Tasmota/tasmota/tasmota_xdrv_driver/xdrv_48_timeprop.ino

342 lines
14 KiB
C++

/*
xdrv_48_timeprop.ino - Timeprop support for Sonoff-Tasmota
Copyright (C) 2021 Colin Law and Thomas Herrmann
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_TIMEPROP
#ifndef FIRMWARE_MINIMAL
/*********************************************************************************************\
* Code to drive one or more relays in a time proportioned manner give a
* required power value.
*
* Given required power values in the range 0.0 to 1.0 the relays will be
* driven on/off in such that the average power suppled will represent
* the required power.
* The cycle time is configurable. If, for example, the
* period is set to 10 minutes and the power input is 0.2 then the output will
* be on for two minutes in every ten minutes.
*
* A value for actuator dead time may be provided. If you have a device that
* takes a significant time to open/close then set this to the average of the
* open and close times. The algorithim will then adjust the output timing
* accordingly to ensure that the output is not switched more rapidly than
* the actuator can cope with.
*
* A facility to invert the output is provided which can be useful when used in
* refrigeration processes and similar.
*
* In the case where only one relay is being driven the power value is set by
* writing the value to the mqtt topic cmnd/timeprop_setpower_0. If more than
* one relay is being driven (as might be the case for a heat/cool application
* where one relay drives the heater and the other the cooler) then the power
* for the second relay is written to topic cmnd/timeprop_setpower_1 and so on.
*
* To cope with the problem of temporary wifi failure etc a
* TIMEPROP_MAX_UPDATE_INTERVALS value is available. This can be set to the max
* expected time between power updates and if this time is exceeded then the
* power will fallback to a given safe value until a new value is provided. Set
* the interval to 0 to disable this feature.
*
* Usage:
* Place this file in the sonoff folder.
* Clone the library https://github.com/colinl/process-control.git from Github
* into a subfolder of lib.
* In user_config.h or user_config_override.h for a single relay, include
* code as follows:
#define USE_TIMEPROP // include the timeprop feature (+1.2k)
// for single output
#define TIMEPROP_NUM_OUTPUTS 1 // how many outputs to control (with separate alogorithm for each)
#define TIMEPROP_CYCLETIMES 60 // cycle time seconds
#define TIMEPROP_DEADTIMES 0 // actuator action time seconds
#define TIMEPROP_OPINVERTS false // whether to invert the output
#define TIMEPROP_FALLBACK_POWERS 0.0 // falls back to this if too long betwen power updates
#define TIMEPROP_MAX_UPDATE_INTERVALS 120 // max no secs that are allowed between power updates (0 to disable)
#define TIMEPROP_RELAYS 1 // which relay to control 1:8
* or for two relays:
#define USE_TIMEPROP // include the timeprop feature (+1.2k)
// for single output
#define TIMEPROP_NUM_OUTPUTS 2 // how many outputs to control (with separate alogorithm for each)
#define TIMEPROP_CYCLETIMES 60, 10 // cycle time seconds
#define TIMEPROP_DEADTIMES 0, 0 // actuator action time seconds
#define TIMEPROP_OPINVERTS false, false // whether to invert the output
#define TIMEPROP_FALLBACK_POWERS 0.0, 0.0 // falls back to this if too long betwen power updates
#define TIMEPROP_MAX_UPDATE_INTERVALS 120, 120 // max no secs that are allowed between power updates (0 to disable)
#define TIMEPROP_RELAYS 1, 2 // which relay to control 1:8
* Publish values between 0 and 1 to the topic(s) described above
*
**/
#include "Timeprop.h"
#ifndef TIMEPROP_NUM_OUTPUTS
