mirror of https://github.com/arendst/Tasmota.git
1120 lines
43 KiB
C++
1120 lines
43 KiB
C++
/*
|
|
xdrv_23_zigbee.ino - zigbee support for Tasmota
|
|
|
|
Copyright (C) 2020 Theo Arends and Stephan Hadinger
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ZIGBEE
|
|
|
|
#ifndef ZIGBEE_SAVE_DELAY_SECONDS
|
|
#define ZIGBEE_SAVE_DELAY_SECONDS 2 // wait for 2s before saving Zigbee info
|
|
#endif
|
|
const uint16_t kZigbeeSaveDelaySeconds = ZIGBEE_SAVE_DELAY_SECONDS; // wait for x seconds
|
|
|
|
/*********************************************************************************************\
|
|
* Structures for Rules variables related to the last received message
|
|
\*********************************************************************************************/
|
|
const size_t endpoints_max = 8; // we limit to 8 endpoints
|
|
|
|
class Z_Device {
|
|
public:
|
|
|
|
uint64_t longaddr; // 0x00 means unspecified
|
|
char * manufacturerId;
|
|
char * modelId;
|
|
char * friendlyName;
|
|
// _defer_last_time : what was the last time an outgoing message is scheduled
|
|
// this is designed for flow control and avoid messages to be lost or unanswered
|
|
uint32_t defer_last_message_sent;
|
|
|
|
uint8_t endpoints[endpoints_max]; // static array to limit memory consumption, list of endpoints until 0x00 or end of array
|
|
// Used for attribute reporting
|
|
Z_attribute_list attr_list;
|
|
// sequence number for Zigbee frames
|
|
uint16_t shortaddr; // unique key if not null, or unspecified if null
|
|
uint8_t seqNumber;
|
|
// Light information for Hue integration integration, last known values
|
|
uint8_t zb_profile; // profile of the device
|
|
// high 4 bits is device type:
|
|
// 0x0. = bulb
|
|
// 0x1. = switch
|
|
// 0x2. = motion sensor
|
|
// 0x3. = other alarms
|
|
// 0xE. = reserved for extension
|
|
// 0xF. = unknown
|
|
// For Bulb (0x0.)
|
|
// 0x0N = number of channel for the bulb: 0-5
|
|
// 0x08 = the device is hidden from Alexa
|
|
// other status
|
|
uint8_t power; // power state (boolean), MSB (0x80) stands for reachable
|
|
uint8_t colormode; // 0x00: Hue/Sat, 0x01: XY, 0x02: CT | 0xFF not set, default 0x01
|
|
uint8_t dimmer; // last Dimmer value: 0-254 | 0xFF not set, default 0x00
|
|
uint8_t sat; // last Sat: 0..254 | 0xFF not set, default 0x00
|
|
uint16_t ct; // last CT: 153-500 | 0xFFFF not set, default 200
|
|
uint16_t hue; // last Hue: 0..359 | 0xFFFF not set, default 0
|
|
uint16_t x, y; // last color [x,y] | 0xFFFF not set, default 0
|
|
uint8_t lqi; // lqi from last message, 0xFF means unknown
|
|
uint8_t batterypercent; // battery percentage (0..100), 0xFF means unknwon
|
|
// sensor data
|
|
int16_t temperature; // temperature in 1/10th of Celsius, 0x8000 if unknown
|
|
uint16_t pressure; // air pressure in hPa, 0xFFFF if unknown
|
|
uint8_t humidity; // humidity in percent, 0..100, 0xFF if unknown
|
|
// powe plug data
|
|
uint16_t mains_voltage; // AC voltage
|
|
int16_t mains_power; // Active power
|
|
uint32_t last_seen; // Last seen time (epoch)
|
|
|
|
// Constructor with all defaults
|
|
Z_Device(uint16_t _shortaddr = BAD_SHORTADDR, uint64_t _longaddr = 0x00):
|
|
longaddr(_longaddr),
|
|
manufacturerId(nullptr),
|
|
modelId(nullptr),
|
|
friendlyName(nullptr),
|
|
defer_last_message_sent(0),
|
|
endpoints{ 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
attr_list(),
|
|
shortaddr(_shortaddr),
|
|
seqNumber(0),
|
|
// Hue support
|
|
zb_profile(0xFF), // no profile
|
|
power(0x02), // 0x80 = reachable, 0x01 = power on, 0x02 = power unknown
|
|
colormode(0xFF),
|
|
dimmer(0xFF),
|
|
sat(0xFF),
|
|
ct(0xFFFF),
|
|
hue(0xFFFF),
|
|
x(0xFFFF),
|
|
y(0xFFFF),
|
|
lqi(0xFF),
|
|
batterypercent(0xFF),
|
|
temperature(-0x8000),
|
|
pressure(0xFFFF),
|
|
humidity(0xFF),
|
|
mains_voltage(0xFFFF),
|
|
mains_power(-0x8000),
|
|
last_seen(0)
|
|
{ };
|
|
|
|
inline bool valid(void) const { return BAD_SHORTADDR != shortaddr; } // is the device known, valid and found?
