Tasmota/tasmota/xsns_61_MI_NRF24.ino

860 lines
29 KiB
C++

/*
xsns_61_MI_NRF24.ino - MI-BLE-sensors via nrf24l01 support for Tasmota
Copyright (C) 2020 Christian Baars and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------------------
Version yyyymmdd Action Description
--------------------------------------------------------------------------------------------
0.9.2.0 20200212 integrate - "backports" from MI-HM10, change reading pattern,
add missing PDU-types, renaming driver
---
0.9.1.0 20200117 integrate - Added support for the LYWSD02
---
0.9.0.0 20191127 started - further development by Christian Baars
base - code base from cbm80amiga, floe, Dmitry.GR
forked - from arendst/tasmota - https://github.com/arendst/Tasmota
*/
#ifdef USE_SPI
#ifdef USE_NRF24
#ifdef USE_MIBLE
#ifdef DEBUG_TASMOTA_SENSOR
#define MINRF_LOG_BUFFER(x) MINRFshowBuffer(x);
#else
#define MINRF_LOG_BUFFER(x)
#endif
/*********************************************************************************************\
* MINRF
* BLE-Sniffer/Bridge for MIJIA/XIAOMI Temperatur/Humidity-Sensor, Mi Flora, LYWSD02
*
* Usage: Configure NRF24
\*********************************************************************************************/
#define XSNS_61 61
#include <vector>
#define FLORA 1
#define MJ_HT_V1 2
#define LYWSD02 3
#define LYWSD03 4
uint8_t kMINRFSlaveID[4][3] = { 0xC4,0x7C,0x8D, // Flora
0x58,0x2D,0x34, // MJ_HT_V1
0xE7,0x2E,0x00, // LYWSD02
0xA4,0xC1,0x38, // LYWSD03
};
const char kMINRFSlaveType1[] PROGMEM = "Flora";
const char kMINRFSlaveType2[] PROGMEM = "MJ_HT_V1";
const char kMINRFSlaveType3[] PROGMEM = "LYWSD02";
const char kMINRFSlaveType4[] PROGMEM = "LYWSD03";
const char * kMINRFSlaveType[] PROGMEM = {kMINRFSlaveType1,kMINRFSlaveType2,kMINRFSlaveType3,kMINRFSlaveType4};
// PDU's or different channels 37-39
const uint32_t kMINRFFloPDU[3] = {0x3eaa857d,0xef3b8730,0x71da7b46};
const uint32_t kMINRFMJPDU[3] = {0x4760cd66,0xdbcc0cd3,0x33048df5};
const uint32_t kMINRFL2PDU[3] = {0x3eaa057d,0xef3b0730,0x71da7646}; // 1 and 3 unsure
// const uint32_t kMINRFL3PDU[3] = {0x4760dd78,0xdbcc1ccd,0xffffffff}; //encrypted - 58 58
const uint32_t kMINRFL3PDU[3] = {0x4760cb78,0xdbcc0acd,0x33048beb}; //unencrypted - 30 58
// start-LSFR for different channels 37-39
const uint8_t kMINRFlsfrList_A[3] = {0x4b,0x17,0x23}; // Flora, LYWSD02
const uint8_t kMINRFlsfrList_B[3] = {0x21,0x72,0x43}; // MJ_HT_V1, LYWSD03
#pragma pack(1) // important!!
