Tasmota/tasmota/tasmota_xsns_sensor/xsns_29_mcp230xx.ino

979 lines
37 KiB
C++

/*
xsns_29_mcp230xx.ino - Support for I2C MCP23008/MCP23017 GPIO Expander on Tasmota
Copyright (C) 2021 Andre Thomas and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_MCP230xx
/*********************************************************************************************\
MCP23008/17 - I2C GPIO EXPANDER
Docs at https://www.microchip.com/wwwproducts/en/MCP23008
https://www.microchip.com/wwwproducts/en/MCP23017
I2C Address: 0x20 - 0x26 (0x27 is not supported)
\*********************************************************************************************/
#define XSNS_29 29
#define XI2C_22 22 // See I2CDEVICES.md
#ifndef USE_MCP230xx_ADDR
#define USE_MCP230xx_ADDR 0x20 // Enable MCP23008/MCP23017 I2C Address to use (Must be within range 0x20 through 0x27 - set according to your wired setup)
#endif
/*
Default register locations for MCP23008 - They change for MCP23017 in default bank mode
*/
uint8_t MCP230xx_IODIR = 0x00;
uint8_t MCP230xx_GPINTEN = 0x02;
uint8_t MCP230xx_IOCON = 0x05;
uint8_t MCP230xx_GPPU = 0x06;
uint8_t MCP230xx_INTF = 0x07;
uint8_t MCP230xx_INTCAP = 0x08;
uint8_t MCP230xx_GPIO = 0x09;
#ifdef USE_MCP230xx_OUTPUT
uint8_t MCP230xx_OLAT = 0x0A;
#endif // USE_MCP230xx_OUTPUT
uint8_t mcp230xx_type = 0;
uint8_t mcp230xx_pincount = 0;
uint8_t mcp230xx_outpincount = 0;
#ifdef USE_MCP230xx_OUTPUT
uint8_t mcp230xx_outpinmapping[16];
uint8_t mcp230xx_keepout_no_toggle = 0;
#endif
uint8_t mcp230xx_int_en = 0;
uint8_t mcp230xx_int_prio_counter = 0;
uint8_t mcp230xx_int_counter_en = 0;
uint8_t mcp230xx_int_retainer_en = 0;
uint8_t mcp230xx_int_sec_counter = 0;
uint8_t mcp230xx_int_report_defer_counter[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint16_t mcp230xx_int_counter[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t mcp230xx_int_retainer[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // Used to store if an interrupt occured that needs to be retained until teleperiod
unsigned long int_millis[16]; // To keep track of millis() since last interrupt
const char MCP230XX_SENSOR_RESPONSE[] PROGMEM = "{\"Sensor29_D%i\":{\"MODE\":%i,\"PULL_UP\":\"%s\",\"INT_MODE\":\"%s\",\"STATE\":\"%s\"}}";
const char MCP230XX_INTCFG_RESPONSE[] PROGMEM = "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
#ifdef USE_MCP230xx_OUTPUT
const char MCP230XX_CMND_RESPONSE[] PROGMEM = "{\"S29cmnd_D%i\":{\"COMMAND\":\"%s\",\"STATE\":\"%s\"}}";
const char MCP230XX_OUTPUT_RESPONSE[] PROGMEM = "{\"Sensor29_D%i\":{\"MODE\":%i,\"START_UP\":\"%s\",\"STATE\":\"%s\"}}";
#endif // USE_MCP230xx_OUTPUT
void MCP230xx_CheckForIntCounter(void) {
uint8_t en = 0;
for (uint32_t ca=0;ca<16;ca++) {
if (Settings->mcp230xx_config[ca].int_count_en) {
en=1;
}
}
if (!Settings->mcp230xx_int_timer) en=0;
mcp230xx_int_counter_en=en;
if (!mcp230xx_int_counter_en) { // Interrupt counters are disabled, so we clear all the counters
for (uint32_t ca=0;ca<16;ca++) {
mcp230xx_int_counter[ca] = 0;
}
}
}
void MCP230xx_CheckForIntRetainer(void) {
uint8_t en = 0;
for (uint32_t ca=0;ca<16;ca++) {
if (Settings->mcp230xx_config[ca].int_retain_flag) {
en=1;
}
}
mcp230xx_int_retainer_en=en;
if (!mcp230xx_int_retainer_en) { // Interrupt counters are disabled, so we clear all the counters
for (uint32_t ca=0;ca<16;ca++) {
mcp230xx_int_retainer[ca] = 0;
}
}
}
#ifdef USE_MCP230xx_OUTPUT
const char* ConvertNumTxt(uint8_t statu, uint8_t pinmod=0, uint8_t config=0) {
#else // not USE_MCP230xx_OUTPUT
const char* ConvertNumTxt(uint8_t statu, uint8_t pinmod=0) {
#endif // USE_MCP230xx_OUTPUT
#ifdef USE_MCP230xx_OUTPUT
if ((6 == pinmod) && (statu < 2)) { statu = 1-statu; }
if ((config) && (Settings->flag.save_state)) {
return "SAVED";
}
#endif // USE_MCP230xx_OUTPUT
switch (statu) {
case 0:
return "OFF";
break;
case 1:
return "ON";
break;
#ifdef USE_MCP230xx_OUTPUT
case 2:
#ifdef USE_MCP230xx_OUTPUT
if (config) {
return "DEVICE";
} else {