#define TIMEPROP_NUM_OUTPUTS 1 // how many outputs to control (with separate alogorithm for each)
#endif
#ifndef TIMEPROP_CYCLETIMES
#define TIMEPROP_CYCLETIMES 60 // cycle time seconds
#endif
#ifndef TIMEPROP_DEADTIMES
#define TIMEPROP_DEADTIMES 0 // actuator action time seconds
#endif
#ifndef TIMEPROP_OPINVERTS
#define TIMEPROP_OPINVERTS false // whether to invert the output
#endif
#ifndef TIMEPROP_FALLBACK_POWERS
#define TIMEPROP_FALLBACK_POWERS 0 // falls back to this if too long between power updates
#endif
#ifndef TIMEPROP_MAX_UPDATE_INTERVALS
#define TIMEPROP_MAX_UPDATE_INTERVALS 120 // max no secs that are allowed between power updates (0 to disable)
#endif
#ifndef TIMEPROP_RELAYS
#define TIMEPROP_RELAYS 1 // which relay to control 1:8
#endif
#ifndef TIMEPROP_REPORT_SETTINGS
#define TIMEPROP_REPORT_SETTINGS false // set to true to include timeprop settings in json output
#endif
static Timeprop timeprops[TIMEPROP_NUM_OUTPUTS];
static int relayNos[TIMEPROP_NUM_OUTPUTS] = {TIMEPROP_RELAYS};
static long currentRelayStates = 0; // current actual relay states. Bit 0 first relay
struct {
Timeprop timeprops[TIMEPROP_NUM_OUTPUTS];
int relay_nos[TIMEPROP_NUM_OUTPUTS] = {TIMEPROP_RELAYS};
long current_relay_states = 0; // current actual relay states. Bit 0 first relay
long current_time_secs = 0; // a counter that counts seconds since initialisation
} Tprop;
#define D_CMND_TIMEPROP_PREFIX "Timeprop"
#define D_CMND_TIMEPROP_SETPOWER "_SetPower_" // underscores left in for backwards compatibility
#define D_CMND_TIMEPROP_SETCYCLETIME "SetCycleTime"
#define D_CMND_TIMEPROP_DEADTIME "SetDeadTime"
#define D_CMND_TIMEPROP_OPINVERT "SetOutputInvert"
#define D_CMND_TIMEPROP_FALLBACK_POWER "SetFallbackPower"
#define D_CMND_TIMEPROP_MAX_UPDATE_INTERVAL "SetMaxUpdateInterval"
int cycleTimes[TIMEPROP_NUM_OUTPUTS] = {TIMEPROP_CYCLETIMES};
int deadTimes[TIMEPROP_NUM_OUTPUTS] = {TIMEPROP_DEADTIMES};
unsigned char opInverts[TIMEPROP_NUM_OUTPUTS] = {TIMEPROP_OPINVERTS};
float fallbacks[TIMEPROP_NUM_OUTPUTS] = {TIMEPROP_FALLBACK_POWERS};
int maxIntervals[TIMEPROP_NUM_OUTPUTS] = {TIMEPROP_MAX_UPDATE_INTERVALS};
enum TimepropCommands { CMND_TIMEPROP_SETPOWER };
const char kCommands[] PROGMEM = D_CMND_TIMEPROP_PREFIX "|"
D_CMND_TIMEPROP_SETPOWER "|"
D_CMND_TIMEPROP_SETCYCLETIME "|"
D_CMND_TIMEPROP_DEADTIME "|"
D_CMND_TIMEPROP_OPINVERT "|"
D_CMND_TIMEPROP_FALLBACK_POWER "|"
D_CMND_TIMEPROP_MAX_UPDATE_INTERVAL ;
void (* const Command[])(void) PROGMEM = {
&CmndSetPower,
&CmndSetCycleTime,
&CmndSetDeadTime,
&CmndSetOutputInvert,
&CmndSetFallbackPower,
&CmndSetMaxUpdateInterval,
};
/* call this from elsewhere if required to set the power value for one of the timeprop instances */
/* index specifies which one, 0 up */
void TimepropSetPower(int index, float power) {
if (index >= 0 && index < TIMEPROP_NUM_OUTPUTS) {
Tprop.timeprops[index].setPower( power, Tprop.current_time_secs);
}
}
void TimepropInit(void) {
for (int i = 0; i < TIMEPROP_NUM_OUTPUTS; i++) {
Tprop.timeprops[i].initialise(cycleTimes[i], deadTimes[i], opInverts[i], fallbacks[i],
maxIntervals[i], Tprop.current_time_secs);
}
}
void CmndSetPower(void) {
if (XdrvMailbox.index >=0 && XdrvMailbox.index < TIMEPROP_NUM_OUTPUTS) {
if(XdrvMailbox.data_len) {
float newPower=CharToFloat(XdrvMailbox.data);
timeprops[XdrvMailbox.index].setPower(newPower, Tprop.current_time_secs );
ResponseCmndFloat(newPower, 2);
}
}
}
// commands for settings all take the same form
// prefix commands with 'timeprop'
// then append the command string eg. 'SetCycleTime'
// then append the output number (0 for a single output)
// then append the value to set set, or
// leave blank to retrieve the current value
// eg.
