Tasmota/tasmota/xsns_53_sml.ino

2594 lines
73 KiB
C++
Executable File

/*
xsns_53_sml.ino - SML,OBIS,EBUS,RAW,COUNTER interface for Tasmota
Created by Gerhard Mutz on 07.10.11.
adapted for Tasmota
Copyright (C) 2020 Gerhard Mutz and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SML_M
#define XSNS_53 53
// default baudrate of D0 output
#define SML_BAUDRATE 9600
// send this every N seconds (for meters that only send data on demand)
// not longer supported, use scripting instead
//#define SML_SEND_SEQ
// debug counter input to led for counter1 and 2
//#define DEBUG_CNT_LED1 2
//#define DEBUG_CNT_LED1 2
// use analog optical counter sensor with AD Converter ADS1115 (not yet functional)
//#define ANALOG_OPTO_SENSOR
// fototransistor with pullup at A0, A1 of ADS1115 A3 and +3.3V
// level and amplification are automatically set
#include <TasmotaSerial.h>
// use special no wait serial driver, should be always on
#ifndef ESP32
#define SPECIAL_SS
#endif
#undef TMSBSIZ
#define TMSBSIZ 256
// addresses a bug in meter DWS74
//#define DWS74_BUG
// JSON Strings do not translate
// max 23 char
#define DJ_TPWRIN "Total_in"
#define DJ_TPWROUT "Total_out"
#define DJ_TPWRCURR "Power_curr"
#define DJ_TPWRCURR1 "Power_p1"
#define DJ_TPWRCURR2 "Power_p2"
#define DJ_TPWRCURR3 "Power_p3"
#define DJ_CURR1 "Curr_p1"
#define DJ_CURR2 "Curr_p2"
#define DJ_CURR3 "Curr_p3"
#define DJ_VOLT1 "Volt_p1"
#define DJ_VOLT2 "Volt_p2"
#define DJ_VOLT3 "Volt_p3"
#define DJ_METERNR "Meter_number"
#define DJ_METERSID "Meter_id"
#define DJ_CSUM "Curr_summ"
#define DJ_VAVG "Volt_avg"
#define DJ_COUNTER "Count"
struct METER_DESC {
uint8_t srcpin;
uint8_t type;
uint16_t flag;
int32_t params;
char prefix[8];
int8_t trxpin;
uint8_t tsecs;
char *txmem;
uint8_t index;
uint8_t max_index;
};
// this descriptor method is no longer supported
// but still functional for simple meters
// use scripting method instead
// meter list , enter new meters here
//=====================================================
#define EHZ161_0 1
#define EHZ161_1 2
#define EHZ363 3
#define EHZH 4
#define EDL300 5
#define Q3B 6
#define COMBO3 7
#define COMBO2 8
#define COMBO3a 9
#define Q3B_V1 10
#define EHZ363_2 11
#define COMBO3b 12
#define WGS_COMBO 13
#define EBZD_G 14
// select this meter
#define METER EHZ161_1
#if METER==EHZ161_0
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}};
const uint8_t meter[]=
"1,1-0:1.8.0*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.0*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,1-0:21.7.0*255(@1," D_TPWRCURR1 ",W," DJ_TPWRCURR1 ",0|"
"1,1-0:41.7.0*255(@1," D_TPWRCURR2 ",W," DJ_TPWRCURR2 ",0|"
"1,1-0:61.7.0*255(@1," D_TPWRCURR3 ",W," DJ_TPWRCURR3 ",0|"
"1,=m 3+4+5 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZ161_1
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}};
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZ363
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 Richtungszähler EHZ SML 8 bit 9600 baud, binär
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x02,0x08,0x00,0xff
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x10,0x07,0x00,0xff
"1,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
//0x77,0x07,0x01,0x00,0x00,0x00,0x09,0xff
"1,77070100000009ff@#," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZH
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 Richtungszähler EHZ SML 8 bit 9600 baud, binär
// verbrauch total
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x0f,0x07,0x00,0xff
"1,770701000f0700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0";
#endif
//=====================================================
#if METER==EDL300
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 Richtungszähler EHZ SML 8 bit 9600 baud, binär
// verbrauch total
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100020801ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x0f,0x07,0x00,0xff
"1,770701000f0700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0";
#endif
#if METER==EBZD_G
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"strom",-1,1,0}};
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
// ..
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100010801ff@1000," D_TPWRCURR1 ",kWh," DJ_TPWRCURR1 ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x02,0xff
"1,77070100010802ff@1000," D_TPWRCURR2 ",kWh," DJ_TPWRCURR2 ",4|"
// 77 07 01 00 10 07 00 FF
"1,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
// ..