#endif // USE_MCP230xx_OUTPUT
return "TOGGLE";
#ifdef USE_MCP230xx_OUTPUT
}
#endif // USE_MCP230xx_OUTPUT
break;
#endif // USE_MCP230xx_OUTPUT
}
return "";
}
const char* IntModeTxt(uint8_t intmo) {
switch (intmo) {
case 0:
return "ALL";
break;
case 1:
return "EVENT";
break;
case 2:
return "TELE";
break;
case 3:
return "DISABLED";
break;
}
return "";
}
uint8_t MCP230xx_readGPIO(uint8_t port) {
return I2cRead8(USE_MCP230xx_ADDR, MCP230xx_GPIO + port);
}
void MCP230xx_ApplySettings(void)
{
#ifdef USE_MCP230xx_OUTPUT
UpdateDevicesPresent(-mcp230xx_outpincount);
mcp230xx_outpincount = 0;
for (uint32_t idx = 0; idx < mcp230xx_pincount; idx++) {
if (Settings->mcp230xx_config[idx].pinmode >= 5) {
mcp230xx_outpinmapping[mcp230xx_outpincount] = idx;
mcp230xx_outpincount++;
}
int_millis[idx]=millis();
}
UpdateDevicesPresent(mcp230xx_outpincount);
#endif // USE_MCP230xx_OUTPUT
uint8_t int_en = 0;
uint8_t reg_portpins[mcp230xx_type];
for (uint32_t mcp230xx_port = 0; mcp230xx_port < mcp230xx_type; mcp230xx_port++) {
uint8_t reg_gppu = 0;
uint8_t reg_gpinten = 0;
uint8_t reg_iodir = 0xFF;
#ifdef USE_MCP230xx_OUTPUT
reg_portpins[mcp230xx_port] = 0x00;
uint8_t reg_readpins = I2cRead8(USE_MCP230xx_ADDR, MCP230xx_OLAT + mcp230xx_port);
#endif // USE_MCP230xx_OUTPUT
for (uint32_t idx = 0; idx < 8; idx++) {
switch (Settings->mcp230xx_config[idx+(mcp230xx_port*8)].pinmode) {
case 0 ... 1:
reg_iodir |= (1 << idx);
break;
case 2 ... 4:
reg_iodir |= (1 << idx);
reg_gpinten |= (1 << idx);
int_en = 1;
break;
#ifdef USE_MCP230xx_OUTPUT
case 5 ... 6:
reg_iodir &= ~(1 << idx);
if (Settings->flag.save_state) { // SetOption0 - Save power state and use after restart - Firmware configuration wants us to use the last pin state
reg_portpins[mcp230xx_port] |= (Settings->mcp230xx_config[idx+(mcp230xx_port*8)].saved_state << idx);
} else {
if (Settings->mcp230xx_config[idx+(mcp230xx_port*8)].keep_output) { // Read the value to use from the MCP230xx
reg_portpins[mcp230xx_port] |= reg_readpins & (1 << idx);
mcp230xx_keepout_no_toggle++;
}
else if (Settings->mcp230xx_config[idx+(mcp230xx_port*8)].pullup) {
reg_portpins[mcp230xx_port] |= (1 << idx);
}
}
break;
#endif // USE_MCP230xx_OUTPUT
default:
break;
}
#ifdef USE_MCP230xx_OUTPUT
if ((Settings->mcp230xx_config[idx+(mcp230xx_port*8)].pullup) && (Settings->mcp230xx_config[idx+(mcp230xx_port*8)].pinmode < 5)) {
reg_gppu |= (1 << idx);
}
#else // not USE_MCP230xx_OUTPUT
if (Settings->mcp230xx_config[idx+(mcp230xx_port*8)].pullup) {
reg_gppu |= (1 << idx);
}
#endif // USE_MCP230xx_OUTPUT
}
I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_GPPU+mcp230xx_port, reg_gppu);
I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_GPINTEN+mcp230xx_port, reg_gpinten);
#ifdef USE_MCP230xx_OUTPUT
I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_IODIR+mcp230xx_port, reg_iodir);
#endif // USE_MCP230xx_OUTPUT
}
#ifdef USE_MCP230xx_OUTPUT
for (uint32_t mcp230xx_port = 0; mcp230xx_port < mcp230xx_type; mcp230xx_port++) {
for (uint32_t idx = 0; idx < mcp230xx_outpincount; idx++) {
if (mcp230xx_port ? mcp230xx_outpinmapping[idx] > 7 : mcp230xx_outpinmapping[idx] < 8) {
uint8_t relay_no = TasmotaGlobal.devices_present - mcp230xx_outpincount + idx + 1;
if (mcp230xx_keepout_no_toggle >0) mcp230xx_keepout_no_toggle--;
ExecuteCommandPower(relay_no, ((reg_portpins[mcp230xx_port] >> (mcp230xx_outpinmapping[idx] & 7)) & 1) + 8, SRC_IGNORE);
}
}
}
#endif // USE_MCP230xx_OUTPUT
mcp230xx_int_en = int_en;
MCP230xx_CheckForIntCounter(); // update register on whether or not we should be counting interrupts
MCP230xx_CheckForIntRetainer(); // update register on whether or not we should be retaining interrupt events for teleperiod
}
void MCP230xx_Detect(void)
{
if (!I2cSetDevice(USE_MCP230xx_ADDR)) { return; }
uint8_t buffer;
I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_IOCON, 0x80); // attempt to set bank mode - this will only work on MCP23017, so its the best way to detect the different chips 23008 vs 23017