|
|
|
|
inline bool validLongaddr(void) const { return 0x0000 != longaddr; }
|
|
inline bool validManufacturerId(void) const { return nullptr != manufacturerId; }
|
|
inline bool validModelId(void) const { return nullptr != modelId; }
|
|
inline bool validFriendlyName(void) const { return nullptr != friendlyName; }
|
|
|
|
inline bool validPower(void) const { return 0x00 == (power & 0x02); }
|
|
inline bool validColormode(void) const { return 0xFF != colormode; }
|
|
inline bool validDimmer(void) const { return 0xFF != dimmer; }
|
|
inline bool validSat(void) const { return 0xFF != sat; }
|
|
inline bool validCT(void) const { return 0xFFFF != ct; }
|
|
inline bool validHue(void) const { return 0xFFFF != hue; }
|
|
inline bool validX(void) const { return 0xFFFF != x; }
|
|
inline bool validY(void) const { return 0xFFFF != y; }
|
|
|
|
inline bool validLqi(void) const { return 0xFF != lqi; }
|
|
inline bool validBatteryPercent(void) const { return 0xFF != batterypercent; }
|
|
|
|
inline bool validTemperature(void) const { return -0x8000 != temperature; }
|
|
inline bool validPressure(void) const { return 0xFFFF != pressure; }
|
|
inline bool validHumidity(void) const { return 0xFF != humidity; }
|
|
inline bool validLastSeen(void) const { return 0x0 != last_seen; }
|
|
|
|
inline bool validMainsVoltage(void) const { return 0xFFFF != mains_voltage; }
|
|
inline bool validMainsPower(void) const { return -0x8000 != mains_power; }
|
|
|
|
inline void setReachable(bool reachable) { bitWrite(power, 7, reachable); }
|
|
inline bool getReachable(void) const { return bitRead(power, 7); }
|
|
inline void setPower(bool power_on) { bitWrite(power, 0, power_on); bitWrite(power, 1, false); }
|
|
inline bool getPower(void) const { return bitRead(power, 0); }
|
|
|
|
// If light, returns the number of channels, or 0xFF if unknown
|
|
uint8_t getLightChannels(void) const {
|
|
if ((zb_profile & 0xF0) == 0x00) {
|
|
return zb_profile & 0x07;
|
|
}
|
|
return 0xFF;
|
|
}
|
|
};
|
|
|
|
/*********************************************************************************************\
|
|
* Structures for deferred callbacks
|
|
\*********************************************************************************************/
|
|
|
|
typedef void (*Z_DeviceTimer)(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value);
|
|
|
|
// Category for Deferred actions, this allows to selectively remove active deferred or update them
|
|
typedef enum Z_Def_Category {
|
|
Z_CAT_ALWAYS = 0, // no category, it will happen whatever new timers
|
|
// Below will clear any event in the same category for the same address (shortaddr / groupaddr)
|
|
Z_CLEAR_DEVICE = 0x01,
|
|
Z_CAT_READ_ATTR, // Attribute reporting, either READ_ATTRIBUTE or REPORT_ATTRIBUTE, we coalesce all attributes reported if we can
|
|
Z_CAT_VIRTUAL_OCCUPANCY, // Creation of a virtual attribute, typically after a time-out. Ex: Aqara presence sensor
|
|
Z_CAT_REACHABILITY, // timer set to measure reachability of device, i.e. if we don't get an answer after 1s, it is marked as unreachable (for Alexa)
|
|
// Below will clear based on device + cluster pair.
|
|
Z_CLEAR_DEVICE_CLUSTER,
|
|
Z_CAT_READ_CLUSTER,
|
|
// Below will clear based on device + cluster + endpoint
|
|
Z_CLEAR_DEVICE_CLUSTER_ENDPOINT,
|
|
Z_CAT_EP_DESC, // read endpoint descriptor to gather clusters
|
|
Z_CAT_BIND, // send auto-binding to coordinator
|
|
Z_CAT_CONFIG_ATTR, // send a config attribute reporting request
|
|
Z_CAT_READ_ATTRIBUTE, // read a single attribute
|
|
} Z_Def_Category;
|
|
|
|
const uint32_t Z_CAT_REACHABILITY_TIMEOUT = 2000; // 1000 ms or 1s
|
|
|
|
typedef struct Z_Deferred {
|
|
// below are per device timers, used for example to query the new state of the device
|
|
uint32_t timer; // millis() when to fire the timer, 0 if no timer
|
|
uint16_t shortaddr; // identifier of the device
|
|
uint16_t groupaddr; // group address (if needed)
|
|
uint16_t cluster; // cluster to use for the timer
|
|
uint8_t endpoint; // endpoint to use for timer
|
|
uint8_t category; // which category of deferred is it
|
|
uint32_t value; // any raw value to use for the timer
|
|
Z_DeviceTimer func; // function to call when timer occurs
|
|
} Z_Deferred;
|
|
|
|
/*********************************************************************************************\
|
|
* Singleton for device configuration
|
|
\*********************************************************************************************/
|
|
|
|
// All devices are stored in a Vector
|
|
// Invariants:
|
|
// - shortaddr is unique if not null
|
|
// - longaddr is unique if not null
|
|
// - shortaddr and longaddr cannot be both null
|
|
class Z_Devices {
|
|
public:
|
|
Z_Devices() : _deferred() {};
|
|
|
|
// Probe the existence of device keys
|
|
// Results:
|
|
// - 0x0000 = not found
|
|
// - BAD_SHORTADDR = bad parameter
|
|
// - 0x<shortaddr> = the device's short address
|
|
uint16_t isKnownLongAddr(uint64_t longaddr) const;
|
|
uint16_t isKnownIndex(uint32_t index) const;
|
|
uint16_t isKnownFriendlyName(const char * name) const;
|
|
|
|
Z_Device & findShortAddr(uint16_t shortaddr);
|
|
const Z_Device & findShortAddr(uint16_t shortaddr) const;
|
|
Z_Device & findLongAddr(uint64_t longaddr);
|
|
const Z_Device & findLongAddr(uint64_t longaddr) const;
|
|
Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist
|
|
Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist
|
|
// check if a device was found or if it's the fallback device
|
|
inline bool foundDevice(const Z_Device & device) const {
|
|
return (&device != &device_unk);
|
|
}
|
|
|
|
int32_t findFriendlyName(const char * name) const;
|
|
uint64_t getDeviceLongAddr(uint16_t shortaddr) const;
|
|
|
|
uint8_t findFirstEndpoint(uint16_t shortaddr) const;
|
|
|
|
// Add new device, provide ShortAddr and optional longAddr
|
|
// If it is already registered, update information, otherwise create the entry
|
|
void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0);
|
|
|
|
// Add an endpoint to a device
|
|
void addEndpoint(uint16_t shortaddr, uint8_t endpoint);
|
|
void clearEndpoints(uint16_t shortaddr);
|
|
uint32_t countEndpoints(uint16_t shortaddr) const; // return the number of known endpoints (0 if unknown)
|
|
|
|
void setManufId(uint16_t shortaddr, const char * str);
|
|
void setModelId(uint16_t shortaddr, const char * str);
|
|
void setFriendlyName(uint16_t shortaddr, const char * str);
|
|
inline const char * getFriendlyName(uint16_t shortaddr) const {
|
|
return findShortAddr(shortaddr).friendlyName;
|
|
}
|
|
inline const char * getModelId(uint16_t shortaddr) const {
|
|
return findShortAddr(shortaddr).modelId;
|
|
}
|
|
inline const char * getManufacturerId(uint16_t shortaddr) const{
|
|
return findShortAddr(shortaddr).manufacturerId;
|
|
}
|
|
|
|
void setReachable(uint16_t shortaddr, bool reachable);
|
|
void setLQI(uint16_t shortaddr, uint8_t lqi);
|
|
void setLastSeenNow(uint16_t shortaddr);
|
|
// uint8_t getLQI(uint16_t shortaddr) const;
|
|
void setBatteryPercent(uint16_t shortaddr, uint8_t bp);
|
|
uint8_t getBatteryPercent(uint16_t shortaddr) const;
|
|
|
|
// get next sequence number for (increment at each all)
|
|
uint8_t getNextSeqNumber(uint16_t shortaddr);
|
|
|
|
// Dump json
|
|
String dumpLightState(uint16_t shortaddr) const;
|
|
String dump(uint32_t dump_mode, uint16_t status_shortaddr = 0) const;
|
|
int32_t deviceRestore(JsonParserObject json);
|
|
|
|
// General Zigbee device profile support
|
|
void setZbProfile(uint16_t shortaddr, uint8_t zb_profile);
|
|
uint8_t getZbProfile(uint16_t shortaddr) const ;
|
|
|
|
// Hue support
|
|
void setHueBulbtype(uint16_t shortaddr, int8_t bulbtype);
|
|
int8_t getHueBulbtype(uint16_t shortaddr) const ;
|
|
void hideHueBulb(uint16_t shortaddr, bool hidden);
|
|
bool isHueBulbHidden(uint16_t shortaddr) const ;
|
|
|
|
// Timers
|
|
void resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster = 0xFFFF, uint8_t endpoint = 0xFF);
|
|
void setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func);
|
|
void queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func);
|
|
void runTimer(void);
|
|
|
|
// Append or clear attributes Json structure
|
|
void jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list);
|
|
void jsonPublishFlush(uint16_t shortaddr); // publish the json message and clear buffer
|
|
bool jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const;
|
|
void jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list);
|
|
|
|
// Iterator
|
|
size_t devicesSize(void) const {
|
|
return _devices.length();
|
|
}
|
|
const Z_Device & devicesAt(size_t i) const {
|
|
const Z_Device * devp = _devices.at(i);
|
|
if (devp) {
|
|
return *devp;
|
|
} else {
|
|
return device_unk;
|
|
}
|
|
}
|
|
|
|
// Remove device from list
|
|
bool removeDevice(uint16_t shortaddr);
|
|
|
|
// Mark data as 'dirty' and requiring to save in Flash
|
|
void dirty(void);
|
|
void clean(void); // avoid writing to flash the last changes
|
|
void shrinkToFit(uint16_t shortaddr);
|
|
|
|
// Find device by name, can be short_addr, long_addr, number_in_array or name
|
|
uint16_t parseDeviceParam(const char * param, bool short_must_be_known = false) const;
|
|
|
|
private:
|
|
LList<Z_Device> _devices; // list of devices
|
|
LList<Z_Deferred> _deferred; // list of deferred calls
|
|
uint32_t _saveTimer = 0;
|
|
uint8_t _seqNumber = 0; // global seqNumber if device is unknown
|
|
|
|
// Following device is used represent the unknown device, with all defaults
|
|
// Any find() function will not return Null, instead it will return this instance
|
|
const Z_Device device_unk = Z_Device(BAD_SHORTADDR);
|
|
|
|
//int32_t findShortAddrIdx(uint16_t shortaddr) const;
|
|
// Create a new entry in the devices list - must be called if it is sure it does not already exist
|
|
Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0);
|
|
void freeDeviceEntry(Z_Device *device);
|
|
|
|
void setStringAttribute(char*& attr, const char * str);
|
|
|
|
void updateZbProfile(uint16_t shortaddr);
|
|
};
|
|
|
|
/*********************************************************************************************\
|
|
* Singleton variable
|
|
\*********************************************************************************************/
|
|
Z_Devices zigbee_devices = Z_Devices();
|
|
|
|
// Local coordinator information
|
|
uint64_t localIEEEAddr = 0;
|
|
uint16_t localShortAddr = 0;
|
|
|
|
/*********************************************************************************************\
|
|
* Implementation
|
|
\*********************************************************************************************/
|
|
|
|
//
|
|
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
|
|
// entry with same shortaddr or longaddr exists.
