Tasmota/tasmota/tasmota_xsns_sensor/xsns_05_ds18x20.ino

704 lines
23 KiB
C++

/*
xsns_05_ds18x20.ino - DS18x20 temperature sensor support for Tasmota
Copyright (C) 2021 Theo Arends and md5sum-as (https://github.com/md5sum-as)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP8266
#ifdef USE_DS18x20
/*********************************************************************************************\
* DS18B20 - Temperature - Multiple sensors
\*********************************************************************************************/
#define XSNS_05 5
//#define USE_DS18x20_RECONFIGURE // When sensor is lost keep retrying or re-configure
//#define DS18x20_USE_ID_AS_NAME // Use last 3 bytes for naming of sensors
/* #define DS18x20_USE_ID_ALIAS in my_user_config.h or user_config_override.h
* Use alias for fixed sensor name in scripts by autoexec. Command: DS18Alias XXXXXXXXXXXXXXXX,N where XXXXXXXXXXXXXXXX full serial and N number 1-255
* Result in JSON: "DS18Sens_2":{"Id":"000003287CD8","Temperature":26.3} (example with N=2)
* Setting N to an alphanumeric value, the complete name is replaced with it
* Result in JSON: "Outside1":{"Id":"000003287CD8","Temperature":26.3} (example with N=Outside1)
*/
#define DS18S20_CHIPID 0x10 // +/-0.5C 9-bit
#define DS1822_CHIPID 0x22 // +/-2C 12-bit
#define DS18B20_CHIPID 0x28 // +/-0.5C 12-bit
#define M1601_CHIPID 0x28 +1 // +/-0.1C 16-bit (M1601B = +/-0.5C 16-bit)
#define MAX31850_CHIPID 0x3B // +/-0.25C 14-bit
#define W1_SKIP_ROM 0xCC
#define W1_CONVERT_TEMP 0x44
#define W1_WRITE_EEPROM 0x48
#define W1_WRITE_SCRATCHPAD 0x4E
#define W1_READ_SCRATCHPAD 0xBE
#ifndef DS18X20_MAX_SENSORS // DS18X20_MAX_SENSORS fallback to 8 if not defined in user_config_override.h
#define DS18X20_MAX_SENSORS 8
#endif
#define DS18X20_ALIAS_LEN 17
//#define DS18X20_DEBUG
const char kDs18x20Types[] PROGMEM = "DS18x20|DS18S20|DS1822|DS18B20|MAX31850|M1601";
uint8_t ds18x20_chipids[] = { 0, DS18S20_CHIPID, DS1822_CHIPID, DS18B20_CHIPID, MAX31850_CHIPID, M1601_CHIPID };
struct {
float temperature;
float temp_sum;
uint16_t numread;
uint8_t address[8];
uint8_t chip_id;
uint8_t index;
uint8_t valid;
int8_t pins_id;
#ifdef DS18x20_USE_ID_ALIAS
char *alias = (char*)calloc(DS18X20_ALIAS_LEN, 1);
#endif // DS18x20_USE_ID_ALIAS
} ds18x20_sensor[DS18X20_MAX_SENSORS];
struct {
int8_t pin = 0; // Shelly GPIO3 input only
int8_t pin_out = 0; // Shelly GPIO00 output only
bool dual_mode = false; // Single pin mode
} ds18x20_gpios[MAX_DSB];
struct {
#ifdef W1_PARASITE_POWER
uint32_t w1_power_until = 0;
uint8_t current_sensor = 0;
#endif
char name[17];
uint8_t sensors;
uint8_t gpios; // Count of GPIO found
uint8_t input_mode = 0; // INPUT or INPUT_PULLUP (=2)
int8_t pin = 0; // Shelly GPIO3 input only
int8_t pin_out = 0; // Shelly GPIO00 output only
bool dual_mode = false; // Single pin mode
} DS18X20Data;
/*********************************************************************************************\
* Embedded tuned OneWire library
\*********************************************************************************************/
#define W1_MATCH_ROM 0x55
#define W1_SEARCH_ROM 0xF0
uint8_t onewire_last_discrepancy = 0;
uint8_t onewire_last_family_discrepancy = 0;
bool onewire_last_device_flag = false;
unsigned char onewire_rom_id[8] = { 0 };