if (I2cValidRead8(&buffer, USE_MCP230xx_ADDR, MCP230xx_IOCON)) {
if (0x00 == buffer) {
mcp230xx_type = 1; // We have a MCP23008
I2cSetActiveFound(USE_MCP230xx_ADDR, "MCP23008");
mcp230xx_pincount = 8;
MCP230xx_ApplySettings();
} else {
if (0x80 == buffer) {
mcp230xx_type = 2; // We have a MCP23017
I2cSetActiveFound(USE_MCP230xx_ADDR, "MCP23017");
mcp230xx_pincount = 16;
// Reset bank mode to 0
I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_IOCON, 0x00);
// Update register locations for MCP23017
MCP230xx_GPINTEN = 0x04;
MCP230xx_GPPU = 0x0C;
MCP230xx_INTF = 0x0E;
MCP230xx_INTCAP = 0x10;
MCP230xx_GPIO = 0x12;
#ifdef USE_MCP230xx_OUTPUT
MCP230xx_OLAT = 0x14;
#endif // USE_MCP230xx_OUTPUT
MCP230xx_ApplySettings();
}
}
}
}
void MCP230xx_CheckForInterrupt(void) {
uint8_t intf;
uint8_t mcp230xx_intcap = 0;
uint8_t report_int;
for (uint32_t mcp230xx_port = 0; mcp230xx_port < mcp230xx_type; mcp230xx_port++) {
if (I2cValidRead8(&intf,USE_MCP230xx_ADDR,MCP230xx_INTF+mcp230xx_port)) {
if (intf > 0) {
if (I2cValidRead8(&mcp230xx_intcap, USE_MCP230xx_ADDR, MCP230xx_INTCAP+mcp230xx_port)) {
for (uint32_t intp = 0; intp < 8; intp++) {
if ((intf >> intp) & 0x01) { // we know which pin caused interrupt
report_int = 0;
if (Settings->mcp230xx_config[intp+(mcp230xx_port*8)].pinmode > 1) {
switch (Settings->mcp230xx_config[intp+(mcp230xx_port*8)].pinmode) {
case 2:
report_int = 1;
break;
case 3:
if (((mcp230xx_intcap >> intp) & 0x01) == 0) report_int = 1; // Int on LOW
break;
case 4:
if (((mcp230xx_intcap >> intp) & 0x01) == 1) report_int = 1; // Int on HIGH
break;
default:
break;
}
// Check for interrupt counter
if ((mcp230xx_int_counter_en) && (report_int)) { // We may have some counting to do
if (Settings->mcp230xx_config[intp+(mcp230xx_port*8)].int_count_en) { // Indeed, for this pin
mcp230xx_int_counter[intp+(mcp230xx_port*8)]++;
}
}
// check for interrupt defer on this pin
if (report_int) {
if (Settings->mcp230xx_config[intp+(mcp230xx_port*8)].int_report_defer) {
mcp230xx_int_report_defer_counter[intp+(mcp230xx_port*8)]++;
if (mcp230xx_int_report_defer_counter[intp+(mcp230xx_port*8)] >= Settings->mcp230xx_config[intp+(mcp230xx_port*8)].int_report_defer) {
mcp230xx_int_report_defer_counter[intp+(mcp230xx_port*8)]=0;
} else {
report_int = 0; // defer int report for now
}
}
}
// check if interrupt retain is used, if it is for this pin then we do not report immediately as it will be reported in teleperiod
if (report_int) {
if (Settings->mcp230xx_config[intp+(mcp230xx_port*8)].int_retain_flag) {
mcp230xx_int_retainer[intp+(mcp230xx_port*8)] = 1;
report_int = 0; // do not report for now
}
}
if (Settings->mcp230xx_config[intp+(mcp230xx_port*8)].int_count_en) { // We do not want to report via tele or event if counting is enabled
report_int = 0;
}
if (report_int) {
bool int_tele = false;
bool int_event = false;
unsigned long millis_now = millis();
unsigned long millis_since_last_int = millis_now - int_millis[intp+(mcp230xx_port*8)];
int_millis[intp+(mcp230xx_port*8)]=millis_now;
switch (Settings->mcp230xx_config[intp+(mcp230xx_port*8)].int_report_mode) {
case 0:
int_tele=true;
int_event=true;
break;
case 1:
int_event=true;
break;
case 2:
int_tele=true;
break;
}
if (int_tele) {
ResponseTime_P(PSTR(",\"MCP230XX_INT\":{\"D%i\":%i,\"MS\":%lu}}"),
intp+(mcp230xx_port*8), ((mcp230xx_intcap >> intp) & 0x01),millis_since_last_int);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("MCP230XX_INT"));
if (Settings->flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/SENSOR in addition to stat/%topic%/RESULT
MqttPublishSensor();
}
}
if (int_event) {
char command[19]; // Theoretical max = 'event MCPINT_D16=1' so 18 + 1 (for the \n)
sprintf(command,"event MCPINT_D%i=%i",intp+(mcp230xx_port*8),((mcp230xx_intcap >> intp) & 0x01));
ExecuteCommand(command, SRC_RULE);
}
}
}
}
}
}
}
}
}
}
void MCP230xx_Show(bool json)
{
if (json) {
uint8_t gpio = MCP230xx_readGPIO(0);