|
|
//
|
|
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
|
|
if ((BAD_SHORTADDR == shortaddr) && !longaddr) { return (Z_Device&) device_unk; } // it is not legal to create this entry
|
|
Z_Device device(shortaddr, longaddr);
|
|
|
|
dirty();
|
|
return _devices.addHead(device);
|
|
}
|
|
|
|
void Z_Devices::freeDeviceEntry(Z_Device *device) {
|
|
if (device->manufacturerId) { free(device->manufacturerId); }
|
|
if (device->modelId) { free(device->modelId); }
|
|
if (device->friendlyName) { free(device->friendlyName); }
|
|
free(device);
|
|
}
|
|
|
|
//
|
|
// Scan all devices to find a corresponding shortaddr
|
|
// Looks info device.shortaddr entry
|
|
// In:
|
|
// shortaddr (not BAD_SHORTADDR)
|
|
// Out:
|
|
// reference to device, or to device_unk if not found
|
|
// (use foundDevice() to check if found)
|
|
Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) {
|
|
for (auto & elem : _devices) {
|
|
if (elem.shortaddr == shortaddr) { return elem; }
|
|
}
|
|
return (Z_Device&) device_unk;
|
|
}
|
|
const Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) const {
|
|
for (const auto & elem : _devices) {
|
|
if (elem.shortaddr == shortaddr) { return elem; }
|
|
}
|
|
return device_unk;
|
|
}
|
|
//
|
|
// Scan all devices to find a corresponding longaddr
|
|
// Looks info device.longaddr entry
|
|
// In:
|
|
// longaddr (non null)
|
|
// Out:
|
|
// index in _devices of entry, -1 if not found
|
|
//
|
|
Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) {
|
|
if (!longaddr) { return (Z_Device&) device_unk; }
|
|
for (auto &elem : _devices) {
|
|
if (elem.longaddr == longaddr) { return elem; }
|
|
}
|
|
return (Z_Device&) device_unk;
|
|
}
|
|
const Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) const {
|
|
if (!longaddr) { return device_unk; }
|
|
for (const auto &elem : _devices) {
|
|
if (elem.longaddr == longaddr) { return elem; }
|
|
}
|
|
return device_unk;
|
|
}
|
|
//
|
|
// Scan all devices to find a corresponding friendlyNme
|
|
// Looks info device.friendlyName entry
|
|
// In:
|
|
// friendlyName (null terminated, should not be empty)
|
|
// Out:
|
|
// index in _devices of entry, -1 if not found
|
|
//
|
|
int32_t Z_Devices::findFriendlyName(const char * name) const {
|
|
if (!name) { return -1; } // if pointer is null
|
|
size_t name_len = strlen(name);
|
|
int32_t found = 0;
|
|
if (name_len) {
|
|
for (auto &elem : _devices) {
|
|
if (elem.friendlyName) {
|
|
if (strcasecmp(elem.friendlyName, name) == 0) { return found; }
|
|
}
|
|
found++;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const {
|
|
const Z_Device & device = findLongAddr(longaddr);
|
|
if (foundDevice(device)) {
|
|
return device.shortaddr; // can be zero, if not yet registered
|
|
} else {
|
|
return BAD_SHORTADDR;
|
|
}
|
|
}
|
|
|
|
uint16_t Z_Devices::isKnownIndex(uint32_t index) const {
|
|
if (index < devicesSize()) {
|
|
const Z_Device & device = devicesAt(index);
|
|
return device.shortaddr;
|
|
} else {
|
|
return BAD_SHORTADDR;
|
|
}
|
|
}
|
|
|
|
uint16_t Z_Devices::isKnownFriendlyName(const char * name) const {
|
|
if ((!name) || (0 == strlen(name))) { return BAD_SHORTADDR; } // Error
|
|
int32_t found = findFriendlyName(name);
|
|
if (found >= 0) {
|
|
const Z_Device & device = devicesAt(found);
|
|
return device.shortaddr; // can be zero, if not yet registered
|
|
} else {
|
|
return BAD_SHORTADDR;
|
|
}
|
|
}
|
|
|
|
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
|
|
return findShortAddr(shortaddr).longaddr; // if unknown, it reverts to the Unknown device and longaddr is 0x00
|
|
}
|
|
|
|
//
|
|
// We have a seen a shortaddr on the network, get the corresponding device object
|
|
//
|
|
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
|
|
if (BAD_SHORTADDR == shortaddr) { return (Z_Device&) device_unk; } // this is not legal
|
|
Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
return device;
|
|
}
|
|
return createDeviceEntry(shortaddr, 0);
|
|
}
|
|
|
|
// find the Device object by its longaddr (unique key if not null)
|
|
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
|
|
if (!longaddr) { return (Z_Device&) device_unk; }
|
|
Z_Device & device = findLongAddr(longaddr);
|
|
if (foundDevice(device)) {
|
|
return device;
|
|
}
|
|
return createDeviceEntry(0, longaddr);
|
|
}
|
|
|
|
// Remove device from list, return true if it was known, false if it was not recorded
|
|
bool Z_Devices::removeDevice(uint16_t shortaddr) {
|
|
Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
_devices.remove(&device);
|
|
dirty();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// We have just seen a device on the network, update the info based on short/long addr
|
|
// In:
|
|
// shortaddr
|
|
// longaddr (both can't be null at the same time)
|
|
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
|
|
Z_Device * s_found = &findShortAddr(shortaddr); // is there already a shortaddr entry
|
|
Z_Device * l_found = &findLongAddr(longaddr); // is there already a longaddr entry
|
|
|
|
if (foundDevice(*s_found) && foundDevice(*l_found)) { // both shortaddr and longaddr are already registered
|
|
if (s_found == l_found) {
|
|
} else { // they don't match
|
|
// the device with longaddr got a new shortaddr
|
|
l_found->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
|
|
// erase the previous shortaddr
|
|
freeDeviceEntry(s_found);
|
|
_devices.remove(s_found);
|
|
dirty();
|
|
}
|
|
} else if (foundDevice(*s_found)) {
|
|
// shortaddr already exists but longaddr not
|
|
// add the longaddr to the entry
|
|
s_found->longaddr = longaddr;
|
|
dirty();
|
|
} else if (foundDevice(*l_found)) {
|
|
// longaddr entry exists, update shortaddr
|
|
l_found->shortaddr = shortaddr;
|
|
dirty();
|
|
} else {
|
|
// neither short/lonf addr are found.
|
|
if ((BAD_SHORTADDR != shortaddr) || longaddr) {
|
|
createDeviceEntry(shortaddr, longaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Clear all endpoints
|
|
//
|
|
void Z_Devices::clearEndpoints(uint16_t shortaddr) {
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
device.endpoints[i] = 0;
|
|
// no dirty here because it doesn't make sense to store it, does it?