"1,77070100600100ff@#," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==Q3B
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x02,0x08,0x01,0xff
"1,77070100020801ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x01,0x07,0x00,0xff
"1,77070100010700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0";
#endif
#if METER==COMBO3
// 3 Zähler Beispiel
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}, // harware serial RX pin
[1]={14,'s',0,SML_BAUDRATE,"SML",-1,1,0}, // GPIO14 software serial
[2]={4,'o',0,SML_BAUDRATE,"OBIS2",-1,1,0}}; // GPIO4 software serial
// 3 Zähler definiert
const uint8_t meter[]=
"1,1-0:1.8.0*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.0*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,1-0:21.7.0*255(@1," D_TPWRCURR1 ",W," DJ_TPWRCURR1 ",0|"
"1,1-0:41.7.0*255(@1," D_TPWRCURR2 ",W," DJ_TPWRCURR2 ",0|"
"1,1-0:61.7.0*255(@1," D_TPWRCURR3 ",W," DJ_TPWRCURR3 ",0|"
"1,=m 3+4+5 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"2,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"2,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"2,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"3,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"3,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"3,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"3,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
#if METER==COMBO2
// 2 Zähler Beispiel
#undef METERS_USED
#define METERS_USED 2
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS1",-1,1,0}, // harware serial RX pin
[1]={14,'o',0,SML_BAUDRATE,"OBIS2",-1,1,0}}; // GPIO14 software serial
// 2 Zähler definiert
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"2,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"2,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"2,=d 6 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"2,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
#if METER==COMBO3a
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS1",-1,1,0}, // harware serial RX pin
[1]={14,'o',0,SML_BAUDRATE,"OBIS2",-1,1,0},
[2]={1,'o',0,SML_BAUDRATE,"OBIS3",-1,1,0}};
// 3 Zähler definiert
const uint8_t meter[]=
"1,=h --- Zähler Nr 1 ---|"
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"2,=h --- Zähler Nr 2 ---|"
"2,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"2,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"2,=d 6 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"2,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
"3,=h --- Zähler Nr 3 ---|"
"3,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"3,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"3,=d 10 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"3,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==Q3B_V1
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}};
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,=d 1 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0";
#endif
//=====================================================
#if METER==EHZ363_2
#undef METERS_USED
#define METERS_USED 1
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}};
// 2 direction meter EHZ SML 8 bit 9600 baud, binary
const uint8_t meter[]=
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"1,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
//0x77,0x07,0x01,0x00,0x02,0x08,0x00,0xff
"1,77070100020800ff@1000," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x01,0xff
"1,77070100010801ff@1000," D_TPWRCURR1 ",kWh," DJ_TPWRCURR1 ",4|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x02,0xff
"1,77070100010802ff@1000," D_TPWRCURR2 ",kWh," DJ_TPWRCURR2 ",4|"
//0x77,0x07,0x01,0x00,0x10,0x07,0x00,0xff
"1,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
//0x77,0x07,0x01,0x00,0x00,0x00,0x09,0xff