struct MJ_HT_V1Header_t {// related to the payload
uint8_t padding[3];
uint8_t mesSize; // 3
uint8_t padding2;
uint16_t uuid; // 5,6 -> 0xFE95
uint16_t type; // 7,8 -> 0x2050 MI-TH-V1
uint8_t padding3[2];
uint8_t counter; // 11 - counts up with every sent record
uint8_t serial[6]; // 12 - 17
uint8_t mode; // 18
uint8_t padding5;
uint8_t effectiveDataLength;
};
struct FlowerHeader_t { // related to the payload
uint8_t padding[4];
uint8_t padding2;
uint16_t uuid; // 5,6 -> 0xFE95
uint8_t mesSize;
uint8_t padding22;
uint16_t uuid2; // 9,10 -> 0xFE95
uint16_t type; // 11,12 -> 0x7120 Flowercare
uint8_t padding3[2];
uint8_t counter; // 15 - counts up with every sent record
uint8_t serial[6]; // 16 - 21
uint8_t padding4; //22
uint8_t mode; // 23
};
union floraPacket_t { // related to the whole 32-byte-packet/buffer
struct {
uint16_t idWord;
uint8_t padding;
uint8_t serial[6];
uint8_t padding4;
uint8_t mode;
uint8_t valueTen;
uint8_t effectiveDataLength; // 1
uint16_t data;
} T; // mode 04
struct {
uint16_t idWord;
uint8_t padding;
uint8_t serial[6];
uint8_t padding4;
uint8_t mode;
uint8_t valueTen;
uint8_t effectiveDataLength; // 3
uint32_t data:24; // it is probably a real uint24_t
} L; // mode 07
struct {
uint8_t padding[3];
uint8_t serial[6];
uint8_t padding4;
uint8_t mode;
uint8_t valueTen;
uint8_t effectiveDataLength; // 1
uint8_t data;
} M; // mode 08
struct {
uint8_t padding[3];
uint8_t serial[6];
uint8_t padding4;
uint8_t mode;
uint8_t valueTen;
uint8_t effectiveDataLength; // 2
uint16_t data;
} F; // mode 09
};
union MJ_HT_V1Packet_t { // related to the whole 32-byte-packet/buffer
struct {
uint16_t idWord;
uint8_t padding;
uint8_t serial[6];
uint8_t mode;
uint8_t valueTen;
uint8_t effectiveDataLength; // 4
uint16_t temp;
uint16_t hum;
} TH; // mode 0d
struct {
uint8_t padding[3];
uint8_t serial[6];
uint8_t mode;
uint8_t valueTen;
uint8_t effectiveDataLength; // 1
uint8_t battery;
} B; // mode 0a
// We do NOT need the isolated T and H packet
};
union LYWSD02Packet_t { // related to the whole 32-byte-packet/buffer
struct {
uint16_t idWord;
uint8_t padding;
uint8_t serial[6];
uint8_t padding4;
uint8_t mode;
uint8_t valueTen;
uint8_t effectiveDataLength;
uint16_t data;
} TH; // mode 04 or 06
};
struct bleAdvPacket_t { // for nRF24L01 max 32 bytes = 2+6+24
uint8_t pduType;
uint8_t payloadSize;
uint8_t mac[6];
union {
uint8_t payload[24];
MJ_HT_V1Header_t header;
FlowerHeader_t flowerHeader;
struct {
uint8_t padding[21];
uint16_t temp;
uint8_t hum_lb; // the high byte does not fit into the RX_buffer
} TH; // mode 0d
struct {
uint8_t padding[21];
uint16_t temp;
} T; // mode 04
struct {
uint8_t padding[21];
uint16_t hum;
} H; // mode 06
struct {
uint8_t padding[21];
uint8_t battery;
} B; // mode 0a
struct {
uint8_t padding[2];
uint8_t mode;
uint16_t size; // 2
uint16_t data;
} F_T; // mode 04
struct {
uint8_t padding[2];
uint8_t mode;
uint16_t size; // 3
uint16_t data;
uint8_t data2; // unknown meaning, maybe it is a real uint24_t (data with data2)
} F_L; // mode 07
struct {
uint8_t padding[2];
uint8_t mode;
uint16_t size; // 1
uint8_t data;
} F_M; // mode 08
struct {
uint8_t padding[2];
uint8_t mode;
uint16_t size; // 2
uint16_t data;
} F_F; // mode 09
};
};
union FIFO_t{
bleAdvPacket_t bleAdv;
floraPacket_t floraPacket;
MJ_HT_V1Packet_t MJ_HT_V1Packet;
LYWSD02Packet_t LYWSD02Packet;