ResponseAppend_P(PSTR(",\"MCP230XX\":{\"D0\":%i,\"D1\":%i,\"D2\":%i,\"D3\":%i,\"D4\":%i,\"D5\":%i,\"D6\":%i,\"D7\":%i"),
(gpio>>0)&1,(gpio>>1)&1,(gpio>>2)&1,(gpio>>3)&1,(gpio>>4)&1,(gpio>>5)&1,(gpio>>6)&1,(gpio>>7)&1);
uint8_t gpiob = 0;
if (2 == mcp230xx_type) {
gpiob = MCP230xx_readGPIO(1);
ResponseAppend_P(PSTR(",\"D8\":%i,\"D9\":%i,\"D10\":%i,\"D11\":%i,\"D12\":%i,\"D13\":%i,\"D14\":%i,\"D15\":%i"),
(gpiob>>0)&1, (gpiob>>1)&1, (gpiob>>2)&1, (gpiob>>3)&1, (gpiob>>4)&1, (gpiob>>5)&1, (gpiob>>6)&1, (gpiob>>7)&1);
}
#ifdef USE_MCP230xx_OUTPUT
uint8_t outputcount = 0;
for (uint32_t pinx = 0; pinx < mcp230xx_pincount; pinx++) {
if (Settings->mcp230xx_config[pinx].pinmode >= 5) { outputcount++; }
}
if (outputcount) {
uint16_t gpiototal = ((uint16_t)gpiob << 8) | gpio;
ResponseAppend_P(PSTR(",\"OUT\":{"));
char stt[7];
bool first = true;
for (uint32_t pinx = 0; pinx < mcp230xx_pincount; pinx++) {
if (Settings->mcp230xx_config[pinx].pinmode >= 5) {
sprintf(stt, ConvertNumTxt(((gpiototal>>pinx)&1), Settings->mcp230xx_config[pinx].pinmode));
ResponseAppend_P(PSTR("%s\"OUT_D%i\":\"%s\""), (first) ? "" : ",", pinx, stt);
first = false;
}
}
ResponseAppend_P(PSTR("}"));
}
#endif // USE_MCP230xx_OUTPUT
ResponseJsonEnd();
}
}
#ifdef USE_MCP230xx_OUTPUT
void MCP230xx_SetOutPin(uint8_t pin,uint8_t pinstate) {
uint8_t portpins;
uint8_t port = 0;
uint8_t pinmo = Settings->mcp230xx_config[pin].pinmode;
uint8_t interlock = Settings->flag.interlock; // CMND_INTERLOCK - Enable/disable interlock
int pinadd = (pin % 2)+1-(3*(pin % 2)); //check if pin is odd or even and convert to 1 (if even) or -1 (if odd)
char cmnd[7], stt[4];
if (pin > 7) { port = 1; }
portpins = MCP230xx_readGPIO(port);
if (pinstate < 2) {
if (pinstate) portpins |= (1 << (pin-(port*8))); else portpins &= ~(1 << (pin-(port*8)));
} else {
portpins ^= (1 << (pin-(port*8)));
}
I2cWrite8(USE_MCP230xx_ADDR, MCP230xx_GPIO + port, portpins);
if (Settings->flag.save_state) { // SetOption0 - Save power state and use after restart - Firmware configured to save last known state in settings
Settings->mcp230xx_config[pin].saved_state=(portpins>>(pin-(port*8))&1)^(pinmo-5);
Settings->mcp230xx_config[pin+pinadd].saved_state=(portpins>>(pin+pinadd-(port*8))&1)^(pinmo-5);
}
sprintf(cmnd,ConvertNumTxt(pinstate, pinmo));
sprintf(stt,ConvertNumTxt((portpins >> (pin-(port*8))&1), pinmo));
if (interlock && (pinmo == Settings->mcp230xx_config[pin+pinadd].pinmode)) {
char stt1[4];
sprintf(stt1,ConvertNumTxt((portpins >> (pin+pinadd-(port*8))&1), pinmo));
Response_P(PSTR("{\"S29cmnd_D%i\":{\"COMMAND\":\"%s\",\"STATE\":\"%s\"},\"S29cmnd_D%i\":{\"STATE\":\"%s\"}}"),pin, cmnd, stt, pin+pinadd, stt1);
} else {
Response_P(MCP230XX_CMND_RESPONSE, pin, cmnd, stt);
}
}
#endif // USE_MCP230xx_OUTPUT
void MCP230xx_Reset(uint8_t pinmode) {
uint8_t pullup = 0;
if ((pinmode > 1) && (pinmode < 5)) { pullup=1; }
for (uint32_t pinx=0;pinx<16;pinx++) {
Settings->mcp230xx_config[pinx].pinmode=pinmode;
Settings->mcp230xx_config[pinx].pullup=pullup;
Settings->mcp230xx_config[pinx].saved_state=0;
if ((pinmode > 1) && (pinmode < 5)) {
Settings->mcp230xx_config[pinx].int_report_mode=0; // Enabled for ALL by default
} else {
Settings->mcp230xx_config[pinx].int_report_mode=3; // Disabled for pinmode 1, 5 and 6 (No interrupts there)
}
Settings->mcp230xx_config[pinx].int_report_defer=0; // Disabled
Settings->mcp230xx_config[pinx].int_count_en=0; // Disabled by default
Settings->mcp230xx_config[pinx].int_retain_flag=0; // Disabled by default
Settings->mcp230xx_config[pinx].keep_output=0; // Disabled by default
Settings->mcp230xx_config[pinx].spare14=0;
Settings->mcp230xx_config[pinx].spare15=0;
}
Settings->mcp230xx_int_prio = 0; // Once per FUNC_EVERY_50_MSECOND callback
Settings->mcp230xx_int_timer = 0;
MCP230xx_ApplySettings();
#ifdef USE_MCP230xx_OUTPUT
if (pinmode > 4) {
char startuptxt[7];
sprintf(startuptxt,ConvertNumTxt(pullup, 0, 1));
Response_P(MCP230XX_OUTPUT_RESPONSE,99,pinmode,startuptxt,startuptxt);