/*------------------------------------------------------------------------------------------*/
uint8_t OneWireReset(void) {
uint8_t retries = 125;
if (!DS18X20Data.dual_mode) {
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
do {
if (--retries == 0) {
return 0;
}
delayMicroseconds(2);
} while (!digitalRead(DS18X20Data.pin));
pinMode(DS18X20Data.pin, OUTPUT);
digitalWrite(DS18X20Data.pin, LOW);
delayMicroseconds(480);
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
delayMicroseconds(70);
uint8_t r = !digitalRead(DS18X20Data.pin);
delayMicroseconds(410);
return r;
} else {
digitalWrite(DS18X20Data.pin_out, HIGH);
do {
if (--retries == 0) {
return 0;
}
delayMicroseconds(2);
} while (!digitalRead(DS18X20Data.pin));
digitalWrite(DS18X20Data.pin_out, LOW);
delayMicroseconds(480);
digitalWrite(DS18X20Data.pin_out, HIGH);
delayMicroseconds(70);
uint8_t r = !digitalRead(DS18X20Data.pin);
delayMicroseconds(410);
return r;
}
}
void OneWireWriteBit(uint8_t v) {
static const uint8_t delay_low[2] = { 65, 10 };
static const uint8_t delay_high[2] = { 5, 55 };
v &= 1;
if (!DS18X20Data.dual_mode) {
digitalWrite(DS18X20Data.pin, LOW);
pinMode(DS18X20Data.pin, OUTPUT);
delayMicroseconds(delay_low[v]);
digitalWrite(DS18X20Data.pin, HIGH);
} else {
digitalWrite(DS18X20Data.pin_out, LOW);
delayMicroseconds(delay_low[v]);
digitalWrite(DS18X20Data.pin_out, HIGH);
}
delayMicroseconds(delay_high[v]);
}
uint8_t OneWire1ReadBit(void) {
pinMode(DS18X20Data.pin, OUTPUT);
digitalWrite(DS18X20Data.pin, LOW);
delayMicroseconds(3);
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
delayMicroseconds(10);
uint8_t r = digitalRead(DS18X20Data.pin);
delayMicroseconds(53);
return r;
}
uint8_t OneWire2ReadBit(void) {
digitalWrite(DS18X20Data.pin_out, LOW);
delayMicroseconds(3);
digitalWrite(DS18X20Data.pin_out, HIGH);
delayMicroseconds(10);
uint8_t r = digitalRead(DS18X20Data.pin);
delayMicroseconds(53);
return r;
}
/*------------------------------------------------------------------------------------------*/
void OneWireWrite(uint8_t v) {
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
OneWireWriteBit((bit_mask & v) ? 1 : 0);
}
}
uint8_t OneWireRead(void) {
uint8_t r = 0;
if (!DS18X20Data.dual_mode) {
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
if (OneWire1ReadBit()) {
r |= bit_mask;
}
}
} else {
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
if (OneWire2ReadBit()) {
r |= bit_mask;
}
}
}
return r;
}
void OneWireSelect(const uint8_t rom[8]) {
OneWireWrite(W1_MATCH_ROM);
for (uint32_t i = 0; i < 8; i++) {
OneWireWrite(rom[i]);
}
}
uint8_t OneWireSearch(uint8_t *newAddr) {
uint8_t id_bit_number = 1;
uint8_t last_zero = 0;
uint8_t rom_byte_number = 0;
uint8_t search_result = 0;
uint8_t id_bit;
uint8_t cmp_id_bit;
unsigned char rom_byte_mask = 1;
unsigned char search_direction;
if (!onewire_last_device_flag) {
if (!OneWireReset()) {
onewire_last_discrepancy = 0;
onewire_last_device_flag = false;
onewire_last_family_discrepancy = 0;
#ifdef DS18X20_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireReset fail"));
#endif // DS18X20_DEBUG
return false;
}
OneWireWrite(W1_SEARCH_ROM);
do {
if (!DS18X20Data.dual_mode) {
id_bit = OneWire1ReadBit();
cmp_id_bit = OneWire1ReadBit();
} else {
id_bit = OneWire2ReadBit();
cmp_id_bit = OneWire2ReadBit();
}
