Tasmota/tasmota/tasmota_xsns_sensor/xsns_39_max31855.ino

221 lines
7.9 KiB
C++

/*
xsns_39_max31855.ino - MAX31855 thermocouple sensor support for Tasmota
Copyright (C) 2021 Markus Past
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_MAX31855
/*********************************************************************************************\
* MAX31855 and MAX6675 - Thermocouple
*
* SetOption94 0 - MAX31855
* SetOption94 1 - MAX6675
\*********************************************************************************************/
#define XSNS_39 39
const char kMax31855Types[] PROGMEM = "MAX31855|MAX6675";
bool max31855_initialized = false;
uint8_t max31855_pins_used = 0; //used as a bit array
uint8_t max31855_count = 0;
struct MAX31855_ResultStruct {
uint8_t ErrorCode; // Error Codes: 0 = No Error / 1 = TC open circuit / 2 = TC short to GND / 4 = TC short to VCC
float ProbeTemperature; // Measured temperature of the 'hot' TC junction (probe temp)
float ReferenceTemperature; // Measured temperature of the 'cold' TC junction (reference temp)
} MAX31855_Result[MAX_MAX31855S];
void MAX31855_Init(void) {
if (PinUsed(GPIO_MAX31855CLK) && PinUsed(GPIO_MAX31855DO)) {
// Set GPIO modes for SW-SPI
pinMode(Pin(GPIO_MAX31855CLK), OUTPUT);
pinMode(Pin(GPIO_MAX31855DO), INPUT);
// Clock low
digitalWrite(Pin(GPIO_MAX31855CLK), LOW);
for (uint32_t i = 0; i < MAX_MAX31855S; i++) {
if (PinUsed(GPIO_MAX31855CS, i)) {
max31855_pins_used |= 1 << i; //set lowest bit
max31855_count ++;
// Set GPIO modes for SW-SPI
pinMode(Pin(GPIO_MAX31855CS, i), OUTPUT);
// Chip not selected
digitalWrite(Pin(GPIO_MAX31855CS, i), HIGH);
max31855_initialized = true;
}
}
}
}
/*
* MAX31855_ShiftIn(uint8_t Length, uint32_t index)
* Communicates with MAX31855 via SW-SPI and returns the raw data read from the chip
*/
int32_t MAX31855_ShiftIn(uint8_t Length, uint32_t index) {
int32_t dataIn = 0;
digitalWrite(Pin(GPIO_MAX31855CS, index), LOW); // CS = LOW -> Start SPI communication
delayMicroseconds(1); // CS fall to output enable = max. 100ns
for (uint32_t i = 0; i < Length; i++) {
digitalWrite(Pin(GPIO_MAX31855CLK), LOW);
delayMicroseconds(1); // CLK pulse width low = min. 100ns / CLK fall to output valid = max. 40ns
dataIn <<= 1;
if (digitalRead(Pin(GPIO_MAX31855DO))) {
dataIn |= 1;
}
digitalWrite(Pin(GPIO_MAX31855CLK), HIGH);
delayMicroseconds(1); // CLK pulse width high = min. 100ns
}
digitalWrite(Pin(GPIO_MAX31855CS, index), HIGH); // CS = HIGH -> End SPI communication
digitalWrite(Pin(GPIO_MAX31855CLK), LOW);
return dataIn;
}
/*
* MAX31855_GetProbeTemperature(int32_t RawData)
* Decodes and returns the temperature of TCs 'hot' junction from RawData
*/
float MAX31855_GetProbeTemperature(int32_t RawData) {
if (RawData & 0x80000000) {
RawData = (RawData >> 18) | 0xFFFFC000; // Negative value - Drop lower 18 bits and extend to negative number
} else {
RawData >>= 18; // Positiv value - Drop lower 18 bits
}
float result = (RawData * 0.25f); // MAX31855 LSB resolution is 0.25°C for probe temperature
return ConvertTemp(result); // Check if we have to convert to Fahrenheit
}
/*
* MAX31855_GetReferenceTemperature(int32_t RawData)
* Decodes and returns the temperature of TCs 'cold' junction from RawData
*/
float MAX31855_GetReferenceTemperature(int32_t RawData) {
if (RawData & 0x8000) {
RawData = (RawData >> 4) | 0xFFFFF000; // Negative value - Drop lower 4 bits and extend to negative number
} else {
RawData = (RawData >> 4) & 0x00000FFF; // Positiv value - Drop lower 4 bits and mask out remaining bits (probe temp, error bit, etc.)