"1,77070100000009ff@#," D_METERNR ",," DJ_METERNR ",0";
#endif
// example OBIS power meter + gas and water counter
#if METER==COMBO3b
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={3,'o',0,SML_BAUDRATE,"OBIS",-1,1,0}, // harware serial RX pin
[1]={14,'c',0,50,"Gas"}, // GPIO14 gas counter
[2]={1,'c',0,10,"Wasser"}}; // water counter
// 3 meters defined
const uint8_t meter[]=
"1,1-0:1.8.1*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
"1,1-0:2.8.1*255(@1," D_TPWROUT ",kWh," DJ_TPWROUT ",4|"
"1,=d 2 10 @1," D_TPWRCURR ",W," DJ_TPWRCURR ",0|"
"1,1-0:0.0.0*255(@#)," D_METERNR ",," DJ_METERNR ",0|"
// with counters the comparison string must be exactly this string
"2,1-0:1.8.0*255(@100," D_GasIN ",cbm," DJ_COUNTER ",2|"
"3,1-0:1.8.0*255(@100," D_H2oIN ",cbm," DJ_COUNTER ",2";
#endif
#if METER==WGS_COMBO
#undef METERS_USED
#define METERS_USED 3
struct METER_DESC const meter_desc[METERS_USED]={
[0]={1,'c',0,10,"H20",-1,1,0}, // GPIO1 water counter
[1]={4,'c',0,50,"GAS",-1,1,0}, // GPIO4 gas counter
[2]={3,'s',0,SML_BAUDRATE,"SML",-1,1,0}}; // SML harware serial RX pin
const uint8_t meter[]=
//----------------------------Wasserzähler--sensor53 c1------------------------------------
//"1,=h==================|"
"1,1-0:1.8.0*255(@10000," D_H2oIN ",cbm," DJ_COUNTER ",4|" // 1
//----------------------------Gaszähler-----sensor53 c2------------------------------------
// bei gaszählern (countern) muss der Vergleichsstring so aussehen wie hier
"2,=h==================|"
"2,1-0:1.8.0*255(@100," D_GasIN ",cbm," DJ_COUNTER ",3|" // 2
//----------------------------Stromzähler-EHZ363W5--sensor53 d0----------------------------
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x01,0x08,0x00,0xff
"3,77070100010800ff@1000," D_TPWRIN ",kWh," DJ_TPWRIN ",3|" // 3 Zählerstand Total
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x10,0x07,0x00,0xff
"3,77070100100700ff@1," D_TPWRCURR ",W," DJ_TPWRCURR ",2|" // 4 Aktuelle Leistung
"3,=h -------------------------------|"
"3,=m 10+11+12 @100," D_StL1L2L3 ",A," DJ_CSUM ",2|" // 5 Summe Aktuelle Ströme
//"3,=h -------------------------------|"
"3,=m 13+14+15/#3 @100," D_SpL1L2L3 ",V," DJ_VAVG ",2|" // 6 Mittelwert Spannungen
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x24,0x07,0x00,0xff
"3,77070100240700ff@1," D_TPWRCURR1 ",W," DJ_TPWRCURR1 ",2|" // 7 Wirkleistung L1
//0x77,0x07,0x01,0x00,0x38,0x07,0x00,0xff
"3,77070100380700ff@1," D_TPWRCURR2 ",W," DJ_TPWRCURR2 ",2|" // 8 Wirkleistung L2
//0x77,0x07,0x01,0x00,0x4c,0x07,0x00,0xff
"3,770701004c0700ff@1," D_TPWRCURR3 ",W," DJ_TPWRCURR3 ",2|" // 9 Wirkleistung L3
"3,=h -------------------------------|"
//0x77,0x07,0x01,0x00,0x1f,0x07,0x00,0xff
"3,770701001f0700ff@100," D_Strom_L1 ",A," DJ_CURR1 ",2|" // 10 Strom L1
//0x77,0x07,0x01,0x00,0x33,0x07,0x00,0xff
"3,77070100330700ff@100," D_Strom_L2 ",A," DJ_CURR2 ",2|" // 11 Strom L2
//0x77,0x07,0x01,0x00,0x47,0x07,0x00,0xff
"3,77070100470700ff@100," D_Strom_L3 ",A," DJ_CURR3 ",2|" // 12 Strom L3
"3,=h -------------------------------|"
//0x77,0x07,0x01,0x00,0x20,0x07,0x00,0xff
"3,77070100200700ff@100," D_Spannung_L1 ",V," DJ_VOLT1 ",2|" // 13 Spannung L1
//0x77,0x07,0x01,0x00,0x34,0x07,0x00,0xff
"3,77070100340700ff@100," D_Spannung_L2 ",V," DJ_VOLT2 ",2|" // 14 Spannung L2
//0x77,0x07,0x01,0x00,0x48,0x07,0x00,0xff
"3,77070100480700ff@100," D_Spannung_L3 ",V," DJ_VOLT3 ",2|" // 15 Spannung L3
"3,=h==================|"
//0x77,0x07,0x01,0x00,0x00,0x00,0x09,0xff
"3,77070100000009ff@#," D_METERSID ",," DJ_METERSID ",0|" // 16 Service ID
"3,=h--------------------------------"; // letzte Zeile
#endif
// this driver uses double because meter vars would not fit in float
//=====================================================
// median filter eliminates outliers, but uses much RAM and CPU cycles
// 672 bytes extra RAM with SML_MAX_VARS = 16