uint8_t raw[32];
};
#pragma pack(0)
struct {
const uint8_t channel[3] = {37,38,39}; // BLE advertisement channel number
const uint8_t frequency[3] = { 2,26,80}; // real frequency (2400+x MHz)
uint16_t timer;
uint8_t currentChan=0;
FIFO_t buffer;
uint8_t packetMode; // 0 - normal BLE-advertisements, 1 - special "flora"-packet, 2 - special "MJ_HT_V1"-packet
#ifdef DEBUG_TASMOTA_SENSOR
uint8_t streamBuffer[sizeof(buffer)]; // raw data stream bytes
uint8_t lsfrBuffer[sizeof(buffer)]; // correpsonding lfsr-bytes for the buffer, probably only useful for a BLE-packet
#endif // DEBUG_TASMOTA_SENSOR
} MINRF;
struct mi_sensor_t{
uint8_t type; //Flora = 1; MJ_HT_V1=2; LYWSD02=3; LYWSD03=4
uint8_t serial[6];
uint8_t showedUp;
float temp; //Flora, MJ_HT_V1, LYWSD0x
union {
struct {
float moisture;
float fertility;
uint32_t lux;
}; // Flora
struct {
float hum;
uint8_t bat;
}; // MJ_HT_V1, LYWSD0x
};
};
std::vector<mi_sensor_t> MIBLEsensors;
/********************************************************************************************/
bool MINRFinitBLE(uint8_t _mode)
{
if (MINRF.timer%1000 == 0){ // only re-init every 20 seconds
NRF24radio.begin(pin[GPIO_SPI_CS],pin[GPIO_SPI_DC]);
NRF24radio.setAutoAck(false);
NRF24radio.setDataRate(RF24_1MBPS);
NRF24radio.disableCRC();
NRF24radio.setChannel( MINRF.frequency[MINRF.currentChan] );
NRF24radio.setRetries(0,0);
NRF24radio.setPALevel(RF24_PA_MIN); // we only receive
NRF24radio.setAddressWidth(4);
// NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171)
// NRF24radio.openWritingPipe( 0x6B7D9171); // not used ATM
NRF24radio.powerUp();
}
if(NRF24radio.isChipConnected()){
// DEBUG_SENSOR_LOG(PSTR("MINRF chip connected"));
MINRFchangePacketModeTo(_mode);
return true;
}
// DEBUG_SENSOR_LOG(PSTR("MINRF chip NOT !!!! connected"));
return false;
}
void MINRFhopChannel()
{
MINRF.currentChan++;
if(MINRF.currentChan >= sizeof(MINRF.channel)) {
MINRF.currentChan = 0;
}
NRF24radio.setChannel( MINRF.frequency[MINRF.currentChan] );
}
/**
* @brief Read out FIFO-buffer, swap buffer and whiten
*
* @return true - If something is in the buffer
* @return false - Nothing is in the buffer
*/
bool MINRFreceivePacket(void)
{
if(!NRF24radio.available()) {
return false;
}
while(NRF24radio.available()) {
// static uint8_t _lsfr = 0; //-> for testing out suitable lsfr-start-values for yet unknown packets
// _lsfr++;
NRF24radio.read( &MINRF.buffer, sizeof(MINRF.buffer) );
#ifdef DEBUG_TASMOTA_SENSOR
memcpy(&MINRF.streamBuffer, &MINRF.buffer, sizeof(MINRF.buffer));
#endif // DEBUG_TASMOTA_SENSOR
MINRFswapbuf( sizeof(MINRF.buffer) );
// MINRF_LOG_BUFFER();
// AddLog_P2(LOG_LEVEL_INFO,PSTR("MINRF: _lsfrlist: %x, chan: %u, mode: %u"),_lsfrlist[MINRF.currentChan],MINRF.currentChan, MINRF.packetMode);
switch (MINRF.packetMode) {
case 0:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), MINRF.channel[MINRF.currentChan] | 0x40);
break;
case 1:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_A[MINRF.currentChan]); // "flora" mode
break;
case 2:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "MJ_HT_V1" mode
break;
case 3:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_A[MINRF.currentChan]); // "LYWSD02" mode
break;
case 4:
MINRFwhiten((uint8_t *)&MINRF.buffer, sizeof(MINRF.buffer), kMINRFlsfrList_B[MINRF.currentChan]); // "LYWSD03" mode
break;