}
float result = (RawData * 0.0625f); // MAX31855 LSB resolution is 0.0625°C for reference temperature
return ConvertTemp(result); // Check if we have to convert to Fahrenheit
}
/*
* MAX31855_GetResult(void)
* Acquires the raw data via SPI, checks for MAX31855 errors and fills result structure
*/
void MAX31855_GetResult(void) {
for (uint32_t i = 0; i < MAX_MAX31855S; i++) {
if (max31855_pins_used & (1 << i)) {
if (Settings->flag4.max6675) { // SetOption94 - Implement simpler MAX6675 protocol instead of MAX31855
int32_t RawData = MAX31855_ShiftIn(16, i);
int32_t temp = (RawData >> 3) & ((1 << 12) - 1);
/* Occasionally the sensor returns 0xfff, consider it an error */
if (temp == ((1 << 12) - 1)) { return; }
MAX31855_Result[i].ErrorCode = 0;
MAX31855_Result[i].ReferenceTemperature = NAN;
MAX31855_Result[i].ProbeTemperature = ConvertTemp(0.25f * temp);
} else {
int32_t RawData = MAX31855_ShiftIn(32, i);
uint8_t probeerror = RawData & 0x7;
MAX31855_Result[i].ErrorCode = probeerror;
MAX31855_Result[i].ReferenceTemperature = MAX31855_GetReferenceTemperature(RawData);
if (probeerror) {
MAX31855_Result[i].ProbeTemperature = NAN; // Return NaN if MAX31855 reports an error
} else {
MAX31855_Result[i].ProbeTemperature = MAX31855_GetProbeTemperature(RawData);
}
}
}
}
}
void MAX31855_Show(bool Json) {
char sensor_name_text[10];
char sensor_name[12];
uint8_t report_once = 0;
GetTextIndexed(sensor_name_text, sizeof(sensor_name_text), Settings->flag4.max6675, kMax31855Types);
sprintf(sensor_name, "%s",sensor_name_text);
for (uint32_t i = 0; i < MAX_MAX31855S; i++) {
if (max31855_pins_used & (1 << i)) {
if (max31855_count > 1) {
sprintf(sensor_name, "%s%c%d",sensor_name_text, IndexSeparator(), i);
}
if (Json) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_TEMPERATURE "\":%*_f,\"" D_JSON_REFERENCETEMPERATURE "\":%*_f,\"" D_JSON_ERROR "\":%d}"), \
sensor_name,
Settings->flag2.temperature_resolution, &MAX31855_Result[i].ProbeTemperature,
Settings->flag2.temperature_resolution, &MAX31855_Result[i].ReferenceTemperature,
MAX31855_Result[i].ErrorCode);
if ((0 == TasmotaGlobal.tele_period) && (!report_once)) {
#ifdef USE_DOMOTICZ
DomoticzFloatSensor(DZ_TEMP, MAX31855_Result[i].ProbeTemperature);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, MAX31855_Result[i].ProbeTemperature);
#endif // USE_KNX
report_once++;
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_Temp(sensor_name, MAX31855_Result[i].ProbeTemperature);
#endif // USE_WEBSERVER
}
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns39(uint32_t function)
{
bool result = false;
if (FUNC_INIT == function) {
MAX31855_Init();
}
else if (max31855_initialized) {
switch (function) {
case FUNC_EVERY_SECOND:
MAX31855_GetResult();
break;
case FUNC_JSON_APPEND:
MAX31855_Show(true);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
MAX31855_Show(false);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MAX31855