// default compile on, but must be enabled by descriptor flag 16
// may be undefined if RAM must be saved
#define USE_SML_MEDIAN_FILTER
// max number of vars , may be adjusted
#ifndef SML_MAX_VARS
#define SML_MAX_VARS 20
#endif
// max number of meters , may be adjusted
#ifndef MAX_METERS
#define MAX_METERS 5
#endif
double meter_vars[SML_MAX_VARS];
// calulate deltas
#define MAX_DVARS MAX_METERS*2
double dvalues[MAX_DVARS];
uint32_t dtimes[MAX_DVARS];
uint8_t meters_used;
struct METER_DESC const *meter_desc_p;
const uint8_t *meter_p;
uint8_t meter_spos[MAX_METERS];
// software serial pointers
#ifdef ESP32
HardwareSerial *meter_ss[MAX_METERS];
#else
TasmotaSerial *meter_ss[MAX_METERS];
#endif
// serial buffers, may be made larger depending on telegram lenght
#define SML_BSIZ 48
uint8_t smltbuf[MAX_METERS][SML_BSIZ];
// meter nr as string
#define METER_ID_SIZE 24
char meter_id[MAX_METERS][METER_ID_SIZE];
#define EBUS_SYNC 0xaa
#define EBUS_ESC 0xa9
uint8_t sml_send_blocks;
uint8_t sml_100ms_cnt;
uint8_t sml_desc_cnt;
#ifdef USE_SML_MEDIAN_FILTER
// median filter, should be odd size
#define MEDIAN_SIZE 5
struct SML_MEDIAN_FILTER {
double buffer[MEDIAN_SIZE];
int8_t index;
} sml_mf[SML_MAX_VARS];
#ifndef FLT_MAX
#define FLT_MAX 99999999
#endif
double sml_median_array(double *array,uint8_t len) {
uint8_t ind[len];
uint8_t mind=0,index=0,flg;
double min=FLT_MAX;
for (uint8_t hcnt=0; hcnt<len/2+1; hcnt++) {
for (uint8_t mcnt=0; mcnt<len; mcnt++) {
flg=0;
for (uint8_t icnt=0; icnt<index; icnt++) {
if (ind[icnt]==mcnt) {
flg=1;
}
}
if (!flg) {
if (array[mcnt]<min) {
min=array[mcnt];
mind=mcnt;
}
}
}
ind[index]=mind;
index++;
min=FLT_MAX;
}
return array[ind[len/2]];
}
// calc median
double sml_median(struct SML_MEDIAN_FILTER* mf, double in) {
//double tbuff[MEDIAN_SIZE],tmp;
//uint8_t flag;
mf->buffer[mf->index]=in;
mf->index++;
if (mf->index>=MEDIAN_SIZE) mf->index=0;
return sml_median_array(mf->buffer,MEDIAN_SIZE);
/*
// sort list and take median
memmove(tbuff,mf->buffer,sizeof(tbuff));
for (byte ocnt=0; ocnt<MEDIAN_SIZE; ocnt++) {
flag=0;
for (byte count=0; count<MEDIAN_SIZE-1; count++) {
if (tbuff[count]>tbuff[count+1]) {
tmp=tbuff[count];
tbuff[count]=tbuff[count+1];
tbuff[count+1]=tmp;
flag=1;
}
}
if (!flag) break;
}
return tbuff[MEDIAN_SIZE/2];
*/
}
#endif
#ifdef ANALOG_OPTO_SENSOR
// sensor over ADS1115 with i2c Bus
uint8_t ads1115_up;
// ads1115 driver
#define SAMPLE_BIT (0x8000)
#define ADS1115_COMP_QUEUE_SHIFT 0
#define ADS1115_COMP_LATCH_SHIFT 2
#define ADS1115_COMP_POLARITY_SHIFT 3
#define ADS1115_COMP_MODE_SHIFT 4
#define ADS1115_DATA_RATE_SHIFT 5
#define ADS1115_MODE_SHIFT 8
#define ADS1115_PGA_SHIFT 9
#define ADS1115_MUX_SHIFT 12
enum ads1115_comp_queue {
ADS1115_COMP_QUEUE_AFTER_ONE = 0,
ADS1115_COMP_QUEUE_AFTER_TWO = 0x1 << ADS1115_COMP_QUEUE_SHIFT,
ADS1115_COMP_QUEUE_AFTER_FOUR = 0x2 << ADS1115_COMP_QUEUE_SHIFT,
ADS1115_COMP_QUEUE_DISABLE = 0x3 << ADS1115_COMP_QUEUE_SHIFT,
ADS1115_COMP_QUEUE_MASK = 0x3 << ADS1115_COMP_QUEUE_SHIFT,
};
enum ads1115_comp_latch {
ADS1115_COMP_LATCH_NO = 0,
ADS1115_COMP_LATCH_YES = 1 << ADS1115_COMP_LATCH_SHIFT,
ADS1115_COMP_LATCH_MASK = 1 << ADS1115_COMP_LATCH_SHIFT,
};
enum ads1115_comp_polarity {
ADS1115_COMP_POLARITY_ACTIVE_LOW = 0,
ADS1115_COMP_POLARITY_ACTIVE_HIGH = 1 << ADS1115_COMP_POLARITY_SHIFT,
ADS1115_COMP_POLARITY_MASK = 1 << ADS1115_COMP_POLARITY_SHIFT,
};
enum ads1115_comp_mode {
ADS1115_COMP_MODE_WINDOW = 0,
ADS1115_COMP_MODE_HYSTERESIS = 1 << ADS1115_COMP_MODE_SHIFT,
ADS1115_COMP_MODE_MASK = 1 << ADS1115_COMP_MODE_SHIFT,
};
enum ads1115_data_rate {
ADS1115_DATA_RATE_8_SPS = 0,