|
|
}
|
|
}
|
|
|
|
//
|
|
// Add an endpoint to a shortaddr
|
|
//
|
|
void Z_Devices::addEndpoint(uint16_t shortaddr, uint8_t endpoint) {
|
|
if (0x00 == endpoint) { return; }
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
if (endpoint == device.endpoints[i]) {
|
|
return; // endpoint already there
|
|
}
|
|
if (0 == device.endpoints[i]) {
|
|
device.endpoints[i] = endpoint;
|
|
dirty();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Count the number of known endpoints
|
|
//
|
|
uint32_t Z_Devices::countEndpoints(uint16_t shortaddr) const {
|
|
uint32_t count_ep = 0;
|
|
const Z_Device & device =findShortAddr(shortaddr);
|
|
if (!foundDevice(device)) return 0;
|
|
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
if (0 != device.endpoints[i]) {
|
|
count_ep++;
|
|
}
|
|
}
|
|
return count_ep;
|
|
}
|
|
|
|
// Find the first endpoint of the device
|
|
uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const {
|
|
// When in router of end-device mode, the coordinator was not probed, in this case always talk to endpoint 1
|
|
if (0x0000 == shortaddr) { return 1; }
|
|
return findShortAddr(shortaddr).endpoints[0]; // returns 0x00 if no endpoint
|
|
}
|
|
|
|
void Z_Devices::setStringAttribute(char*& attr, const char * str) {
|
|
if (nullptr == str) { return; } // ignore a null parameter
|
|
size_t str_len = strlen(str);
|
|
|
|
if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything
|
|
if (attr) {
|
|
// we already have a value
|
|
if (strcmp(attr, str) != 0) {
|
|
// new value
|
|
free(attr); // free previous value
|
|
attr = nullptr;
|
|
} else {
|
|
return; // same value, don't change anything
|
|
}
|
|
}
|
|
if (str_len) {
|
|
attr = (char*) malloc(str_len + 1);
|
|
strlcpy(attr, str, str_len + 1);
|
|
}
|
|
dirty();
|
|
}
|
|
|
|
//
|
|
// Sets the ManufId for a device.
|
|
// No action taken if the device does not exist.
|
|
// Inputs:
|
|
// - shortaddr: 16-bits short address of the device. No action taken if the device is unknown
|
|
// - str: string pointer, if nullptr it is considered as empty string
|
|
// Impact:
|
|
// - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash
|
|
//
|
|
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
|
|
setStringAttribute(getShortAddr(shortaddr).manufacturerId, str);
|
|
}
|
|
|
|
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
|
|
setStringAttribute(getShortAddr(shortaddr).modelId, str);
|
|
}
|
|
|
|
void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) {
|
|
setStringAttribute(getShortAddr(shortaddr).friendlyName, str);
|
|
}
|
|
|
|
|
|
void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) {
|
|
getShortAddr(shortaddr).setReachable(reachable);
|
|
}
|
|
|
|
void Z_Devices::setLQI(uint16_t shortaddr, uint8_t lqi) {
|
|
if (shortaddr == localShortAddr) { return; }
|
|
getShortAddr(shortaddr).lqi = lqi;
|
|
}
|
|
|
|
void Z_Devices::setLastSeenNow(uint16_t shortaddr) {
|
|
if (shortaddr == localShortAddr) { return; }
|
|
getShortAddr(shortaddr).last_seen= Rtc.utc_time;
|
|
}
|
|
|
|
|
|
void Z_Devices::setBatteryPercent(uint16_t shortaddr, uint8_t bp) {
|
|
getShortAddr(shortaddr).batterypercent = bp;
|
|
}
|
|
|
|
// get the next sequance number for the device, or use the global seq number if device is unknown
|
|
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
|
|
Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
device.seqNumber += 1;
|
|
return device.seqNumber;
|
|
} else {
|
|
_seqNumber += 1;
|
|
return _seqNumber;
|
|
}
|
|
}
|
|
|
|
// General Zigbee device profile support
|
|
void Z_Devices::setZbProfile(uint16_t shortaddr, uint8_t zb_profile) {
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
if (zb_profile != device.zb_profile) {
|
|
device.zb_profile = zb_profile;
|
|
updateZbProfile(shortaddr);
|
|
dirty();
|
|
}
|
|
}
|
|
|
|
// Do all the required action when a profile is changed
|
|
void Z_Devices::updateZbProfile(uint16_t shortaddr) {
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
uint8_t zb_profile = device.zb_profile;
|
|
if (0xFF == zb_profile) { return; }
|
|
|
|
switch (zb_profile & 0xF0) {
|
|
case 0x00: // bulb profile
|
|
{
|
|
uint32_t channels = zb_profile & 0x07;
|
|
// depending on the bulb type, the default parameters from unknown to credible defaults
|
|
// if (!device.validPower()) { device.setPower(false); }
|
|
// if (1 <= channels) {
|
|
// if (0xFF == device.dimmer) { device.dimmer = 0; }
|
|
// }
|
|
// if (3 <= channels) {
|
|
// if (0xFF == device.sat) { device.sat = 0; }
|
|
// if (0xFFFF == device.hue) { device.hue = 0; }
|
|
// if (0xFFFF == device.x) { device.x = 0; }
|
|
// if (0xFFFF == device.y) { device.y = 0; }
|
|
// if (0xFF == device.colormode) { device.colormode = 0; } // HueSat mode
|
|
// }
|
|
// if ((2 == channels) || (5 == channels)) {
|
|
// if (0xFFFF == device.ct) { device.ct = 200; }
|
|
// if (0xFF == device.colormode) { device.colormode = 2; } // CT mode
|
|
// }
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Returns the device profile or 0xFF if the device or profile is unknown
|
|
uint8_t Z_Devices::getZbProfile(uint16_t shortaddr) const {
|
|
return findShortAddr(shortaddr).zb_profile;
|
|
}
|
|
|
|
// Hue support
|
|