} else {
#endif // USE_MCP230xx_OUTPUT
char pulluptxt[7];
char intmodetxt[9];
sprintf(pulluptxt,ConvertNumTxt(pullup));
uint8_t intmode = 3;
if ((pinmode > 1) && (pinmode < 5)) { intmode = 0; }
sprintf(intmodetxt,IntModeTxt(intmode));
Response_P(MCP230XX_SENSOR_RESPONSE,99,pinmode,pulluptxt,intmodetxt,"");
#ifdef USE_MCP230xx_OUTPUT
}
#endif // USE_MCP230xx_OUTPUT
}
bool MCP230xx_Command(void)
{
bool serviced = true;
bool validpin = false;
uint8_t paramcount = 0;
if (XdrvMailbox.data_len > 0) {
paramcount=1;
} else {
serviced = false;
return serviced;
}
char argument[XdrvMailbox.data_len];
for (uint32_t ca=0;ca<XdrvMailbox.data_len;ca++) {
if ((' ' == XdrvMailbox.data[ca]) || ('=' == XdrvMailbox.data[ca])) { XdrvMailbox.data[ca] = ','; }
if (',' == XdrvMailbox.data[ca]) { paramcount++; }
}
UpperCase(XdrvMailbox.data,XdrvMailbox.data);
if (!strcmp(ArgV(argument, 1),"RESET")) { MCP230xx_Reset(1); return serviced; }
if (!strcmp(ArgV(argument, 1),"RESET1")) { MCP230xx_Reset(1); return serviced; }
if (!strcmp(ArgV(argument, 1),"RESET2")) { MCP230xx_Reset(2); return serviced; }
if (!strcmp(ArgV(argument, 1),"RESET3")) { MCP230xx_Reset(3); return serviced; }
if (!strcmp(ArgV(argument, 1),"RESET4")) { MCP230xx_Reset(4); return serviced; }
#ifdef USE_MCP230xx_OUTPUT
if (!strcmp(ArgV(argument, 1),"RESET5")) { MCP230xx_Reset(5); return serviced; }
if (!strcmp(ArgV(argument, 1),"RESET6")) { MCP230xx_Reset(6); return serviced; }
#endif // USE_MCP230xx_OUTPUT
if (!strcmp(ArgV(argument, 1),"INTPRI")) {
if (paramcount > 1) {
uint8_t intpri = atoi(ArgV(argument, 2));
if ((intpri >= 0) && (intpri <= 20)) {
Settings->mcp230xx_int_prio = intpri;
Response_P(MCP230XX_INTCFG_RESPONSE,"PRI",99,Settings->mcp230xx_int_prio); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
}
} else { // No parameter was given for INTPRI so we return the current configured value
Response_P(MCP230XX_INTCFG_RESPONSE,"PRI",99,Settings->mcp230xx_int_prio); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
}
}
if (!strcmp(ArgV(argument, 1),"INTTIMER")) {
if (paramcount > 1) {
uint8_t inttim = atoi(ArgV(argument, 2));
if ((inttim >= 0) && (inttim <= 3600)) {
Settings->mcp230xx_int_timer = inttim;
MCP230xx_CheckForIntCounter(); // update register on whether or not we should be counting interrupts
Response_P(MCP230XX_INTCFG_RESPONSE,"TIMER",99,Settings->mcp230xx_int_timer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
}
} else { // No parameter was given for INTTIM so we return the current configured value
Response_P(MCP230XX_INTCFG_RESPONSE,"TIMER",99,Settings->mcp230xx_int_timer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
}
}
if (!strcmp(ArgV(argument, 1),"INTDEF")) {
if (paramcount > 1) {
uint8_t pin = atoi(ArgV(argument, 2));
if (pin < mcp230xx_pincount) {
if (pin == 0) {
if (!strcmp(ArgV(argument, 2), "0")) validpin=true;
} else {
validpin = true;
}
}
if (validpin) {
if (paramcount > 2) {
uint8_t intdef = atoi(ArgV(argument, 3));
if ((intdef >= 0) && (intdef <= 15)) {
Settings->mcp230xx_config[pin].int_report_defer=intdef;
if (Settings->mcp230xx_config[pin].int_count_en) {
Settings->mcp230xx_config[pin].int_count_en=0;
MCP230xx_CheckForIntCounter();
AddLog(LOG_LEVEL_INFO, PSTR("*** WARNING *** - Disabled INTCNT for pin D%i"),pin);
}
Response_P(MCP230XX_INTCFG_RESPONSE,"DEF",pin,Settings->mcp230xx_config[pin].int_report_defer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
} else {
serviced=false;
return serviced;
}
} else {
Response_P(MCP230XX_INTCFG_RESPONSE,"DEF",pin,Settings->mcp230xx_config[pin].int_report_defer); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
}
}
serviced = false;
return serviced;
} else {
serviced = false;
return serviced;
}
}
if (!strcmp(ArgV(argument, 1),"INTCNT")) {
if (paramcount > 1) {
uint8_t pin = atoi(ArgV(argument, 2));
if (pin < mcp230xx_pincount) {
if (pin == 0) {
if (!strcmp(ArgV(argument, 2), "0")) validpin=true;
} else {
validpin = true;