if ((id_bit == 1) && (cmp_id_bit == 1)) {
break;
} else {
if (id_bit != cmp_id_bit) {
search_direction = id_bit;
} else {
if (id_bit_number < onewire_last_discrepancy) {
search_direction = ((onewire_rom_id[rom_byte_number] & rom_byte_mask) > 0);
} else {
search_direction = (id_bit_number == onewire_last_discrepancy);
}
if (search_direction == 0) {
last_zero = id_bit_number;
if (last_zero < 9) {
onewire_last_family_discrepancy = last_zero;
}
}
}
if (search_direction == 1) {
onewire_rom_id[rom_byte_number] |= rom_byte_mask;
} else {
onewire_rom_id[rom_byte_number] &= ~rom_byte_mask;
}
OneWireWriteBit(search_direction);
id_bit_number++;
rom_byte_mask <<= 1;
if (rom_byte_mask == 0) {
rom_byte_number++;
rom_byte_mask = 1;
}
}
} while (rom_byte_number < 8);
if (!(id_bit_number < 65)) {
onewire_last_discrepancy = last_zero;
if (onewire_last_discrepancy == 0) {
onewire_last_device_flag = true;
}
search_result = true;
}
#ifdef DS18X20_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireSearch result %d, bits %d, %8_H"), search_result, id_bit_number, onewire_rom_id);
#endif // DS18X20_DEBUG
}
if (!search_result || !onewire_rom_id[0]) {
onewire_last_discrepancy = 0;
onewire_last_device_flag = false;
onewire_last_family_discrepancy = 0;
search_result = false;
}
for (uint32_t i = 0; i < 8; i++) {
newAddr[i] = onewire_rom_id[i];
}
return search_result;
}
bool OneWireCrc8(uint8_t *addr, uint8_t len) {
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint32_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) {
crc ^= 0x8C;
}
inbyte >>= 1;
}
}
return (crc == *addr);
}
/********************************************************************************************/
void Ds18x20Init(void) {
DS18X20Data.gpios = 0;
for (uint32_t pins = 0; pins < MAX_DSB; pins++) {
if (PinUsed(GPIO_DSB, pins)) {
ds18x20_gpios[pins].pin = Pin(GPIO_DSB, pins);
if (PinUsed(GPIO_DSB_OUT, pins)) {
ds18x20_gpios[pins].dual_mode = true;
ds18x20_gpios[pins].pin_out = Pin(GPIO_DSB_OUT, pins);
}
DS18X20Data.gpios++;
}
}
uint64_t ids[DS18X20_MAX_SENSORS];
DS18X20Data.sensors = 0;
DS18X20Data.input_mode = Settings->flag3.ds18x20_internal_pullup ? INPUT_PULLUP : INPUT; // SetOption74 - Enable internal pullup for single DS18x20 sensor
for (uint32_t pins = 0; pins < DS18X20Data.gpios; pins++) {
DS18X20Data.pin = ds18x20_gpios[pins].pin;
DS18X20Data.dual_mode = ds18x20_gpios[pins].dual_mode;
if (ds18x20_gpios[pins].dual_mode) {
DS18X20Data.pin_out = ds18x20_gpios[pins].pin_out;
pinMode(DS18X20Data.pin_out, OUTPUT);
pinMode(DS18X20Data.pin, DS18X20Data.input_mode);
}
onewire_last_discrepancy = 0;
onewire_last_device_flag = false;
onewire_last_family_discrepancy = 0;
for (uint32_t i = 0; i < 8; i++) {
onewire_rom_id[i] = 0;
}
while (DS18X20Data.sensors < DS18X20_MAX_SENSORS) {
if (!OneWireSearch(ds18x20_sensor[DS18X20Data.sensors].address)) {
#ifdef DS18X20_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireSearch fail"));
#endif // DS18X20_DEBUG
break;
}
uint32_t chip_id = ds18x20_sensor[DS18X20Data.sensors].address[0];
bool crc = OneWireCrc8(ds18x20_sensor[DS18X20Data.sensors].address, 7);
if (!crc) {
// Look for M1601 which has same chip_id as DS18B20 but has wrong CRC over 64-bit ROM code
// DS18B20 address 284CC48E04000079
// M1601 address 2894020000000000
if ((ds18x20_sensor[DS18X20Data.sensors].address[0] == DS18B20_CHIPID) &&