void Z_Devices::setHueBulbtype(uint16_t shortaddr, int8_t bulbtype) {
|
|
uint8_t zb_profile = (0 > bulbtype) ? 0xFF : (bulbtype & 0x07);
|
|
setZbProfile(shortaddr, zb_profile);
|
|
}
|
|
|
|
int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const {
|
|
uint8_t zb_profile = getZbProfile(shortaddr);
|
|
if (0x00 == (zb_profile & 0xF0)) {
|
|
return (zb_profile & 0x07);
|
|
} else {
|
|
// not a bulb
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
void Z_Devices::hideHueBulb(uint16_t shortaddr, bool hidden) {
|
|
uint8_t hue_hidden_flag = hidden ? 0x08 : 0x00;
|
|
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
if (0x00 == (device.zb_profile & 0xF0)) {
|
|
// bulb type
|
|
// set bit 3 accordingly
|
|
if (hue_hidden_flag != (device.zb_profile & 0x08)) {
|
|
device.zb_profile = (device.zb_profile & 0xF7) | hue_hidden_flag;
|
|
dirty();
|
|
}
|
|
}
|
|
}
|
|
// true if device is not knwon or not a bulb - it wouldn't make sense to publish a non-bulb
|
|
bool Z_Devices::isHueBulbHidden(uint16_t shortaddr) const {
|
|
const Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
uint8_t zb_profile = device.zb_profile;
|
|
if (0x00 == (zb_profile & 0xF0)) {
|
|
// bulb type
|
|
return (zb_profile & 0x08) ? true : false;
|
|
}
|
|
}
|
|
return true; // Fallback - Device is considered as hidden
|
|
}
|
|
|
|
// Deferred actions
|
|
// Parse for a specific category, of all deferred for a device if category == 0xFF
|
|
// Only with specific cluster number or for all clusters if cluster == 0xFFFF
|
|
void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster, uint8_t endpoint) {
|
|
// iterate the list of deferred, and remove any linked to the shortaddr
|
|
for (auto & defer : _deferred) {
|
|
if ((defer.shortaddr == shortaddr) && (defer.groupaddr == groupaddr)) {
|
|
if ((0xFF == category) || (defer.category == category)) {
|
|
if ((0xFFFF == cluster) || (defer.cluster == cluster)) {
|
|
if ((0xFF == endpoint) || (defer.endpoint == endpoint)) {
|
|
_deferred.remove(&defer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set timer for a specific device
|
|
void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
|
|
// First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway)
|
|
if (category >= Z_CLEAR_DEVICE) { // if category == 0, we leave all previous timers
|
|
resetTimersForDevice(shortaddr, groupaddr, category, category >= Z_CLEAR_DEVICE_CLUSTER ? cluster : 0xFFFF, category >= Z_CLEAR_DEVICE_CLUSTER_ENDPOINT ? endpoint : 0xFF); // remove any cluster
|
|
}
|
|
|
|
// Now create the new timer
|
|
Z_Deferred & deferred = _deferred.addHead();
|
|
deferred = { wait_ms + millis(), // timer
|
|
shortaddr,
|
|
groupaddr,
|
|
cluster,
|
|
endpoint,
|
|
category,
|
|
value,
|
|
func };
|
|
}
|
|
|
|
// Set timer after the already queued events
|
|
// I.e. the wait_ms is not counted from now, but from the last event queued, which is 'now' or in the future
|
|
void Z_Devices::queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
uint32_t now_millis = millis();
|
|
if (TimeReached(device.defer_last_message_sent)) {
|
|
device.defer_last_message_sent = now_millis;
|
|
}
|
|
// defer_last_message_sent equals now or a value in the future
|
|
device.defer_last_message_sent += wait_ms;
|
|
|
|
// for queueing we don't clear the backlog, so we force category to Z_CAT_ALWAYS
|
|
setTimer(shortaddr, groupaddr, (device.defer_last_message_sent - now_millis), cluster, endpoint, Z_CAT_ALWAYS, value, func);
|
|
}
|
|
|
|
// Run timer at each tick
|
|
// WARNING: don't set a new timer within a running timer, this causes memory corruption
|
|
void Z_Devices::runTimer(void) {
|
|
// visit all timers
|
|
for (auto & defer : _deferred) {
|
|
uint32_t timer = defer.timer;
|
|
if (TimeReached(timer)) {
|
|
(*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value);
|
|
_deferred.remove(&defer);
|
|
}
|
|
}
|
|
|
|
// check if we need to save to Flash
|
|
if ((_saveTimer) && TimeReached(_saveTimer)) {
|
|
saveZigbeeDevices();
|
|
_saveTimer = 0;
|
|
}
|
|
}
|
|
|
|
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
|
|
// true - one attribute (except LinkQuality) woudl be lost, there is conflict
|
|
// false - new attributes can be safely added
|
|
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const {
|
|
const Z_Device & device = findShortAddr(shortaddr);
|
|
|
|
if (!foundDevice(device)) { return false; }
|
|
if (attr_list.isEmpty()) {
|
|
return false; // if no previous value, no conflict
|
|
}
|
|
|
|
// compare groups
|
|
if (device.attr_list.isValidGroupId() && attr_list.isValidGroupId()) {
|
|
if (device.attr_list.group_id != attr_list.group_id) { return true; } // groups are in conflict
|
|
}
|
|
|
|
// compare src_ep
|
|
if (device.attr_list.isValidSrcEp() && attr_list.isValidSrcEp()) {
|
|
if (device.attr_list.src_ep != attr_list.src_ep) { return true; }
|
|
}
|
|
|
|
// LQI does not count as conflicting
|
|
|
|
// parse all other parameters
|
|
for (const auto & attr : attr_list) {
|
|
const Z_attribute * curr_attr = device.attr_list.findAttribute(attr);
|
|
if (nullptr != curr_attr) {
|
|
if (!curr_attr->equalsVal(attr)) {
|
|
return true; // the value already exists and is different - conflict!