}
}
if (validpin) {
if (paramcount > 2) {
uint8_t intcnt = atoi(ArgV(argument, 3));
if ((intcnt >= 0) && (intcnt <= 1)) {
Settings->mcp230xx_config[pin].int_count_en=intcnt;
if (Settings->mcp230xx_config[pin].int_report_defer) {
Settings->mcp230xx_config[pin].int_report_defer=0;
AddLog(LOG_LEVEL_INFO, PSTR("*** WARNING *** - Disabled INTDEF for pin D%i"),pin);
}
if (Settings->mcp230xx_config[pin].int_report_mode < 3) {
Settings->mcp230xx_config[pin].int_report_mode=3;
AddLog(LOG_LEVEL_INFO, PSTR("*** WARNING *** - Disabled immediate interrupt/telemetry reporting for pin D%i"),pin);
}
if ((Settings->mcp230xx_config[pin].int_count_en) && (!Settings->mcp230xx_int_timer)) {
AddLog(LOG_LEVEL_INFO, PSTR("*** WARNING *** - INTCNT enabled for pin D%i but global INTTIMER is disabled!"),pin);
}
MCP230xx_CheckForIntCounter(); // update register on whether or not we should be counting interrupts
Response_P(MCP230XX_INTCFG_RESPONSE,"CNT",pin,Settings->mcp230xx_config[pin].int_count_en); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
} else {
serviced=false;
return serviced;
}
} else {
Response_P(MCP230XX_INTCFG_RESPONSE,"CNT",pin,Settings->mcp230xx_config[pin].int_count_en); // "{\"MCP230xx_INT%s\":{\"D_%i\":%i}}";
return serviced;
}
}
serviced = false;
return serviced;
} else {
serviced = false;
return serviced;
}
}
if (!strcmp(ArgV(argument, 1),"INTRETAIN")) {
if (paramcount > 1) {
uint8_t pin = atoi(ArgV(argument, 2));
if (pin < mcp230xx_pincount) {
if (pin == 0) {
if (!strcmp(ArgV(argument, 2), "0")) validpin=true;
} else {
validpin = true;
}
}
if (validpin) {
if (paramcount > 2) {
uint8_t int_retain = atoi(ArgV(argument, 3));
if ((int_retain >= 0) && (int_retain <= 1)) {
Settings->mcp230xx_config[pin].int_retain_flag=int_retain;
Response_P(MCP230XX_INTCFG_RESPONSE,"INT_RETAIN",pin,Settings->mcp230xx_config[pin].int_retain_flag);
MCP230xx_CheckForIntRetainer();
return serviced;
} else {
serviced=false;
return serviced;
}
} else {
Response_P(MCP230XX_INTCFG_RESPONSE,"INT_RETAIN",pin,Settings->mcp230xx_config[pin].int_retain_flag);
return serviced;
}
}
serviced = false;
return serviced;
} else {
serviced = false;
return serviced;
}
}
uint8_t pin = atoi(ArgV(argument, 1));
if (pin < mcp230xx_pincount) {
if (0 == pin) {
if (!strcmp(ArgV(argument, 1), "0")) validpin=true;
} else {
validpin=true;
}
}
if (validpin && (paramcount > 1)) {
if (!strcmp(ArgV(argument, 2), "?")) {
uint8_t port = 0;
if (pin > 7) { port = 1; }
uint8_t portdata = MCP230xx_readGPIO(port);
char pulluptxtr[7],pinstatustxtr[7];
uint8_t pinmod = Settings->mcp230xx_config[pin].pinmode;
#ifdef USE_MCP230xx_OUTPUT
if (pinmod > 4) {
sprintf(pulluptxtr,ConvertNumTxt(Settings->mcp230xx_config[pin].pullup | (Settings->mcp230xx_config[pin].keep_output << 1), 0, 1));
sprintf(pinstatustxtr,ConvertNumTxt(portdata>>(pin-(port*8))&1,pinmod));
Response_P(MCP230XX_OUTPUT_RESPONSE,pin,pinmod,pulluptxtr,pinstatustxtr);
} else {
#endif //USE_MCP230xx_OUTPUT
char intmodetxt[9];
sprintf(intmodetxt,IntModeTxt(Settings->mcp230xx_config[pin].int_report_mode));
sprintf(pulluptxtr,ConvertNumTxt(Settings->mcp230xx_config[pin].pullup | (Settings->mcp230xx_config[pin].keep_output << 1)));
sprintf(pinstatustxtr,ConvertNumTxt(portdata>>(pin-(port*8))&1));
Response_P(MCP230XX_SENSOR_RESPONSE,pin,pinmod,pulluptxtr,intmodetxt,pinstatustxtr);
#ifdef USE_MCP230xx_OUTPUT
}
#endif //USE_MCP230xx_OUTPUT
return serviced;
}
#ifdef USE_MCP230xx_OUTPUT
if (Settings->mcp230xx_config[pin].pinmode >= 5 && paramcount == 2) { // Changing output value
uint8_t pincmd = Settings->mcp230xx_config[pin].pinmode - 5;
uint8_t relay_no = 0;
for (relay_no = 0; relay_no < mcp230xx_pincount ; relay_no ++) {
if ( mcp230xx_outpinmapping[relay_no] == pin) break;
}
relay_no = TasmotaGlobal.devices_present - mcp230xx_outpincount + relay_no +1;
if ((!strcmp(ArgV(argument, 2), "ON")) || (!strcmp(ArgV(argument, 2), "1"))) {
ExecuteCommandPower(relay_no, 1, SRC_IGNORE);
return serviced;