// 'TimepropSetCycleTime0 120' will set the value of cycle time for output 0 to 120
// 'TimepropSetCycleTime0' will retrieve the value of cycle time for output 0
void CmndSetCycleTime(void) {
if (XdrvMailbox.index >=0 && XdrvMailbox.index < TIMEPROP_NUM_OUTPUTS ) {
if(XdrvMailbox.data_len) {
int newCycleTime=TextToInt(XdrvMailbox.data);
if(newCycleTime>0) {
cycleTimes[XdrvMailbox.index] = newCycleTime;
Tprop.timeprops[XdrvMailbox.index].initialise(cycleTimes[XdrvMailbox.index], deadTimes[XdrvMailbox.index], opInverts[XdrvMailbox.index], fallbacks[XdrvMailbox.index], maxIntervals[XdrvMailbox.index], Tprop.current_time_secs);
ResponseCmndNumber(newCycleTime);
}
}
else {
ResponseCmndNumber(cycleTimes[XdrvMailbox.index]);
}
}
}
void CmndSetDeadTime(void) {
if (XdrvMailbox.index >=0 && XdrvMailbox.index < TIMEPROP_NUM_OUTPUTS ) {
if(XdrvMailbox.data_len) {
int newDeadTime=TextToInt(XdrvMailbox.data);
if(newDeadTime>0) {
deadTimes[XdrvMailbox.index] = newDeadTime;
Tprop.timeprops[XdrvMailbox.index].initialise(cycleTimes[XdrvMailbox.index], deadTimes[XdrvMailbox.index], opInverts[XdrvMailbox.index], fallbacks[XdrvMailbox.index], maxIntervals[XdrvMailbox.index], Tprop.current_time_secs);
ResponseCmndNumber(newDeadTime);
}
}
else {
ResponseCmndNumber(deadTimes[XdrvMailbox.index]);
}
}
}
void CmndSetOutputInvert(void) {
if (XdrvMailbox.index >=0 && XdrvMailbox.index < TIMEPROP_NUM_OUTPUTS ) {
if(XdrvMailbox.data_len) {
unsigned char newInvert=TextToInt(XdrvMailbox.data);
opInverts[XdrvMailbox.index] = newInvert;
Tprop.timeprops[XdrvMailbox.index].initialise(cycleTimes[XdrvMailbox.index], deadTimes[XdrvMailbox.index], opInverts[XdrvMailbox.index], fallbacks[XdrvMailbox.index], maxIntervals[XdrvMailbox.index], Tprop.current_time_secs);
ResponseCmndNumber(newInvert);
}
else {
ResponseCmndNumber(opInverts[XdrvMailbox.index]);
}
}
}
void CmndSetFallbackPower(void) {
if (XdrvMailbox.index >=0 && XdrvMailbox.index < TIMEPROP_NUM_OUTPUTS ) {
if(XdrvMailbox.data_len) {
float newPower=CharToFloat(XdrvMailbox.data);
if(newPower>=0.0 && newPower<=1.0) {
fallbacks[XdrvMailbox.index] = newPower;
Tprop.timeprops[XdrvMailbox.index].initialise(cycleTimes[XdrvMailbox.index], deadTimes[XdrvMailbox.index], opInverts[XdrvMailbox.index], fallbacks[XdrvMailbox.index], maxIntervals[XdrvMailbox.index], Tprop.current_time_secs);
ResponseCmndFloat(newPower, 2);
}
}
else {
ResponseCmndFloat(fallbacks[XdrvMailbox.index], 2);
}