}
// DEBUG_SENSOR_LOG(PSTR("MINRF: LSFR:%x"),_lsfr);
// if (_lsfr>254) _lsfr=0;
}
// DEBUG_SENSOR_LOG(PSTR("MINRF: did read FIFO"));
return true;
}
#ifdef DEBUG_TASMOTA_SENSOR
void MINRFshowBuffer(uint8_t (&buf)[32]){ // we use this only for the 32-byte-FIFO-buffer, so 32 is hardcoded
// DEBUG_SENSOR_LOG(PSTR("MINRF: Buffer: %c %c %c %c %c %c %c %c"
// " %c %c %c %c %c %c %c %c"
// " %c %c %c %c %c %c %c %c"
// " %c %c %c %c %c %c %c %c")
DEBUG_SENSOR_LOG(PSTR("MINRF: Buffer: %02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x ")
,buf[0],buf[1],buf[2],buf[3],buf[4],buf[5],buf[6],buf[7],buf[8],buf[9],buf[10],buf[11],
buf[12],buf[13],buf[14],buf[15],buf[16],buf[17],buf[18],buf[19],buf[20],buf[21],buf[22],buf[23],
buf[24],buf[25],buf[26],buf[27],buf[28],buf[29],buf[30],buf[31]
);
}
#endif // DEBUG_TASMOTA_SENSOR
/**
* @brief change lsfrBuffer content to "wire bit order"
*
* @param len Buffer lenght (could be hardcoded to 32)
*/
void MINRFswapbuf(uint8_t len)
{
uint8_t* buf = (uint8_t*)&MINRF.buffer;
while(len--) {
uint8_t a = *buf;
uint8_t v = 0;
if (a & 0x80) v |= 0x01;
if (a & 0x40) v |= 0x02;
if (a & 0x20) v |= 0x04;
if (a & 0x10) v |= 0x08;
if (a & 0x08) v |= 0x10;
if (a & 0x04) v |= 0x20;
if (a & 0x02) v |= 0x40;
if (a & 0x01) v |= 0x80;
*(buf++) = v;
}
}
/**
* @brief Whiten the packet buffer
*
* @param buf The packet buffer
* @param len Lenght of the packet buffer
* @param lfsr Start lsfr-byte
*/
void MINRFwhiten(uint8_t *buf, uint8_t len, uint8_t lfsr)
{
while(len--) {
uint8_t res = 0;
// LFSR in "wire bit order"
for (uint8_t i = 1; i; i <<= 1) {
if (lfsr & 0x01) {
lfsr ^= 0x88;
res |= i;
}
lfsr >>= 1;
}
*(buf++) ^= res;
#ifdef DEBUG_TASMOTA_SENSOR
MINRF.lsfrBuffer[31-len] = lfsr;
#endif //DEBUG_TASMOTA_SENSOR
}
}
void MINRFreverseMAC(uint8_t _mac[]){
uint8_t _reversedMAC[6];
for (uint8_t i=0; i<6; i++){
_reversedMAC[5-i] = _mac[i];
}
memcpy(_mac,_reversedMAC, sizeof(_reversedMAC));
}
/**
* @brief Set packet mode and fitting PDU-type of the NRF24L01
*
* @param _mode The internal packet mode number
*/
void MINRFchangePacketModeTo(uint8_t _mode) {
uint32_t (_nextchannel) = MINRF.currentChan+1;
if (_nextchannel>2) _nextchannel=0;
switch(_mode){
case 0: // normal BLE advertisement
NRF24radio.openReadingPipe(0,0x6B7D9171); // advertisement address: 0x8E89BED6 (bit-reversed -> 0x6B7D9171)
break;
case 1: // special flora packet
NRF24radio.openReadingPipe(0,kMINRFFloPDU[_nextchannel]); // 95 fe 71 20 -> flora
break;
case 2: // special MJ_HT_V1 packet
NRF24radio.openReadingPipe(0,kMINRFMJPDU[_nextchannel]); // 95 fe 50 20 -> MJ_HT_V1
break;
case 3: // special LYWSD02 packet
NRF24radio.openReadingPipe(0,kMINRFL2PDU[_nextchannel]);// 95 fe 70 20 -> LYWSD02
break;
case 4: // special LYWSD03 packet
if(kMINRFL3PDU[_nextchannel]==0xffffffff) break;
NRF24radio.openReadingPipe(0,kMINRFL3PDU[_nextchannel]);// 95 fe 58 30 -> LYWSD03 (= no data message)
break;
}
// DEBUG_SENSOR_LOG(PSTR("MINRF: Change Mode to %u"),_mode);
MINRF.packetMode = _mode;
}
/**
* @brief Return the slot number of a known sensor or return create new sensor slot
*
* @param _serial BLE address of the sensor
* @param _type Type number of the sensor, 0xff for Auto-type
* @return uint32_t Known or new slot in the sensors-vector
*/
uint32_t MINRFgetSensorSlot(uint8_t (&_serial)[6], uint8_t _type){
if(_type==0xff){