}
if ((!strcmp(ArgV(argument, 2), "OFF")) || (!strcmp(ArgV(argument, 2), "0"))) {
ExecuteCommandPower(relay_no, 0, SRC_IGNORE);
return serviced;
}
if ((!strcmp(ArgV(argument, 2), "T")) || (!strcmp(ArgV(argument, 2), "2"))) {
ExecuteCommandPower(relay_no, 2, SRC_IGNORE);
return serviced;
}
}
#endif // USE_MCP230xx_OUTPUT
uint8_t pinmode = 0;
uint8_t pullup = 0;
uint8_t intmode = 0;
if (paramcount > 1) {
pinmode = atoi(ArgV(argument, 2));
}
if (paramcount > 2) {
pullup = atoi(ArgV(argument, 3));
}
if (paramcount > 3) {
intmode = atoi(ArgV(argument, 4));
}
#ifdef USE_MCP230xx_OUTPUT
if ((pin < mcp230xx_pincount) && (((pinmode > 0) && (pinmode < 5) && (pullup < 2)) || ((pinmode > 4) && (pinmode < 7) && (pullup < 3))) && (paramcount > 2)) {
#else // not use OUTPUT
if ((pin < mcp230xx_pincount) && (pinmode > 0) && (pinmode < 5) && (pullup < 2) && (paramcount > 2)) {
#endif // USE_MCP230xx_OUTPUT
Settings->mcp230xx_config[pin].pinmode=pinmode;
Settings->mcp230xx_config[pin].pullup=pullup & 1;
Settings->mcp230xx_config[pin].keep_output=pullup >> 1;
if ((pinmode > 1) && (pinmode < 5)) {
if ((intmode >= 0) && (intmode <= 3)) {
Settings->mcp230xx_config[pin].int_report_mode=intmode;
}
} else {
Settings->mcp230xx_config[pin].int_report_mode=3; // Int mode not valid for pinmodes other than 2 through 4
}
MCP230xx_ApplySettings();
uint8_t port = 0;
if (pin > 7) { port = 1; }
uint8_t portdata = MCP230xx_readGPIO(port);
char pulluptxtr[7],pinstatustxtr[7];
uint8_t pinmod = Settings->mcp230xx_config[pin].pinmode;
#ifdef USE_MCP230xx_OUTPUT
if (pinmod > 4) {
sprintf(pulluptxtr,ConvertNumTxt(Settings->mcp230xx_config[pin].pullup | (Settings->mcp230xx_config[pin].keep_output << 1), 0, 1));
sprintf(pinstatustxtr,ConvertNumTxt(portdata>>(pin-(port*8))&1,pinmod));
Response_P(MCP230XX_OUTPUT_RESPONSE,pin,pinmod,pulluptxtr,pinstatustxtr);
} else {
#endif //USE_MCP230xx_OUTPUT
char intmodetxt[9];
sprintf(intmodetxt,IntModeTxt(Settings->mcp230xx_config[pin].int_report_mode));
sprintf(pulluptxtr,ConvertNumTxt(Settings->mcp230xx_config[pin].pullup | (Settings->mcp230xx_config[pin].keep_output << 1)));
sprintf(pinstatustxtr,ConvertNumTxt(portdata>>(pin-(port*8))&1));
Response_P(MCP230XX_SENSOR_RESPONSE,pin,pinmod,pulluptxtr,intmodetxt,pinstatustxtr);
#ifdef USE_MCP230xx_OUTPUT
}
#endif //USE_MCP230xx_OUTPUT
/* char pulluptxtc[7], pinstatustxtc[7];
char intmodetxt[9];
sprintf(pulluptxtc,ConvertNumTxt(pullup));
sprintf(intmodetxt,IntModeTxt(Settings->mcp230xx_config[pin].int_report_mode));
#ifdef USE_MCP230xx_OUTPUT
sprintf(pinstatustxtc,ConvertNumTxt(portdata>>(pin-(port*8))&1,Settings->mcp230xx_config[pin].pinmode));
#else // not USE_MCP230xx_OUTPUT
sprintf(pinstatustxtc,ConvertNumTxt(portdata>>(pin-(port*8))&1));
#endif // USE_MCP230xx_OUTPUT
Response_P(MCP230XX_SENSOR_RESPONSE,pin,pinmode,pulluptxtc,intmodetxt,pinstatustxtc); */
return serviced;
}
} else {
serviced=false; // no valid pin was used
return serviced;
}
return serviced;
}
#ifdef USE_WEBSERVER
#ifdef USE_MCP230xx_OUTPUT
#ifdef USE_MCP230xx_DISPLAYOUTPUT
const char HTTP_SNS_MCP230xx_OUTPUT[] PROGMEM = "{s}MCP230XX D%d{m}%s{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
void MCP230xx_UpdateWebData(void)
{
uint8_t gpio1 = MCP230xx_readGPIO(0);
uint8_t gpio2 = 0;
if (2 == mcp230xx_type) {
gpio2 = MCP230xx_readGPIO(1);
}
uint16_t gpio = (gpio2 << 8) + gpio1;
for (uint32_t pin = 0; pin < mcp230xx_pincount; pin++) {
if (Settings->mcp230xx_config[pin].pinmode >= 5) {
char stt[7];
sprintf(stt,ConvertNumTxt((gpio>>pin)&1,Settings->mcp230xx_config[pin].pinmode));
WSContentSend_PD(HTTP_SNS_MCP230xx_OUTPUT, pin, stt);
}
}
}
#endif // USE_MCP230xx_DISPLAYOUTPUT
#endif // USE_MCP230xx_OUTPUT
#endif // USE_WEBSERVER
/*
#ifdef USE_MCP230xx_OUTPUT
void MCP230xx_OutputTelemetry(void)
{
uint8_t outputcount = 0;
uint16_t gpiototal = 0;
uint8_t gpioa = 0;
uint8_t gpiob = 0;
gpioa=MCP230xx_readGPIO(0);
if (2 == mcp230xx_type) { gpiob=MCP230xx_readGPIO(1); }