ADS1115_DATA_RATE_16_SPS = 0x1 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_32_SPS = 0x2 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_64_SPS = 0x3 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_128_SPS = 0x4 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_250_SPS = 0x5 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_475_SPS = 0x6 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_860_SPS = 0x7 << ADS1115_DATA_RATE_SHIFT,
ADS1115_DATA_RATE_MASK = 0x7 << ADS1115_DATA_RATE_SHIFT,
};
enum ads1115_mode {
ADS1115_MODE_CONTINUOUS = 0,
ADS1115_MODE_SINGLE_SHOT = 1 << ADS1115_MODE_SHIFT,
ADS1115_MODE_MASK = 1 << ADS1115_MODE_SHIFT,
};
enum ads1115_pga {
ADS1115_PGA_TWO_THIRDS = 0, //±6.144 V
ADS1115_PGA_ONE = 0x1 << ADS1115_PGA_SHIFT, //±4.096 V
ADS1115_PGA_TWO = 0x2 << ADS1115_PGA_SHIFT, //±2.048 V
ADS1115_PGA_FOUR = 0x3 << ADS1115_PGA_SHIFT, //±1.024 V
ADS1115_PGA_EIGHT = 0x4 << ADS1115_PGA_SHIFT, //±0.512 V
ADS1115_PGA_SIXTEEN = 0x5 << ADS1115_PGA_SHIFT, //±0.256 V
ADS1115_PGA_MASK = 0x7 << ADS1115_PGA_SHIFT,
};
enum ads1115_mux {
ADS1115_MUX_DIFF_AIN0_AIN1 = 0,
ADS1115_MUX_DIFF_AIN0_AIN3 = 0x1 << ADS1115_MUX_SHIFT,
ADS1115_MUX_DIFF_AIN1_AIN3 = 0x2 << ADS1115_MUX_SHIFT,
ADS1115_MUX_DIFF_AIN2_AIN3 = 0x3 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN0 = 0x4 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN1 = 0x5 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN2 = 0x6 << ADS1115_MUX_SHIFT,
ADS1115_MUX_GND_AIN3 = 0x7 << ADS1115_MUX_SHIFT,
ADS1115_MUX_MASK = 0x7 << ADS1115_MUX_SHIFT,
};
class ADS1115 {
public:
ADS1115(uint8_t address = 0x48);
void begin();
uint8_t trigger_sample();
uint8_t reset();
bool is_sample_in_progress();
int16_t read_sample();
float sample_to_float(int16_t val);
float read_sample_float();
void set_comp_queue(enum ads1115_comp_queue val) { set_config(val, ADS1115_COMP_QUEUE_MASK); }
void set_comp_latching(enum ads1115_comp_latch val) { set_config(val, ADS1115_COMP_LATCH_MASK); }
void set_comp_polarity(enum ads1115_comp_polarity val) { set_config(val, ADS1115_COMP_POLARITY_MASK); }
void set_comp_mode(enum ads1115_comp_mode val) { set_config(val, ADS1115_COMP_MODE_MASK); }
void set_data_rate(enum ads1115_data_rate val) { set_config(val, ADS1115_DATA_RATE_MASK); }
void set_mode(enum ads1115_mode val) { set_config(val, ADS1115_MODE_MASK); }
void set_pga(enum ads1115_pga val) { set_config(val, ADS1115_PGA_MASK); m_voltage_range = val >> ADS1115_PGA_SHIFT; }
void set_mux(enum ads1115_mux val) { set_config(val, ADS1115_MUX_MASK); }
private:
void set_config(uint16_t val, uint16_t mask) {
m_config = (m_config & ~mask) | val;
}
uint8_t write_register(uint8_t reg, uint16_t val);
uint16_t read_register(uint8_t reg);
uint8_t m_address;
uint16_t m_config;
int m_voltage_range;
};
enum ads1115_register {
ADS1115_REGISTER_CONVERSION = 0,
ADS1115_REGISTER_CONFIG = 1,
ADS1115_REGISTER_LOW_THRESH = 2,
ADS1115_REGISTER_HIGH_THRESH = 3,
};
#define FACTOR 32768.0
static float ranges[] = { 6.144 / FACTOR, 4.096 / FACTOR, 2.048 / FACTOR, 1.024 / FACTOR, 0.512 / FACTOR, 0.256 / FACTOR};
ADS1115::ADS1115(uint8_t address)
{
m_address = address;
m_config = ADS1115_COMP_QUEUE_AFTER_ONE |
ADS1115_COMP_LATCH_NO |
ADS1115_COMP_POLARITY_ACTIVE_LOW |
ADS1115_COMP_MODE_WINDOW |
ADS1115_DATA_RATE_128_SPS |
ADS1115_MODE_SINGLE_SHOT |
ADS1115_MUX_GND_AIN0;
set_pga(ADS1115_PGA_ONE);
}
uint8_t ADS1115::write_register(uint8_t reg, uint16_t val)
{
Wire.beginTransmission(m_address);
Wire.write(reg);
Wire.write(val>>8);
Wire.write(val & 0xFF);
return Wire.endTransmission();
}
uint16_t ADS1115::read_register(uint8_t reg)
{
Wire.beginTransmission(m_address);
Wire.write(reg);
Wire.endTransmission();
uint8_t result = Wire.requestFrom((int)m_address, 2, 1);
if (result != 2) {
return 0;
}
uint16_t val;
val = Wire.read() << 8;
val |= Wire.read();
return val;
}
void ADS1115::begin()
{
Wire.begin();
}
uint8_t ADS1115::trigger_sample()
{
return write_register(ADS1115_REGISTER_CONFIG, m_config | SAMPLE_BIT);