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Z_Devices::jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
device.attr_list.mergeList(attr_list);
|
|
}
|
|
|
|
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
if (!device.valid()) { return; } // safeguard
|
|
Z_attribute_list &attr_list = device.attr_list;
|
|
|
|
if (!attr_list.isEmpty()) {
|
|
const char * fname = zigbee_devices.getFriendlyName(shortaddr);
|
|
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
|
|
|
|
// save parameters is global variables to be used by Rules
|
|
gZbLastMessage.device = shortaddr; // %zbdevice%
|
|
gZbLastMessage.groupaddr = attr_list.group_id; // %zbgroup%
|
|
gZbLastMessage.endpoint = attr_list.src_ep; // %zbendpoint%
|
|
|
|
mqtt_data[0] = 0; // clear string
|
|
// Do we prefix with `ZbReceived`?
|
|
if (!Settings.flag4.remove_zbreceived) {
|
|
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":"));
|
|
}
|
|
// What key do we use, shortaddr or name?
|
|
if (use_fname) {
|
|
Response_P(PSTR("%s{\"%s\":{"), mqtt_data, fname);
|
|
} else {
|
|
Response_P(PSTR("%s{\"0x%04X\":{"), mqtt_data, shortaddr);
|
|
}
|
|
// Add "Device":"0x...."
|
|
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\","), mqtt_data, shortaddr);
|
|
// Add "Name":"xxx" if name is present
|
|
if (fname) {
|
|
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_NAME "\":\"%s\","), mqtt_data, EscapeJSONString(fname).c_str());
|
|
}
|
|
// Add all other attributes
|
|
Response_P(PSTR("%s%s}}"), mqtt_data, attr_list.toString().c_str());
|
|
|
|
if (!Settings.flag4.remove_zbreceived) {
|
|
Response_P(PSTR("%s}"), mqtt_data);
|
|
}
|
|
// AddLog_P2(LOG_LEVEL_INFO, PSTR(">>> %s"), mqtt_data); // TODO
|
|
attr_list.reset(); // clear the attributes
|
|
|
|
if (Settings.flag4.zigbee_distinct_topics) {
|
|
if (Settings.flag4.zb_topic_fname && fname) {
|
|
//Clean special characters and check size of friendly name
|
|
char stemp[TOPSZ];
|
|
strlcpy(stemp, (!strlen(fname)) ? MQTT_TOPIC : fname, sizeof(stemp));
|
|
MakeValidMqtt(0, stemp);
|
|
//Create topic with Prefix3 and cleaned up friendly name
|
|
char frtopic[TOPSZ];
|
|
snprintf_P(frtopic, sizeof(frtopic), PSTR("%s/%s/" D_RSLT_SENSOR), SettingsText(SET_MQTTPREFIX3), stemp);
|
|
MqttPublish(frtopic, Settings.flag.mqtt_sensor_retain);
|
|
} else {
|
|
char subtopic[16];
|
|
snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X/" D_RSLT_SENSOR), shortaddr);
|
|
MqttPublishPrefixTopic_P(TELE, subtopic, Settings.flag.mqtt_sensor_retain);
|
|
}
|
|
} else {
|
|
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
|
|
}
|
|
XdrvRulesProcess(); // apply rules
|
|
}
|
|
}
|
|
|
|
void Z_Devices::jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list) {
|
|
jsonPublishFlush(shortaddr); // flush any previous buffer
|
|
jsonAppend(shortaddr, attr_list);
|
|
jsonPublishFlush(shortaddr); // publish now
|
|
}
|
|
|
|
void Z_Devices::dirty(void) {
|
|
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
|
|
}
|
|
void Z_Devices::clean(void) {
|
|
_saveTimer = 0;
|
|
}
|
|
|
|
// Parse the command parameters for either:
|
|
// - a short address starting with "0x", example: 0x1234
|
|
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
|
|
// - a number 0..99, the index number in ZigbeeStatus
|
|
// - a friendly name, between quotes, example: "Room_Temp"
|
|
uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const {
|
|
if (nullptr == param) { return BAD_SHORTADDR; }
|
|
size_t param_len = strlen(param);
|
|
char dataBuf[param_len + 1];
|
|
strcpy(dataBuf, param);
|
|
RemoveSpace(dataBuf);
|
|
uint16_t shortaddr = BAD_SHORTADDR; // start with unknown
|
|
|
|
if (strlen(dataBuf) < 4) {
|
|
// simple number 0..99
|
|
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) {
|
|
shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1);
|
|
}
|
|
} else if ((dataBuf[0] == '0') && ((dataBuf[1] == 'x') || (dataBuf[1] == 'X'))) {
|
|
// starts with 0x
|
|
if (strlen(dataBuf) < 18) {
|
|
// expect a short address
|
|
shortaddr = strtoull(dataBuf, nullptr, 0);
|
|
if (short_must_be_known) {
|
|
shortaddr = zigbee_devices.findShortAddr(shortaddr).shortaddr; // if not found, it reverts to the unknown_device with address BAD_SHORTADDR
|
|
}
|
|
// else we don't check if it's already registered to force unregistered devices
|
|
} else {
|
|
// expect a long address
|
|
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
|
|
shortaddr = zigbee_devices.isKnownLongAddr(longaddr);
|
|
}
|
|
} else {
|
|
// expect a Friendly Name
|
|
shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf);
|
|
}
|
|
|
|
return shortaddr;
|
|
}
|
|
|
|
// Display the tracked status for a light
|
|
String Z_Devices::dumpLightState(uint16_t shortaddr) const {
|
|
Z_attribute_list attr_list;
|
|
char hex[8];
|
|
|
|
const Z_Device & device = findShortAddr(shortaddr);
|
|
const char * fname = getFriendlyName(shortaddr);
|
|
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
|
|
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
|
|
if (fname) {
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(fname);
|
|
}
|
|
|
|
