MASK (0x03)
#define ADS1115_REG_POINTER_CONVERT (0x00)
#define ADS1115_REG_POINTER_CONFIG (0x01)
#define ADS1115_REG_POINTER_LOWTHRESH (0x02)
#define ADS1115_REG_POINTER_HITHRESH (0x03)
/*======================================================================
CONFIG REGISTER
-----------------------------------------------------------------------*/
#define ADS1115_REG_CONFIG_OS_MASK (0x8000)
#define ADS1115_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1115_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1115_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1115_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1115_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1115_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1115_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1115_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1115_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1115_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1115_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1115_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1115_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1115_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3 (default)
#define ADS1115_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1115_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2
#define ADS1115_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1115_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1115_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1115_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1115_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1115_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1115_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1115_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1115_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1115_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1115_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1115_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1115_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1115_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1115_REG_CONFIG_DR_6000SPS (0x00E0) // 6000 samples per second
#define ADS1115_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1115_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1115_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1115_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1115_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1115_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1115_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1115_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1115_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1115_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1115_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1115_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1115_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1115_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
uint16_t ads1115_ranges[] = { ADS1115_REG_CONFIG_PGA_6_144V, ADS1115_REG_CONFIG_PGA_4_096V, ADS1115_REG_CONFIG_PGA_2_048V, ADS1115_REG_CONFIG_PGA_1_024V, ADS1115_REG_CONFIG_PGA_0_512V, ADS1115_REG_CONFIG_PGA_0_256V };
uint8_t ads1115_addresses[] = { ADS1115_ADDRESS_ADDR_GND, ADS1115_ADDRESS_ADDR_VDD, ADS1115_ADDRESS_ADDR_SDA, ADS1115_ADDRESS_ADDR_SCL };
uint8_t ads1115_count = 0;
uint16_t ads1115_range;
uint8_t ads1115_channels;
struct ADS1115 {
int16_t last_values[4] = { 0,0,0,0 };
uint8_t address;
uint8_t bus;
} Ads1115[4];
//Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_SINGLE);
//Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_CONTIN);
void Ads1115StartComparator(uint32_t device, uint8_t channel, uint16_t mode) {
// Start with default values
uint16_t config = mode |
ADS1115_REG_CONFIG_CQUE_NONE | // Comparator enabled and asserts on 1 match
ADS1115_REG_CONFIG_CLAT_NONLAT | // Non Latching mode
ads1115_range | // ADC Input voltage range (Gain)
ADS1115_REG_CONFIG_CPOL_ACTVLOW | // Alert/Rdy active low (default val)
ADS1115_REG_CONFIG_CMODE_TRAD | // Traditional comparator (default val)
ADS1115_REG_CONFIG_DR_6000SPS; // 6000 samples per second
// Set single-ended or differential input channel
if (ads1115_channels == ADS1115_SINGLE_CHANNELS) {
config |= (ADS1115_REG_CONFIG_MUX_SINGLE_0 + (0x1000 * channel));
} else {
config |= (ADS1115_REG_CONFIG_MUX_DIFF_0_1 + (0x3000 * channel));
}
// Write config register to the ADC
I2cWrite16(Ads1115[device].address, ADS1115_REG_POINTER_CONFIG, config, Ads1115[device].bus);
}
int16_t Ads1115GetConversion(uint32_t device, uint8_t channel) {
Ads1115StartComparator(device, channel, ADS1115_REG_CONFIG_MODE_SINGLE);
// Wait for the conversion to complete
delay(ADS1115_CONVERSIONDELAY);
// Read the conversion results
I2cRead16(Ads1115[device].address, ADS1115_REG_POINTER_CONVERT, Ads1115[device].bus);
Ads1115StartComparator(device, channel, ADS1115_REG_CONFIG_MODE_CONTIN);
delay(ADS1115_CONVERSIONDELAY);
// Read the conversion results
uint16_t res = I2cRead16(Ads1115[device].address, ADS1115_REG_POINTER_CONVERT, Ads1115[device].bus);