(ds18x20_sensor[DS18X20Data.sensors].address[7] == 0)) {
chip_id = M1601_CHIPID; // Need different chip_id as different temperature calculation
crc = true;
}
}
if (crc &&
((chip_id == DS18S20_CHIPID) ||
(chip_id == DS1822_CHIPID) ||
(chip_id == DS18B20_CHIPID) ||
(chip_id == M1601_CHIPID) ||
(chip_id == MAX31850_CHIPID))) {
ds18x20_sensor[DS18X20Data.sensors].index = DS18X20Data.sensors;
ids[DS18X20Data.sensors] = chip_id; // Chip id
for (uint32_t j = 6; j > 0; j--) {
ids[DS18X20Data.sensors] = ids[DS18X20Data.sensors] << 8 | ds18x20_sensor[DS18X20Data.sensors].address[j];
}
#ifdef DS18x20_USE_ID_ALIAS
ds18x20_sensor[DS18X20Data.sensors].alias[0] = '0';
#endif
ds18x20_sensor[DS18X20Data.sensors].chip_id = chip_id;
ds18x20_sensor[DS18X20Data.sensors].pins_id = pins;
DS18X20Data.sensors++;
}
#ifdef DS18X20_DEBUG
else {
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: Ds18x20Init CRC fail"));
}
#endif // DS18X20_DEBUG
}
}
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
for (uint32_t j = i + 1; j < DS18X20Data.sensors; j++) {
if (ids[ds18x20_sensor[i].index] > ids[ds18x20_sensor[j].index]) { // Sort ascending
std::swap(ds18x20_sensor[i].index, ds18x20_sensor[j].index);
}
}
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSORS_FOUND " %d"), DS18X20Data.sensors);
}
void Ds18x20Convert(void) {
for (uint8_t i = 0; i < DS18X20Data.gpios; i++) {
DS18X20Data.pin = ds18x20_gpios[i].pin;
DS18X20Data.dual_mode = ds18x20_gpios[i].dual_mode;
DS18X20Data.pin_out = ds18x20_gpios[i].pin_out;
OneWireReset();
#ifdef W1_PARASITE_POWER
// With parasite power address one sensor at a time
if (++DS18X20Data.current_sensor >= DS18X20Data.sensors)
DS18X20Data.current_sensor = 0;
OneWireSelect(ds18x20_sensor[DS18X20Data.current_sensor].address);
#else
OneWireWrite(W1_SKIP_ROM); // Address all Sensors on Bus
#endif
OneWireWrite(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end
// delay(750); // 750ms should be enough for 12bit conv
}
}
bool Ds18x20Read(uint8_t sensor) {
float temperature;
uint8_t data[9];
int8_t sign = 1;
uint8_t index = ds18x20_sensor[sensor].index;
DS18X20Data.pin = ds18x20_gpios[ds18x20_sensor[index].pins_id].pin;
DS18X20Data.pin_out = ds18x20_gpios[ds18x20_sensor[index].pins_id].pin_out;
DS18X20Data.dual_mode = ds18x20_gpios[ds18x20_sensor[index].pins_id].dual_mode;
if (ds18x20_sensor[index].valid) { ds18x20_sensor[index].valid--; }
for (uint32_t retry = 0; retry < 3; retry++) {
OneWireReset();
OneWireSelect(ds18x20_sensor[index].address);
OneWireWrite(W1_READ_SCRATCHPAD);
for (uint32_t i = 0; i < 9; i++) {
data[i] = OneWireRead();
}
#ifdef DS18X20_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("DSB: OneWireRead ChipId 0x%02X, %9_H"), ds18x20_sensor[index].chip_id, data);
#endif // DS18X20_DEBUG
if (OneWireCrc8(data, 8)) {
switch(ds18x20_sensor[index].chip_id) {
case DS18S20_CHIPID: {
int16_t tempS = (((data[1] << 8) | (data[0] & 0xFE)) << 3) | ((0x10 - data[6]) & 0x0F);
temperature = ConvertTemp(tempS * 0.0625f - 0.250f);
break;
}
case DS1822_CHIPID:
case DS18B20_CHIPID: {
// 71 01 4B 46 7F FF 0F 10 56
if (data[4] != 0x7F) {
data[4] = 0x7F; // Set resolution to 12-bit
OneWireReset();
OneWireSelect(ds18x20_sensor[index].address);
OneWireWrite(W1_WRITE_SCRATCHPAD);
OneWireWrite(data[2]); // Th Register