if (foundDevice(device)) {
|
|
// expose the last known status of the bulb, for Hue integration
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_LIGHT)).setInt(getHueBulbtype(shortaddr)); // sign extend, 0xFF changed as -1
|
|
// dump all known values
|
|
attr_list.addAttribute(F("Reachable")).setBool(device.getReachable());
|
|
if (device.validPower()) { attr_list.addAttribute(F("Power")).setUInt(device.getPower()); }
|
|
if (device.validDimmer()) { attr_list.addAttribute(F("Dimmer")).setUInt(device.dimmer); }
|
|
if (device.validColormode()) { attr_list.addAttribute(F("Colormode")).setUInt(device.colormode); }
|
|
if (device.validCT()) { attr_list.addAttribute(F("CT")).setUInt(device.ct); }
|
|
if (device.validSat()) { attr_list.addAttribute(F("Sat")).setUInt(device.sat); }
|
|
if (device.validHue()) { attr_list.addAttribute(F("Hue")).setUInt(device.hue); }
|
|
if (device.validX()) { attr_list.addAttribute(F("X")).setUInt(device.x); }
|
|
if (device.validY()) { attr_list.addAttribute(F("Y")).setUInt(device.y); }
|
|
}
|
|
|
|
Z_attribute_list attr_list_root;
|
|
Z_attribute * attr_root;
|
|
if (use_fname) {
|
|
attr_root = &attr_list_root.addAttribute(fname);
|
|
} else {
|
|
attr_root = &attr_list_root.addAttribute(hex);
|
|
}
|
|
attr_root->setStrRaw(attr_list.toString(true).c_str());
|
|
return attr_list_root.toString(true);
|
|
}
|
|
|
|
// Dump the internal memory of Zigbee devices
|
|
// Mode = 1: simple dump of devices addresses
|
|
// Mode = 2: simple dump of devices addresses and names, endpoints, light
|
|
String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const {
|
|
Z_json_array json_arr;
|
|
|
|
for (const auto & device : _devices) {
|
|
uint16_t shortaddr = device.shortaddr;
|
|
char hex[22];
|
|
|
|
// ignore non-current device, if device specified
|
|
if ((BAD_SHORTADDR != status_shortaddr) && (status_shortaddr != shortaddr)) { continue; }
|
|
|
|
Z_attribute_list attr_list;
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
|
|
|
|
if (device.friendlyName > 0) {
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(device.friendlyName);
|
|
}
|
|
|
|
if (2 <= dump_mode) {
|
|
hex[0] = '0'; // prefix with '0x'
|
|
hex[1] = 'x';
|
|
Uint64toHex(device.longaddr, &hex[2], 64);
|
|
attr_list.addAttribute(F("IEEEAddr")).setStr(hex);
|
|
if (device.modelId) {
|
|
attr_list.addAttribute(F(D_JSON_MODEL D_JSON_ID)).setStr(device.modelId);
|
|
}
|
|
int8_t bulbtype = getHueBulbtype(shortaddr);
|
|
if (bulbtype >= 0) {
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_LIGHT)).setInt(bulbtype); // sign extend, 0xFF changed as -1
|
|
}
|
|
if (device.manufacturerId) {
|
|
attr_list.addAttribute(F("Manufacturer")).setStr(device.manufacturerId);
|
|
}
|
|
Z_json_array arr_ep;
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
uint8_t endpoint = device.endpoints[i];
|
|
if (0x00 == endpoint) { break; }
|
|
arr_ep.add(endpoint);
|
|
}
|
|
attr_list.addAttribute(F("Endpoints")).setStrRaw(arr_ep.toString().c_str());
|
|
}
|
|
json_arr.addStrRaw(attr_list.toString(true).c_str());
|
|
}
|
|
return json_arr.toString();
|
|
}
|
|
|
|
// Restore a single device configuration based on json export
|
|
// Input: json element as expported by `ZbStatus2``
|
|
// Mandatory attribue: `Device`
|
|
//
|
|
// Returns:
|
|
// 0 : Ok
|
|
// <0 : Error
|
|
//
|
|
// Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}
|
|
int32_t Z_Devices::deviceRestore(JsonParserObject json) {
|
|
|
|
// params
|
|
uint16_t device = 0x0000; // 0x0000 is coordinator so considered invalid
|
|
uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown
|
|
const char * modelid = nullptr;
|
|
const char * manufid = nullptr;
|
|
const char * friendlyname = nullptr;
|
|
int8_t bulbtype = -1;
|
|
size_t endpoints_len = 0;
|
|
|
|
// read mandatory "Device"
|
|
JsonParserToken val_device = json[PSTR("Device")];
|
|
if (val_device) {
|
|
device = (uint32_t) val_device.getUInt(device);
|
|
} else {
|
|
return -1; // missing "Device" attribute
|
|
}
|
|
|
|
ieeeaddr = json.getULong(PSTR("IEEEAddr"), ieeeaddr); // read "IEEEAddr" 64 bits in format "0x0000000000000000"
|
|
friendlyname = json.getStr(PSTR("Name"), nullptr); // read "Name"
|
|
modelid = json.getStr(PSTR("ModelId"), nullptr);
|
|
manufid = json.getStr(PSTR("Manufacturer"), nullptr);
|
|
JsonParserToken tok_bulbtype = json[PSTR(D_JSON_ZIGBEE_LIGHT)];
|
|
|
|
// update internal device information
|
|
updateDevice(device, ieeeaddr);
|
|
if (modelid) { setModelId(device, modelid); }
|
|
if (manufid) { setManufId(device, manufid); }
|
|
if (friendlyname) { setFriendlyName(device, friendlyname); }
|
|
if (tok_bulbtype) { setHueBulbtype(device, tok_bulbtype.getInt()); }
|
|
|
|
// read "Endpoints"
|
|
JsonParserToken val_endpoints = json[PSTR("Endpoints")];
|
|
if (val_endpoints.isArray()) {
|
|
JsonParserArray arr_ep = JsonParserArray(val_endpoints);
|
|
clearEndpoints(device); // clear even if array is empty
|
|
for (auto ep_elt : arr_ep) {
|
|
uint8_t ep = ep_elt.getUInt();
|
|
if (ep) { addEndpoint(device, ep); }
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // USE_ZIGBEE
|