DEBUG_SENSOR_LOG(PSTR("MINRF: will test MAC-type"));
for (uint32_t i=0;i<4;i++){
if(memcmp(_serial,kMINRFSlaveID+i,3)==0){
DEBUG_SENSOR_LOG(PSTR("MINRF: MAC is type %u"), i);
_type = i+1;
}
else {
DEBUG_SENSOR_LOG(PSTR("MINRF: MAC-type is unknown"));
}
}
}
if(_type==0xff) return _type; // error
DEBUG_SENSOR_LOG(PSTR("MINRF: vector size %u"), MIBLEsensors.size());
for(uint32_t i=0; i<MIBLEsensors.size(); i++){
if(memcmp(_serial,MIBLEsensors.at(i).serial,sizeof(_serial))==0){
DEBUG_SENSOR_LOG(PSTR("MINRF: known sensor at slot: %u"), i);
if(MIBLEsensors.at(i).showedUp < 3){ // if we got an intact packet, the sensor should show up several times
MIBLEsensors.at(i).showedUp++; // count up to the above number ... now we are pretty sure
}
return i;
}
DEBUG_SENSOR_LOG(PSTR("MINRF i: %x %x %x %x %x %x"), MIBLEsensors.at(i).serial[5], MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[0]);
DEBUG_SENSOR_LOG(PSTR("MINRF n: %x %x %x %x %x %x"), _serial[5], _serial[4], _serial[3],_serial[2],_serial[1],_serial[0]);
}
DEBUG_SENSOR_LOG(PSTR("MINRF: found new sensor"));
mi_sensor_t _newSensor;
memcpy(_newSensor.serial,_serial, sizeof(_serial));
_newSensor.type = _type;
_newSensor.showedUp = 1;
_newSensor.temp =-1000.0f;
switch (_type)
{
case 1:
_newSensor.moisture =-1000.0f;
_newSensor.fertility =-1000.0f;
_newSensor.lux = 0x00ffffff;
break;
case 2: case 3: case 4:
_newSensor.hum=-1.0f;
_newSensor.bat=0xff;
break;
default:
break;
}
MIBLEsensors.push_back(_newSensor);
DEBUG_SENSOR_LOG(PSTR("MINRF: new sensor at slot: %u"), MIBLEsensors.size()-1);
return MIBLEsensors.size()-1;
};
/**
* @brief Remove "zombie" sensors after a certain amount of time.
* If they showed up less than 3 times, they are probably
* a product of data corruption.
*/
void MINRFpurgeFakeSensors(void){
for(uint32_t i=0; i<MIBLEsensors.size(); i++){
if(MIBLEsensors.at(i).showedUp<3){
DEBUG_SENSOR_LOG(PSTR("MINRF: remove FAKE sensor at slot: %u"), i);
MIBLEsensors.erase(MIBLEsensors.begin()+i);
}
}
}
void MINRFhandleFloraPacket(void){
if(MINRF.buffer.floraPacket.T.idWord!=0x9800 && MINRF.buffer.floraPacket.T.valueTen!=0x10){
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected Flora packet"));
MINRF_LOG_BUFFER(MINRF.buffer.raw);
return;
}
MINRFreverseMAC(MINRF.buffer.floraPacket.T.serial);
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.floraPacket.T.serial, 0xff); // T is not specific, any struct would be possible to use
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
static float _tempFloat;
switch(MINRF.buffer.floraPacket.L.mode) { // we can use any struct with a mode, they are all same at this point
case 4:
_tempFloat=(float)(MINRF.buffer.floraPacket.T.data)/10.0f;
if(_tempFloat<60){
MIBLEsensors.at(_slot).temp=_tempFloat;
}
DEBUG_SENSOR_LOG(PSTR("Flora: Mode 4: U16: %x Temp"), MINRF.buffer.floraPacket.T.data );
break;
case 7:
if(true){
MIBLEsensors.at(_slot).lux=MINRF.buffer.floraPacket.L.data;
}
DEBUG_SENSOR_LOG(PSTR("Flora: Mode 7: U24: %x Lux"), MINRF.buffer.floraPacket.L.data);
break;
case 8:
_tempFloat =(float)MINRF.buffer.floraPacket.M.data;
if(_tempFloat<100){
MIBLEsensors.at(_slot).moisture=_tempFloat;
}
DEBUG_SENSOR_LOG(PSTR("Flora: Mode 8: U8: %x Moisture"), MINRF.buffer.floraPacket.M.data);
break;
case 9:
_tempFloat=(float)(MINRF.buffer.floraPacket.F.data);
if(_tempFloat<65535){ // ???