}
uint8_t ADS1115::reset()
{
Wire.beginTransmission(0);
Wire.write(0x6);
return Wire.endTransmission();
}
bool ADS1115::is_sample_in_progress()
{
uint16_t val = read_register(ADS1115_REGISTER_CONFIG);
return (val & SAMPLE_BIT) == 0;
}
int16_t ADS1115::read_sample()
{
return read_register(ADS1115_REGISTER_CONVERSION);
}
float ADS1115::sample_to_float(int16_t val)
{
return val * ranges[m_voltage_range];
}
float ADS1115::read_sample_float()
{
return sample_to_float(read_sample());
}
ADS1115 adc;
void ADS1115_init(void) {
ads1115_up=0;
if (!i2c_flg) return;
adc.begin();
adc.set_data_rate(ADS1115_DATA_RATE_128_SPS);
adc.set_mode(ADS1115_MODE_CONTINUOUS);
adc.set_mux(ADS1115_MUX_DIFF_AIN0_AIN3);
adc.set_pga(ADS1115_PGA_TWO);
int16_t val = adc.read_sample();
ads1115_up=1;
}
#endif
char sml_start;
uint8_t dump2log=0;
#define SML_SAVAILABLE Serial_available()
#define SML_SREAD Serial_read()
#define SML_SPEAK Serial_peek()
bool Serial_available() {
uint8_t num=dump2log&7;
if (num<1 || num>meters_used) num=1;
if (!meter_ss[num-1]) return 0;
return meter_ss[num-1]->available();
}
uint8_t Serial_read() {
uint8_t num=dump2log&7;
if (num<1 || num>meters_used) num=1;
if (!meter_ss[num-1]) return 0;
return meter_ss[num-1]->read();
}
uint8_t Serial_peek() {
uint8_t num=dump2log&7;
if (num<1 || num>meters_used) num=1;
if (!meter_ss[num-1]) return 0;
return meter_ss[num-1]->peek();
}
uint8_t sml_logindex;
void Dump2log(void) {
int16_t index=0,hcnt=0;
uint32_t d_lastms;
uint8_t dchars[16];
//if (!SML_SAVAILABLE) return;
if (dump2log&8) {
// combo mode
while (SML_SAVAILABLE) {
log_data[index]=':';
index++;
log_data[index]=' ';
index++;
d_lastms=millis();
while ((millis()-d_lastms)<40) {
if (SML_SAVAILABLE) {
uint8_t c=SML_SREAD;
sprintf(&log_data[index],"%02x ",c);
dchars[hcnt]=c;
index+=3;
hcnt++;
if (hcnt>15) {
// line complete, build asci chars
log_data[index]='=';
index++;
log_data[index]='>';
index++;
log_data[index]=' ';
index++;
for (uint8_t ccnt=0; ccnt<16; ccnt++) {
if (isprint(dchars[ccnt])) {
log_data[index]=dchars[ccnt];
} else {
log_data[index]=' ';
}
index++;
}
break;
}
}
}
if (index>0) {
log_data[index]=0;
AddLog(LOG_LEVEL_INFO);
index=0;
hcnt=0;
}
}
} else {
if (meter_desc_p[(dump2log&7)-1].type=='o') {
// obis
while (SML_SAVAILABLE) {
char c=SML_SREAD&0x7f;
if (c=='\n' || c=='\r') {
log_data[sml_logindex]=0;
AddLog(LOG_LEVEL_INFO);
sml_logindex=2;
log_data[0]=':';
log_data[1]=' ';
break;
}
log_data[sml_logindex]=c;
if (sml_logindex<sizeof(log_data)-2) {
sml_logindex++;
}
}
} else {
//while (SML_SAVAILABLE) {
index=0;
log_data[index]=':';
index++;
log_data[index]=' ';
index++;
d_lastms=millis();
while ((millis()-d_lastms)<40) {
if (SML_SAVAILABLE) {
unsigned char c;
if (meter_desc_p[(dump2log&7)-1].type=='e') {
// ebus
c=SML_SREAD;
sprintf(&log_data[index],"%02x ",c);
index+=3;
if (c==EBUS_SYNC) break;
} else {
// sml
if (sml_start==0x77) {
sml_start=0;
} else {
c=SML_SPEAK;
if (c==0x77) {
sml_start=c;
break;
}
}
c=SML_SREAD;
sprintf(&log_data[index],"%02x ",c);
index+=3;
}
}
}
if (index>2) {
log_data[index]=0;
AddLog(LOG_LEVEL_INFO);
}
}
}
}
#ifdef ED300L
uint8_t sml_status[MAX_METERS];
uint8_t g_mindex;
#endif
// skip sml entries
uint8_t *skip_sml(uint8_t *cp,int16_t *res) {
uint8_t len,len1,type;
len=*cp&0xf;
type=*cp&0x70;
if (type==0x70) {
// list, skip entries
// list
cp++;
while (len--) {
len1=*cp&0x0f;
cp+=len1;
}
*res=0;
} else {
// skip len
*res=(signed char)*(cp+1);
cp+=len;
}
return cp;
}
// get sml binary value
// not defined for unsigned >0x7fff ffff ffff ffff (should never happen)
double sml_getvalue(unsigned char *cp,uint8_t index) {
uint8_t len,unit,type;
int16_t scaler,result;
int64_t value;
double dval;
// scan for values
// check status
#ifdef ED300L
unsigned char *cpx=cp-5;
// decode OBIS 0180 amd extract direction info