OneWireWrite(data[3]); // Tl Register
OneWireWrite(data[4]); // Configuration Register
OneWireSelect(ds18x20_sensor[index].address);
OneWireWrite(W1_WRITE_EEPROM); // Save scratchpad to EEPROM
#ifdef W1_PARASITE_POWER
DS18X20Data.w1_power_until = millis() + 10; // 10ms specified duration for EEPROM write
#endif
}
uint16_t temp12 = (data[1] << 8) + data[0];
if (temp12 > 2047) {
temp12 = (~temp12) +1;
sign = -1;
}
temperature = ConvertTemp(sign * temp12 * 0.0625f); // Divide by 16
break;
}
case M1601_CHIPID: {
// 96 F1 00 80 55 05 02 09 86
float temp = (int16_t)(data[1] << 8) + data[0];
temperature = ConvertTemp(40 + (temp / 256));
break;
}
case MAX31850_CHIPID: {
int16_t temp14 = (data[1] << 8) + (data[0] & 0xFC);
temperature = ConvertTemp(temp14 * 0.0625f); // Divide by 16
break;
}
}
ds18x20_sensor[index].temperature = temperature;
if (Settings->flag5.ds18x20_mean) {
if (ds18x20_sensor[index].numread++ == 0) {
ds18x20_sensor[index].temp_sum = 0;
}
ds18x20_sensor[index].temp_sum += temperature;
}
ds18x20_sensor[index].valid = SENSOR_MAX_MISS;
return true;
}
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_CRC_ERROR));
return false;
}
void Ds18x20Name(uint8_t sensor) {
uint32_t sensor_index = ds18x20_sensor[sensor].index;
uint32_t index = sizeof(ds18x20_chipids);
while (--index) {
if (ds18x20_sensor[sensor_index].chip_id == ds18x20_chipids[index]) {
break;
}
}
// DS18B20
GetTextIndexed(DS18X20Data.name, sizeof(DS18X20Data.name), index, kDs18x20Types);
#ifdef DS18x20_USE_ID_AS_NAME
char address[17];
for (uint32_t j = 0; j < 3; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[sensor_index].address[3-j]); // Only last 3 bytes
}
// DS18B20-8EC44C
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%s"), DS18X20Data.name, IndexSeparator(), address);
return;
#elif defined(DS18x20_USE_ID_ALIAS)
if (ds18x20_sensor[sensor_index].alias[0] && (ds18x20_sensor[sensor_index].alias[0] != '0')) {
if (isdigit(ds18x20_sensor[sensor_index].alias[0])) {
// DS18Sens-1
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("DS18Sens%c%d"), IndexSeparator(), atoi(ds18x20_sensor[sensor_index].alias));
} else {
// UserText
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s"), ds18x20_sensor[sensor_index].alias);
}
return;
}
#endif // DS18x20_USE_ID_AS_NAME or DS18x20_USE_ID_ALIAS
if (DS18X20Data.sensors > 1) {
// DS18B20-1
snprintf_P(DS18X20Data.name, sizeof(DS18X20Data.name), PSTR("%s%c%d"), DS18X20Data.name, IndexSeparator(), sensor + 1);
}
}
/********************************************************************************************/
void Ds18x20EverySecond(void) {
if (!DS18X20Data.sensors) { return; }
#ifdef W1_PARASITE_POWER
// skip access if there is still an eeprom write ongoing
unsigned long now = millis();
if (now < DS18X20Data.w1_power_until) { return; }
#endif
if (TasmotaGlobal.uptime & 1
#ifdef W1_PARASITE_POWER
// if more than 1 sensor and only parasite power: convert every cycle
|| DS18X20Data.sensors >= 2
#endif
) {
// 2mS
Ds18x20Convert(); // Start conversion, takes up to one second
} else {
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
// 12mS per device
if (!Ds18x20Read(i)) { // Read temperature
Ds18x20Name(i);
AddLogMissed(DS18X20Data.name, ds18x20_sensor[ds18x20_sensor[i].index].valid);
#ifdef USE_DS18x20_RECONFIGURE