gpiototal=((uint16_t)gpiob << 8) | gpioa;
for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) {
if (Settings->mcp230xx_config[pinx].pinmode >= 5) outputcount++;
}
if (outputcount) {
char stt[7];
ResponseTime_P(PSTR(",\"MCP230_OUT\":{"));
for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) {
if (Settings->mcp230xx_config[pinx].pinmode >= 5) {
sprintf(stt,ConvertNumTxt(((gpiototal>>pinx)&1),Settings->mcp230xx_config[pinx].pinmode));
ResponseAppend_P(PSTR("\"OUT_D%i\":\"%s\","),pinx,stt);
}
}
ResponseAppend_P(PSTR("\"END\":1}}"));
MqttPublishTeleSensor();
}
}
#endif // USE_MCP230xx_OUTPUT
*/
void MCP230xx_Interrupt_Counter_Report(void) {
ResponseTime_P(PSTR(",\"MCP230_INTTIMER\":{"));
bool first = true;
for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) {
if (Settings->mcp230xx_config[pinx].int_count_en) { // Counting is enabled for this pin so we add to report
ResponseAppend_P(PSTR("%s\"INTCNT_D%i\":%i,"), (first) ? "" : "?", pinx, mcp230xx_int_counter[pinx]);
first = false;
mcp230xx_int_counter[pinx]=0;
}
}
ResponseAppend_P(PSTR("}}"));
MqttPublishTeleSensor();
mcp230xx_int_sec_counter = 0;
}
void MCP230xx_Interrupt_Retain_Report(void) {
uint16_t retainresult = 0;
ResponseTime_P(PSTR(",\"MCP_INTRETAIN\":{"));
for (uint32_t pinx = 0;pinx < mcp230xx_pincount;pinx++) {
if (Settings->mcp230xx_config[pinx].int_retain_flag) {
ResponseAppend_P(PSTR("\"D%i\":%i,"),pinx,mcp230xx_int_retainer[pinx]);
retainresult |= (((mcp230xx_int_retainer[pinx])&1) << pinx);
mcp230xx_int_retainer[pinx]=0;
}
}
ResponseAppend_P(PSTR("\"Value\":%u}}"),retainresult);
MqttPublishTeleSensor();
}
#ifdef USE_MCP230xx_OUTPUT
void MCP230xx_SwitchRelay() {
for (uint32_t i = TasmotaGlobal.devices_present - mcp230xx_outpincount; i < TasmotaGlobal.devices_present; i++) {
uint8_t pin = mcp230xx_outpinmapping[i - (TasmotaGlobal.devices_present - mcp230xx_outpincount)];
uint8_t pincmd = Settings->mcp230xx_config[pin].pinmode - 5;
uint8_t relay_state = bitRead(XdrvMailbox.index, i);
if (mcp230xx_keepout_no_toggle == 0 || !Settings->mcp230xx_config[pin].keep_output) {
switch (relay_state) {
case 1:
MCP230xx_SetOutPin(pin,1-pincmd);
break;
case 0:
MCP230xx_SetOutPin(pin,pincmd);
break;
}
}
}
}
#endif // USE_MCP230xx_OUTPUT
/*********************************************************************************************\
Interface
\*********************************************************************************************/
bool Xsns29(uint32_t function)
{
if (!I2cEnabled(XI2C_22)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
MCP230xx_Detect();
}
else if (mcp230xx_type) {
switch (function) {
case FUNC_EVERY_50_MSECOND:
if (mcp230xx_int_en) { // Only check for interrupts if its enabled on one of the pins
mcp230xx_int_prio_counter++;
if ((mcp230xx_int_prio_counter) >= (Settings->mcp230xx_int_prio)) {
MCP230xx_CheckForInterrupt();
mcp230xx_int_prio_counter=0;
}
}
break;
case FUNC_EVERY_SECOND:
if (mcp230xx_int_counter_en) {
mcp230xx_int_sec_counter++;
if (mcp230xx_int_sec_counter >= Settings->mcp230xx_int_timer) { // Interrupt counter interval reached, lets report
MCP230xx_Interrupt_Counter_Report();
}
}
if (TasmotaGlobal.tele_period == 0) {
if (mcp230xx_int_retainer_en) { // We have pins configured for interrupt retain reporting
MCP230xx_Interrupt_Retain_Report();
}
/*
#ifdef USE_MCP230xx_OUTPUT
MCP230xx_OutputTelemetry();
#endif // USE_MCP230xx_OUTPUT
*/
}
break;
#ifdef USE_MCP230xx_OUTPUT
case FUNC_SET_POWER:
MCP230xx_SwitchRelay();
break;
#endif // USE_MCP230xx_OUTPUT
case FUNC_JSON_APPEND:
MCP230xx_Show(1);
break;
case FUNC_COMMAND_SENSOR:
if (XSNS_29 == XdrvMailbox.index) {
result = MCP230xx_Command();
}
break;
#ifdef USE_WEBSERVER
#ifdef USE_MCP230xx_OUTPUT
#ifdef USE_MCP230xx_DISPLAYOUTPUT
case FUNC_WEB_SENSOR:
MCP230xx_UpdateWebData();
break;
#endif // USE_MCP230xx_DISPLAYOUTPUT
#endif // USE_MCP230xx_OUTPUT
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MCP230xx
#endif // USE_I2C