if (*cp==0x64 && *cpx==0 && *(cpx+1)==0x01 && *(cpx+2)==0x08 && *(cpx+3)==0) {
sml_status[g_mindex]=*(cp+3);
}
#endif
cp=skip_sml(cp,&result);
// check time
cp=skip_sml(cp,&result);
// check unit
cp=skip_sml(cp,&result);
// check scaler
cp=skip_sml(cp,&result);
scaler=result;
// get value
type=*cp&0x70;
len=*cp&0x0f;
cp++;
if (type==0x50 || type==0x60) {
// shift into 64 bit
uint64_t uvalue=0;
uint8_t nlen=len;
while (--nlen) {
uvalue<<=8;
uvalue|=*cp++;
}
if (type==0x50) {
// signed
switch (len-1) {
case 1:
// byte
value=(signed char)uvalue;
break;
case 2:
// signed 16 bit
#ifdef DWS74_BUG
if (scaler==-2) {
value=(uint32_t)uvalue;
} else {
value=(int16_t)uvalue;
}
#else
value=(int16_t)uvalue;
#endif
break;
case 3:
case 4:
// signed 32 bit
value=(int32_t)uvalue;
break;
case 5:
case 6:
case 7:
case 8:
// signed 64 bit
value=(int64_t)uvalue;
break;
}
} else {
// unsigned
value=uvalue;
}
} else {
if (!(type&0xf0)) {
// octet string serial number
// no coding found on the net
// up to now 2 types identified on Hager
if (len==9) {
// serial number on hager => 24 bit - 24 bit
cp++;
uint32_t s1,s2;
s1=*cp<<16|*(cp+1)<<8|*(cp+2);
cp+=4;
s2=*cp<<16|*(cp+1)<<8|*(cp+2);
sprintf(&meter_id[index][0],"%u-%u",s1,s2);
} else {
// server id on hager
char *str=&meter_id[index][0];
for (type=0; type<len-1; type++) {
sprintf(str,"%02x",*cp++);
str+=2;
}
}
value=0;
} else {
value=999999;
scaler=0;
}
}
dval=value;
if (scaler==-1) {
dval/=10;
} else if (scaler==-2) {
dval/=100;
} else if (scaler==-3) {
dval/=1000;
} else if (scaler==-4) {
dval/=10000;
} else if (scaler==1) {
dval*=10;
} else if (scaler==2) {
dval*=100;
} else if (scaler==3) {
dval*=1000;
}
#ifdef ED300L
// decode current power OBIS 00 0F 07 00
if (*cpx==0x00 && *(cpx+1)==0x0f && *(cpx+2)==0x07 && *(cpx+3)==0) {
if (sml_status[g_mindex]&0x20) {
// and invert sign on solar feed
dval*=-1;
}
}
#endif
return dval;
}
uint8_t hexnibble(char chr) {
uint8_t rVal = 0;
if (isdigit(chr)) {
rVal = chr - '0';
} else {
chr=toupper(chr);
if (chr >= 'A' && chr <= 'F') rVal = chr + 10 - 'A';
}
return rVal;
}
uint8_t sb_counter;
// need double precision in this driver
double CharToDouble(const char *str)
{
// simple ascii to double, because atof or strtod are too large
char strbuf[24];
strlcpy(strbuf, str, sizeof(strbuf));
char *pt = strbuf;
while ((*pt != '\0') && isblank(*pt)) { pt++; } // Trim leading spaces
signed char sign = 1;
if (*pt == '-') { sign = -1; }
if (*pt == '-' || *pt=='+') { pt++; } // Skip any sign
double left = 0;
if (*pt != '.') {
left = atoi(pt); // Get left part
while (isdigit(*pt)) { pt++; } // Skip number
}
double right = 0;
if (*pt == '.') {
pt++;
right = atoi(pt); // Decimal part
while (isdigit(*pt)) {
pt++;
right /= 10.0;
}
}
double result = left + right;
if (sign < 0) {
return -result; // Add negative sign
}
return result;
}
// remove ebus escapes
void ebus_esc(uint8_t *ebus_buffer, unsigned char len) {
short count,count1;
for (count=0; count<len; count++) {
if (ebus_buffer[count]==EBUS_ESC) {
//found escape
ebus_buffer[count]+=ebus_buffer[count+1];
// remove 2. char
count++;
for (count1=count; count1<len; count1++) {
ebus_buffer[count1]=ebus_buffer[count1+1];
}
}
}
}
uint8_t ebus_crc8(uint8_t data, uint8_t crc_init) {
uint8_t crc;
uint8_t polynom;
int i;
crc = crc_init;
for (i = 0; i < 8; i++) {
if (crc & 0x80) {
polynom = (uint8_t) 0x9B;
}
else {
polynom = (uint8_t) 0;
}
crc = (uint8_t)((crc & ~0x80) << 1);
if (data & 0x80) {
crc = (uint8_t)(crc | 1) ;
}
crc = (uint8_t)(crc ^ polynom);
data = (uint8_t)(data << 1);
}
return (crc);
}
// ebus crc
uint8_t ebus_CalculateCRC( uint8_t *Data, uint16_t DataLen ) {
uint16_t i;
uint8_t Crc = 0;
for(i = 0 ; i < DataLen ; ++i, ++Data ) {
Crc = ebus_crc8( *Data, Crc );
}
return Crc;
}
void sml_empty_receiver(uint32_t meters) {