MIBLEsensors.at(_slot).fertility=_tempFloat;
}
DEBUG_SENSOR_LOG(PSTR("Mode 9: U16: %x Fertility"), MINRF.buffer.floraPacket.F.data);
break;
}
}
void MINRFhandleMJ_HT_V1Packet(void){
if(MINRF.buffer.MJ_HT_V1Packet.TH.idWord != 0xaa01 && MINRF.buffer.MJ_HT_V1Packet.TH.valueTen!=0x10){
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected MJ_HT_V1-packet"));
MINRF_LOG_BUFFER(MINRF.buffer.raw);
return;
}
MINRFreverseMAC(MINRF.buffer.MJ_HT_V1Packet.TH.serial);
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.MJ_HT_V1Packet.TH.serial, 0xff); // B would be possible too
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
static float _tempFloat;
switch(MINRF.buffer.MJ_HT_V1Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 0x0d:
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.temp)/10.0f;
if(_tempFloat<60){
MIBLEsensors.at(_slot).temp = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("MJ_HT_V1: temp updated"));
}
_tempFloat=(float)(MINRF.buffer.MJ_HT_V1Packet.TH.hum)/10.0f;
if(_tempFloat<100){
MIBLEsensors.at(_slot).hum = _tempFloat;
DEBUG_SENSOR_LOG(PSTR("MJ_HT_V1: hum updated"));
}
DEBUG_SENSOR_LOG(PSTR("MJ_HT_V1 mode:0x0d: U16: %x Temp U16: %x Hum"), MINRF.buffer.MJ_HT_V1Packet.TH.temp, MINRF.buffer.MJ_HT_V1Packet.TH.hum);
break;
case 0x0a:
if(MINRF.buffer.MJ_HT_V1Packet.B.battery<101){
MIBLEsensors.at(_slot).bat = MINRF.buffer.MJ_HT_V1Packet.B.battery;
DEBUG_SENSOR_LOG(PSTR("MJ_HT_V1: bat updated"));
}
DEBUG_SENSOR_LOG(PSTR("MJ_HT_V1 mode:0x0a: U8: %x %%"), MINRF.buffer.MJ_HT_V1Packet.B.battery);
break;
}
}
void MINRFhandleLYWSD02Packet(void){
if(MINRF.buffer.LYWSD02Packet.TH.valueTen!=0x10){
DEBUG_SENSOR_LOG(PSTR("MINRF: unexpected LYWSD02-packet"));
MINRF_LOG_BUFFER(MINRF.buffer.raw);
return;
}
MINRFreverseMAC(MINRF.buffer.LYWSD02Packet.TH.serial);
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.LYWSD02Packet.TH.serial, 0xff); // H would be possible too
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
static float _tempFloat;
switch(MINRF.buffer.LYWSD02Packet.TH.mode) { // we can use any struct with a mode, they are all same at this point
case 4:
_tempFloat=(float)(MINRF.buffer.LYWSD02Packet.TH.data)/10.0f;
if(_tempFloat<60){
MIBLEsensors.at(_slot).temp=_tempFloat;
}
DEBUG_SENSOR_LOG(PSTR("LYWSD02: Mode 4: U16: %x Temp"), MINRF.buffer.LYWSD02Packet.TH.data );
break;
case 6:
_tempFloat=(float)(MINRF.buffer.LYWSD02Packet.TH.data)/10.0f;
if(_tempFloat<101){
MIBLEsensors.at(_slot).hum=_tempFloat;
}
DEBUG_SENSOR_LOG(PSTR("LYWSD02: Mode 6: U16: %x Hum"), MINRF.buffer.LYWSD02Packet.TH.data );
break;
}
}
void MINRFhandleLYWSD03Packet(void){
// not much to do ATM, just show the sensor without data
MINRFreverseMAC(MINRF.buffer.LYWSD02Packet.TH.serial); //the beginning is equal to the LYWSD02-packet
uint32_t _slot = MINRFgetSensorSlot(MINRF.buffer.LYWSD02Packet.TH.serial, 0xff);
DEBUG_SENSOR_LOG(PSTR("MINRF: Sensor slot: %u"), _slot);
if(_slot==0xff) return;
MINRF_LOG_BUFFER(MINRF.streamBuffer);
MINRF_LOG_BUFFER(MINRF.lsfrBuffer);