}
}
void CmndSetMaxUpdateInterval(void) {
if (XdrvMailbox.index >=0 && XdrvMailbox.index < TIMEPROP_NUM_OUTPUTS ) {
if(XdrvMailbox.data_len) {
int newInterval=TextToInt(XdrvMailbox.data);
if(newInterval>0) {
maxIntervals[XdrvMailbox.index] = newInterval;
Tprop.timeprops[XdrvMailbox.index].initialise(cycleTimes[XdrvMailbox.index], deadTimes[XdrvMailbox.index], opInverts[XdrvMailbox.index], fallbacks[XdrvMailbox.index], maxIntervals[XdrvMailbox.index], Tprop.current_time_secs);
ResponseCmndNumber(newInterval);
}
}
else {
ResponseCmndNumber(maxIntervals[XdrvMailbox.index]);
}
}
}
void TimepropEverySecond(void) {
Tprop.current_time_secs++; // increment time
for (int i=0; i<TIMEPROP_NUM_OUTPUTS; i++) {
int newState = Tprop.timeprops[i].tick(Tprop.current_time_secs);
if (newState != bitRead(Tprop.current_relay_states, Tprop.relay_nos[i]-1)){
// remove the third parameter below if using tasmota prior to v6.0.0
ExecuteCommandPower(Tprop.relay_nos[i], newState,SRC_IGNORE);
}
}
}
// called by the system each time a relay state is changed
void TimepropXdrvPower(void) {
// for a single relay the state is in the lsb of index, I have think that for
// multiple outputs then succesive bits will hold the state but have not been
// able to test that
Tprop.current_relay_states = XdrvMailbox.index;
}
void ShowValues(void) {
#if TIMEPROP_REPORT_SETTINGS
ResponseAppend_P(PSTR(",\"Timeprop\":{"));
for (int i=0; i<TIMEPROP_NUM_OUTPUTS; i++) {
ResponseAppend_P(PSTR("\"Output%d\":{"),i);
ResponseAppend_P(PSTR("\"CycleTime\":%d,"),cycleTimes[i]);
ResponseAppend_P(PSTR("\"DeadTime\":%d,"),deadTimes[i]);
ResponseAppend_P(PSTR("\"OutputInvert\":%d,"),opInverts[i]);
ResponseAppend_P(PSTR("\"FallbackPower\":%2_f,"),&fallbacks[i]);
ResponseAppend_P(PSTR("\"MaxUpdateInterval\":%d"),maxIntervals[i]);
ResponseAppend_P(i<TIMEPROP_NUM_OUTPUTS-1 ? PSTR("},") : PSTR("}"));
}
ResponseAppend_P(PSTR("}"));
#endif // TIMEPROP_REPORT_SETTINGS
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XDRV_48 48
bool Xdrv48(uint32_t function) {
bool result = false;
switch (function) {
case FUNC_INIT:
TimepropInit();
break;
case FUNC_EVERY_SECOND:
TimepropEverySecond();
break;
case FUNC_COMMAND:
result = DecodeCommand(kCommands, Command);
break;
case FUNC_SET_POWER:
TimepropXdrvPower();
break;
case FUNC_JSON_APPEND:
ShowValues();
break;
case FUNC_ACTIVE:
result = true;
break;
}
return result;
}
#endif // FIRMWARE_MINIMAL
#endif // USE_TIMEPROP