if (!ds18x20_sensor[ds18x20_sensor[i].index].valid) {
memset(&ds18x20_sensor, 0, sizeof(ds18x20_sensor));
Ds18x20Init(); // Re-configure
}
#endif // USE_DS18x20_RECONFIGURE
}
}
}
}
void Ds18x20Show(bool json) {
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
uint8_t index = ds18x20_sensor[i].index;
if (ds18x20_sensor[index].valid) { // Check for valid temperature
Ds18x20Name(i);
if (json) {
if (Settings->flag5.ds18x20_mean) {
if ((0 == TasmotaGlobal.tele_period) && ds18x20_sensor[index].numread) {
ds18x20_sensor[index].temperature = ds18x20_sensor[index].temp_sum / ds18x20_sensor[index].numread;
ds18x20_sensor[index].numread = 0;
}
}
char address[17];
for (uint32_t j = 0; j < 6; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[index].address[6-j]); // Skip sensor type and crc
}
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ID "\":\"%s\",\"" D_JSON_TEMPERATURE "\":%*_f}"),
DS18X20Data.name, address, Settings->flag2.temperature_resolution, &ds18x20_sensor[index].temperature);
#ifdef USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period) && (0 == i)) {
DomoticzFloatSensor(DZ_TEMP, ds18x20_sensor[index].temperature);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if ((0 == TasmotaGlobal.tele_period) && (0 == i)) {
KnxSensor(KNX_TEMPERATURE, ds18x20_sensor[index].temperature);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_Temp(DS18X20Data.name, ds18x20_sensor[index].temperature);
#endif // USE_WEBSERVER
}
}
}
}
#ifdef DS18x20_USE_ID_ALIAS
const char kds18Commands[] PROGMEM = "DS18|" // prefix
D_CMND_DS_ALIAS;
void (* const DSCommand[])(void) PROGMEM = {
&CmndDSAlias };
void CmndDSAlias(void) {
// Ds18Alias 430516707FA6FF28,SensorName - Use SensorName instead of DS18B20
// Ds18Alias 430516707FA6FF28,0 - Disable alias (default)
char Argument1[XdrvMailbox.data_len];
char Argument2[XdrvMailbox.data_len];
char address[17];
if (ArgC()==2) {
ArgV(Argument1, 1);
ArgV(Argument2, 2);
TrimSpace(Argument2);
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
for (uint32_t j = 0; j < 8; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[i].address[7-j]);
}
if (!strncmp(Argument1, address, 12) && Argument2[0]) {
snprintf_P(ds18x20_sensor[i].alias, DS18X20_ALIAS_LEN, PSTR("%s"), Argument2);
break;
}
}
}
Response_P(PSTR("{"));
for (uint32_t i = 0; i < DS18X20Data.sensors; i++) {
Ds18x20Name(i);
char address[17];
for (uint32_t j = 0; j < 8; j++) {
sprintf(address+2*j, "%02X", ds18x20_sensor[ds18x20_sensor[i].index].address[7-j]); // Skip sensor type and crc
}
ResponseAppend_P(PSTR("\"%s\":{\"" D_JSON_ID "\":\"%s\"}"),DS18X20Data.name, address);
if (i < DS18X20Data.sensors-1) { ResponseAppend_P(PSTR(",")); }
}
ResponseAppend_P(PSTR("}"));
}
#endif // DS18x20_USE_ID_ALIAS
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns05(uint32_t function) {
bool result = false;
if (PinUsed(GPIO_DSB, GPIO_ANY)) {
switch (function) {
case FUNC_INIT:
Ds18x20Init();
break;
case FUNC_EVERY_SECOND:
Ds18x20EverySecond();
break;
case FUNC_JSON_APPEND:
Ds18x20Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Ds18x20Show(0);
break;
#endif // USE_WEBSERVER
#ifdef DS18x20_USE_ID_ALIAS
case FUNC_COMMAND:
result = DecodeCommand(kds18Commands, DSCommand);
break;
#endif // DS18x20_USE_ID_ALIAS
}
}
return result;
}
#endif // USE_DS18x20
#endif // ESP8266