MINRF_LOG_BUFFER(MINRF.buffer.raw);
}
void MINRF_EVERY_50_MSECOND() { // Every 50mseconds
if(MINRF.timer>6000){ // happens every 6000/20 = 300 seconds
DEBUG_SENSOR_LOG(PSTR("MINRF: check for FAKE sensors"));
MINRFpurgeFakeSensors();
MINRF.timer=0;
}
MINRF.timer++;
if (!MINRFreceivePacket()){
// DEBUG_SENSOR_LOG(PSTR("MINRF: nothing received"));
}
else if(MINRF.buffer.bleAdv.header.uuid==0xfe95){ // XIAOMI-BLE-Packet
MINRF_LOG_BUFFER(MINRF.streamBuffer);
MINRF_LOG_BUFFER(MINRF.lsfrBuffer);
MINRF_LOG_BUFFER(MINRF.buffer.raw);
DEBUG_SENSOR_LOG(PSTR("MINRF: Type: %x"), MINRF.buffer.bleAdv.header.type);
switch(MINRF.buffer.bleAdv.header.type){
case 0x2050:
DEBUG_SENSOR_LOG(PSTR("MINRF: MJ_HT_V1 Packet"));
break;
case 0x1613:case 0x1614:case 0x1615:
DEBUG_SENSOR_LOG(PSTR("MINRF: Flora Packet"));
break;
default:
DEBUG_SENSOR_LOG(PSTR("MINRF: unknown Packet"));
break;
}
}
else if (MINRF.packetMode == FLORA){
MINRFhandleFloraPacket();
}
else if (MINRF.packetMode == MJ_HT_V1){
MINRFhandleMJ_HT_V1Packet();
}
else if (MINRF.packetMode == LYWSD02){
MINRFhandleLYWSD02Packet();
}
else if (MINRF.packetMode == LYWSD03){
MINRFhandleLYWSD03Packet();
}
// DEBUG_SENSOR_LOG(PSTR("MINRF: Change packet mode every 50 msec"));
if (MINRF.packetMode == LYWSD03){
MINRFinitBLE(1); // no real ble packets in release mode, otherwise for developing use 0
}
else {
MINRFinitBLE(++MINRF.packetMode);
}
MINRFhopChannel();
NRF24radio.startListening();
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u%%{e}";
const char HTTP_MINRF_MAC[] PROGMEM = "{s}%s %s{m}%02x:%02x:%02x:%02x:%02x:%02x%{e}";
const char HTTP_MINRF_FLORA_DATA[] PROGMEM = "{s}%s" " Fertility" "{m}%sus/cm{e}";
const char HTTP_MINRF_HL[] PROGMEM = "{s}<hr>{m}<hr>{e}";
void MINRFShow(bool json)
{
if (json) {
for (uint32_t i = 0; i < MIBLEsensors.size(); i++) {
if(MIBLEsensors.at(i).showedUp < 3){
DEBUG_SENSOR_LOG(PSTR("MINRF: sensor not fully registered yet"));
break;
}
char slave[33];
sprintf_P(slave,"%s-%02x%02x%02x",kMINRFSlaveType[MIBLEsensors.at(i).type-1],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[5]);
char temperature[33]; // all sensors have temperature
dtostrfd(MIBLEsensors.at(i).temp, Settings.flag2.temperature_resolution, temperature);
ResponseAppend_P(PSTR(",\"%s\":{"),slave);
if(MIBLEsensors.at(i).temp!=-1000.0f){ // this is the error code -> no temperature
ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s"), temperature);
}
if (MIBLEsensors.at(i).type==FLORA){
char lux[33];
char moisture[33];
char fertility[33];
dtostrfd((float)MIBLEsensors.at(i).lux, 0, lux);
dtostrfd(MIBLEsensors.at(i).moisture, 0, moisture);
dtostrfd(MIBLEsensors.at(i).fertility, 0, fertility);
if(MIBLEsensors.at(i).lux!=0xffff){ // this is the error code -> no temperature
ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%s"), lux);
}
if(MIBLEsensors.at(i).moisture!=-1000.0f){ // this is the error code -> no moisture
ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%s"), moisture);
}