return (int16_t)res;
}
/********************************************************************************************/
void Ads1115Detect(void) {
// Set default mode and range
ads1115_channels = ADS1115_SINGLE_CHANNELS;
ads1115_range = ADS1115_REG_CONFIG_PGA_6_144V;
for (uint32_t bus = 0; bus < 2; bus++) {
for (uint32_t i = 0; i < sizeof(ads1115_addresses); i++) {
if (!I2cSetDevice(ads1115_addresses[i], bus)) { continue; }
uint16_t buffer;
if (I2cValidRead16(&buffer, ads1115_addresses[i], ADS1115_REG_POINTER_CONVERT, bus) &&
I2cValidRead16(&buffer, ads1115_addresses[i], ADS1115_REG_POINTER_CONFIG, bus)) {
Ads1115[ads1115_count].address = ads1115_addresses[i];
Ads1115[ads1115_count].bus = bus;
Ads1115StartComparator(ads1115_count, 0, ADS1115_REG_CONFIG_MODE_CONTIN);
I2cSetActiveFound(Ads1115[ads1115_count].address, "ADS1115", Ads1115[ads1115_count].bus);
ads1115_count++;
if (4 == ads1115_count) { return; }
}
}
}
}
void Ads1115Label(char* label, uint32_t maxsize, uint32_t device) {
// Create the identifier of the the selected sensor
// "ADS1115":{"A0":3240,"A1":3235,"A2":3269,"A3":3269}
snprintf_P(label, maxsize, PSTR("ADS1115"));
if (ads1115_count > 1) {
// "ADS1115-48":{"A0":3240,"A1":3235,"A2":3269,"A3":3269},"ADS1115-49":{"A0":3240,"A1":3235,"A2":3269,"A3":3269}
snprintf_P(label, maxsize, PSTR("%s%c%02X"), label, IndexSeparator(), Ads1115[device].address);
#ifdef ESP32
if (TasmotaGlobal.i2c_enabled_2) { // Second bus enabled
uint8_t bus = Ads1115[0].bus;
for (uint32_t i = 1; i < ads1115_count; i++) {
if (bus != Ads1115[i].bus) { // Different busses
// "ADS1115-48-1":{"A0":3240,"A1":3235,"A2":3269,"A3":3269},"ADS1115-48-2":{"A0":3240,"A1":3235,"A2":3269,"A3":3269}
snprintf_P(label, maxsize, PSTR("%s%c%d"), label, IndexSeparator(), Ads1115[device].bus +1);
break;
}
}
}
#endif
}
}
#ifdef USE_RULES
// Check every 250ms if there are relevant changes in any of the analog inputs
// and if so then trigger a message
void AdsEvery250ms(void) {
int16_t value;
for (uint32_t t = 0; t < ads1115_count; t++) {
// collect first wich addresses have changed. We can save on rule processing this way
uint32_t changed = 0;
for (uint32_t i = 0; i < ads1115_channels; i++) {
value = Ads1115GetConversion(t, i);
// Check if value has changed more than 1 percent from last stored value
// we assume that gain is set up correctly, and we could use the whole 16bit result space
if (value >= Ads1115[t].last_values[i] + 327 || value <= Ads1115[t].last_values[i] - 327) {
Ads1115[t].last_values[i] = value;
bitSet(changed, i);
}
}
if (changed) {
char label[16];
Ads1115Label(label, sizeof(label), t);
Response_P(PSTR("{\"%s\":{"), label);
bool first = true;
for (uint32_t i = 0; i < ads1115_channels; i++) {
if (bitRead(changed, i)) {
ResponseAppend_P(PSTR("%s\"A%ddiv10\":%d"), (first) ? "" : ",", i, Ads1115[t].last_values[i]);
first = false;
}
}
ResponseJsonEndEnd();
XdrvRulesProcess(0);
}
}
}
#endif // USE_RULES
void Ads1115Show(bool json) {
int16_t values[4];
for (uint32_t t = 0; t < ads1115_count; t++) {
// AddLog(LOG_LEVEL_INFO, "Logging ADS1115 %02x", Ads1115[t].address);
for (uint32_t i = 0; i < ads1115_channels; i++) {
values[i] = Ads1115GetConversion(t, i);
// AddLog(LOG_LEVEL_INFO, "Logging ADS1115 %02x (%i) = %i", Ads1115[t].address, i, values[i] );
}
char label[16];
Ads1115Label(label, sizeof(label), t);
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{"), label);
for (uint32_t i = 0; i < ads1115_channels; i++) {
ResponseAppend_P(PSTR("%s\"A%d\":%d"), (0 == i) ? "" : ",", i, values[i]);
}
ResponseJsonEnd();
}
#ifdef USE_WEBSERVER
else {
for (uint32_t i = 0; i < ads1115_channels; i++) {
WSContentSend_PD(HTTP_SNS_ANALOG, label, i, values[i]);
}
}
#endif // USE_WEBSERVER
}
}
bool ADS1115_Command(void) {
// Sensor12 D2
// Sensor12 S0
if (XdrvMailbox.data_len > 1) {
UpperCase(XdrvMailbox.data, XdrvMailbox.data);
switch (XdrvMailbox.data[0]) {
case 'D':
ads1115_channels = ADS1115_DIFFERENTIAL_CHANNELS;
break;
case 'S':
ads1115_channels = ADS1115_SINGLE_CHANNELS;
}
// uint32_t range_index = atoi((const char*)XdrvMailbox.data[1]);
uint32_t range_index = atoi((const char*)XdrvMailbox.data +1);
if ((range_index >= 0) && (range_index <= 5)) {
ads1115_range = ads1115_ranges[range_index];
}
}
const char ds[2][13] = { "Differential", "Single ended" };
const uint16_t r[6] = { 6144, 4096, 2048, 1024, 512, 256 };
Response_P("{\"ADS1115\":{\"Settings\":\"%c%u\",\"Mode\":\"%s\",\"Range\":%u,\"Unit\":\"mV\"}}",
ds[(ads1115_channels>>1)-1][0], ads1115_range>>9, ds[(ads1115_channels>>1)-1], r[ads1115_range>>9]);
return true;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns12(uint32_t function)
{
if (!I2cEnabled(XI2C_13)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
Ads1115Detect();
}
else if (ads1115_count) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
AdsEvery250ms();
break;
#endif // USE_RULES
case FUNC_JSON_APPEND:
Ads1115Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Ads1115Show(0);
break;
#endif // USE_WEBSERVER
case FUNC_COMMAND_SENSOR:
if (XSNS_12 == XdrvMailbox.index) {
result = ADS1115_Command();
}
break;
}
}
return result;
}
#endif // USE_ADS1115
#endif // USE_I2C