Tasmota/tasmota/tasmota_xnrg_energy/xnrg_05_pzem_ac.ino

177 lines
6.2 KiB
C++

/*
xnrg_05_pzem_ac.ino - PZEM-014,016 Modbus AC energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_PZEM_AC
/*********************************************************************************************\
* PZEM-004T V3 - AC 220V 10/100A Energy
* PZEM-014 - AC 220V 10A Energy
* PZEM-016 - AC 220V 100A Energy
*
* Based on:
* PZEM-014,016 docs https://pan.baidu.com/s/1B0MdMgURyjtO1oQa2lavKw password ytkv
*
* Hardware Serial will be selected if GPIO1 = [62 PZEM0XX Tx] and GPIO3 = [98 PZEM016 Rx]
\*********************************************************************************************/
#define XNRG_05 5
const uint8_t PZEM_AC_DEVICE_ADDRESS = 0x01; // PZEM default address
const uint32_t PZEM_AC_STABILIZE = 10; // Number of seconds to stabilize 1 pzem
#include <TasmotaModbus.h>
TasmotaModbus *PzemAcModbus;
struct PZEMAC {
float energy = 0;
float last_energy = 0;
uint8_t send_retry = 0;
uint8_t phase = 0;
uint8_t address = 0;
uint8_t address_step = ADDR_IDLE;
} PzemAc;
void PzemAcEverySecond(void)
{
bool data_ready = PzemAcModbus->ReceiveReady();
uint16_t addr;
if (data_ready) {
uint8_t buffer[30]; // At least 5 + (2 * 10) = 25
uint8_t registers = 10;
if (ADDR_RECEIVE == PzemAc.address_step) {
registers = 2; // Need 1 byte extra as response is F8 06 00 02 00 01 FD A3
PzemAc.address_step--;
}
uint8_t error = PzemAcModbus->ReceiveBuffer(buffer, registers);
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, PzemAcModbus->ReceiveCount());
if (error) {
AddLog(LOG_LEVEL_DEBUG, PSTR("PAC: PzemAc %d error %d"), PZEM_AC_DEVICE_ADDRESS + PzemAc.phase, error);
} else {
Energy->data_valid[PzemAc.phase] = 0;
if (10 == registers) {
// 0 1 2 3 4 5 6 7 8 9 = ModBus register
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 = Buffer index
// 01 04 14 08 D1 00 6C 00 00 00 F4 00 00 00 26 00 00 01 F4 00 64 00 00 51 34
// Id Cc Sz Volt- Current---- Power------ Energy----- Frequ PFact Alarm Crc--
Energy->voltage[PzemAc.phase] = (float)((buffer[3] << 8) + buffer[4]) / 10.0f; // 6553.0 V
Energy->current[PzemAc.phase] = (float)((buffer[7] << 24) + (buffer[8] << 16) + (buffer[5] << 8) + buffer[6]) / 1000.0f; // 4294967.000 A
Energy->active_power[PzemAc.phase] = (float)((buffer[11] << 24) + (buffer[12] << 16) + (buffer[9] << 8) + buffer[10]) / 10.0f; // 429496729.0 W
Energy->frequency[PzemAc.phase] = (float)((buffer[17] << 8) + buffer[18]) / 10.0f; // 50.0 Hz
Energy->power_factor[PzemAc.phase] = (float)((buffer[19] << 8) + buffer[20]) / 100.0f; // 1.00
Energy->import_active[PzemAc.phase] = (float)((buffer[15] << 24) + (buffer[16] << 16) + (buffer[13] << 8) + buffer[14]) / 1000.0f; // 4294967.295 kWh
}
}
if (PzemAc.phase == Energy->phase_count -1) {
if (TasmotaGlobal.uptime > (PZEM_AC_STABILIZE * ENERGY_MAX_PHASES)) {
EnergyUpdateTotal();
}
}
}
if (0 == PzemAc.send_retry || data_ready) {
if (0 == PzemAc.phase) {
PzemAc.phase = Energy->phase_count -1;
} else {
PzemAc.phase--;
}
PzemAc.send_retry = ENERGY_WATCHDOG;
if (ADDR_SEND == PzemAc.address_step) {
addr = PzemAc.address;
PzemAcModbus->Send(0xF8, 0x06, 0x0002, 1, (uint16_t *) &addr);
PzemAc.address_step--;
} else {
PzemAcModbus->Send(PZEM_AC_DEVICE_ADDRESS + PzemAc.phase, 0x04, 0, 10);
}
}
else {
PzemAc.send_retry--;
if ((Energy->phase_count > 1) && (0 == PzemAc.send_retry) && (TasmotaGlobal.uptime < (PZEM_AC_STABILIZE * ENERGY_MAX_PHASES))) {
Energy->phase_count--; // Decrement phases if no response after retry within 30 seconds after restart
if (TasmotaGlobal.discovery_counter) {
TasmotaGlobal.discovery_counter += ENERGY_WATCHDOG + 1; // Don't send Discovery yet, delay by 4s + 1s
}
}
}
}
void PzemAcSnsInit(void)
{
PzemAcModbus = new TasmotaModbus(Pin(GPIO_PZEM016_RX), Pin(GPIO_PZEM0XX_TX), Pin(GPIO_NRG_MBS_TX_ENA));
uint8_t result = PzemAcModbus->Begin(9600);
if (result) {
if (2 == result) { ClaimSerial(); }
Energy->phase_count = ENERGY_MAX_PHASES; // Start off with three phases
PzemAc.phase = 0;
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void PzemAcDrvInit(void)
{
if (PinUsed(GPIO_PZEM016_RX) && PinUsed(GPIO_PZEM0XX_TX)) {
TasmotaGlobal.energy_driver = XNRG_05;
}
}
bool PzemAcCommand(void)
{
bool serviced = true;
if (CMND_MODULEADDRESS == Energy->command_code) {
PzemAc.address = XdrvMailbox.payload; // Valid addresses are 1, 2 and 3
PzemAc.address_step = ADDR_SEND;
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg05(uint32_t function)
{
bool result = false;
switch (function) {
case FUNC_ENERGY_EVERY_SECOND:
if (TasmotaGlobal.uptime > 4) { PzemAcEverySecond(); } // Fix start up issue #5875
break;
case FUNC_COMMAND:
result = PzemAcCommand();
break;
case FUNC_INIT:
PzemAcSnsInit();
break;
case FUNC_PRE_INIT:
PzemAcDrvInit();
break;
}
return result;
}
#endif // USE_PZEM_AC
#endif // USE_ENERGY_SENSOR