if(MIBLEsensors.at(i).fertility!=-1000.0f){ // this is the error code -> no fertility
ResponseAppend_P(PSTR(",\"Fertility\":%s"), fertility);
}
}
if (MIBLEsensors.at(i).type>FLORA){
char humidity[33];
dtostrfd(MIBLEsensors.at(i).hum, Settings.flag2.humidity_resolution, humidity);
if(MIBLEsensors.at(i).hum!=-1.0f){ // this is the error code -> no humidity
ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity);
}
if(MIBLEsensors.at(i).bat!=0xff){ // this is the error code -> no battery
ResponseAppend_P(PSTR(",\"Battery\":%u"), MIBLEsensors.at(i).bat);
}
}
ResponseAppend_P(PSTR("}"));
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_NRF24, NRF24type, NRF24.chipType);
for (uint32_t i = 0; i < MIBLEsensors.size(); i++) {
if(MIBLEsensors.at(i).showedUp < 3){
DEBUG_SENSOR_LOG(PSTR("MINRF: sensor not fully registered yet"));
break;
}
WSContentSend_PD(HTTP_MINRF_HL);
WSContentSend_PD(HTTP_MINRF_MAC, kMINRFSlaveType[MIBLEsensors.at(i).type-1], D_MAC_ADDRESS, MIBLEsensors.at(i).serial[0], MIBLEsensors.at(i).serial[1],MIBLEsensors.at(i).serial[2],MIBLEsensors.at(i).serial[3],MIBLEsensors.at(i).serial[4],MIBLEsensors.at(i).serial[5]);
if(MIBLEsensors.at(i).temp!=-1000.0f){
char temperature[33];
dtostrfd(MIBLEsensors.at(i).temp, Settings.flag2.temperature_resolution, temperature);
WSContentSend_PD(HTTP_SNS_TEMP, kMINRFSlaveType[MIBLEsensors.at(i).type-1], temperature, TempUnit());
}
if (MIBLEsensors.at(i).type==FLORA){
if(MIBLEsensors.at(i).lux!=0x00ffffff){ // this is the error code -> no valid value
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, kMINRFSlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).lux);
}
if(MIBLEsensors.at(i).moisture!=-1000.0f){ // this is the error code -> no valid value
WSContentSend_PD(HTTP_SNS_MOISTURE, kMINRFSlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).moisture);
}
if(MIBLEsensors.at(i).fertility!=-1000.0f){ // this is the error code -> no valid value
char fertility[33];
dtostrfd(MIBLEsensors.at(i).fertility, 0, fertility);
WSContentSend_PD(HTTP_MINRF_FLORA_DATA, kMINRFSlaveType[MIBLEsensors.at(i).type-1], fertility);
}
}
if (MIBLEsensors.at(i).type>FLORA){ // everything "above" Flora
if(MIBLEsensors.at(i).hum!=-1.0f){ // this is the error code -> no humidity
char humidity[33];
dtostrfd(MIBLEsensors.at(i).hum, Settings.flag2.humidity_resolution, humidity);
WSContentSend_PD(HTTP_SNS_HUM, kMINRFSlaveType[MIBLEsensors.at(i).type-1], humidity);
}
if(MIBLEsensors.at(i).bat!=0xff){
WSContentSend_PD(HTTP_BATTERY, kMINRFSlaveType[MIBLEsensors.at(i).type-1], MIBLEsensors.at(i).bat);
}
}
}
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns61(uint8_t function)
{
bool result = false;
if (NRF24.chipType) {
switch (function) {
case FUNC_INIT:
MINRFinitBLE(1);
AddLog_P2(LOG_LEVEL_INFO,PSTR("MINRF: started"));
break;
case FUNC_EVERY_50_MSECOND:
MINRF_EVERY_50_MSECOND();
break;
case FUNC_JSON_APPEND:
MINRFShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
MINRFShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MIBLE
#endif // USE_NRF24
#endif // USE_SPI