while (meter_ss[meters]->available()) {
meter_ss[meters]->read();
}
}
void sml_shift_in(uint32_t meters,uint32_t shard) {
uint32_t count;
if (meter_desc_p[meters].type!='e' && meter_desc_p[meters].type!='m' && meter_desc_p[meters].type!='M' && meter_desc_p[meters].type!='p') {
// shift in
for (count=0; count<SML_BSIZ-1; count++) {
smltbuf[meters][count]=smltbuf[meters][count+1];
}
}
uint8_t iob=(uint8_t)meter_ss[meters]->read();
if (meter_desc_p[meters].type=='o') {
smltbuf[meters][SML_BSIZ-1]=iob&0x7f;
} else if (meter_desc_p[meters].type=='s') {
smltbuf[meters][SML_BSIZ-1]=iob;
} else if (meter_desc_p[meters].type=='r') {
smltbuf[meters][SML_BSIZ-1]=iob;
} else if (meter_desc_p[meters].type=='m' || meter_desc_p[meters].type=='M') {
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
uint32_t mlen=smltbuf[meters][2]+5;
if (meter_spos[meters]>=mlen) {
SML_Decode(meters);
sml_empty_receiver(meters);
meter_spos[meters]=0;
}
} else if (meter_desc_p[meters].type=='p') {
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
if (meter_spos[meters]>=7) {
SML_Decode(meters);
sml_empty_receiver(meters);
meter_spos[meters]=0;
}
} else {
if (iob==EBUS_SYNC) {
// should be end of telegramm
// QQ,ZZ,PB,SB,NN ..... CRC, ACK SYNC
if (meter_spos[meters]>4+5) {
// get telegramm lenght
uint8_t tlen=smltbuf[meters][4]+5;
// test crc
if (smltbuf[meters][tlen]=ebus_CalculateCRC(smltbuf[meters],tlen)) {
ebus_esc(smltbuf[meters],tlen);
SML_Decode(meters);
} else {
// crc error
//AddLog_P(LOG_LEVEL_INFO, PSTR("ebus crc error"));
}
}
meter_spos[meters]=0;
return;
}
smltbuf[meters][meter_spos[meters]] = iob;
meter_spos[meters]++;
if (meter_spos[meters]>=SML_BSIZ) {
meter_spos[meters]=0;
}
}
sb_counter++;
if (meter_desc_p[meters].type!='e' && meter_desc_p[meters].type!='m' && meter_desc_p[meters].type!='M' && meter_desc_p[meters].type!='p') SML_Decode(meters);
}
// polled every 50 ms
void SML_Poll(void) {
uint32_t meters;
for (meters=0; meters<meters_used; meters++) {
if (meter_desc_p[meters].type!='c') {
// poll for serial input
if (!meter_ss[meters]) continue;
while (meter_ss[meters]->available()) {
sml_shift_in(meters,0);
}
}
}
}
void SML_Decode(uint8_t index) {
const char *mp=(const char*)meter_p;
int8_t mindex;
uint8_t *cp;
uint8_t dindex=0,vindex=0;
delay(0);
while (mp != NULL) {
// check list of defines
// new section
mindex=((*mp)&7)-1;
if (mindex<0 || mindex>=meters_used) mindex=0;
mp+=2;
if (*mp=='=' && *(mp+1)=='h') {
mp = strchr(mp, '|');
if (mp) mp++;
continue;
}
if (index!=mindex) goto nextsect;
// start of serial source buffer
cp=&smltbuf[mindex][0];
// compare
if (*mp=='=') {
// calculated entry, check syntax
mp++;
// do math m 1+2+3
if (*mp=='m' && !sb_counter) {
// only every 256 th byte
// else it would be calculated every single serial byte
mp++;
while (*mp==' ') mp++;
// 1. index
double dvar;
uint8_t opr;
uint32_t ind;
ind=atoi(mp);
while (*mp>='0' && *mp<='9') mp++;
if (ind<1 || ind>SML_MAX_VARS) ind=1;
dvar=meter_vars[ind-1];
for (uint8_t p=0;p<5;p++) {
if (*mp=='@') {
// store result
meter_vars[vindex]=dvar;
mp++;
SML_Immediate_MQTT((const char*)mp,vindex,mindex);
break;
}
opr=*mp;
mp++;
uint8_t iflg=0;
if (*mp=='#') {
iflg=1;
mp++;
}
ind=atoi(mp);
while (*mp>='0' && *mp<='9') mp++;
if (ind<1 || ind>SML_MAX_VARS) ind=1;
switch (opr) {
case '+':
if (iflg) dvar+=ind;
else dvar+=meter_vars[ind-1];
break;
case '-':
if (iflg) dvar-=ind;
else dvar-=meter_vars[ind-1];
break;
case '*':
if (iflg) dvar*=ind;
else dvar*=meter_vars[ind-1];
break;
case '/':
if (iflg) dvar/=ind;
else dvar/=meter_vars[ind-1];
break;
}
while (*mp==' ') mp++;
if (*mp=='@') {
// store result
meter_vars[vindex]=dvar;
mp++;
SML_Immediate_MQTT((const char*)mp,vindex,mindex);
break;
}
}
} else if (*mp=='d') {
// calc deltas d ind 10 (eg every 10 secs)
if (dindex<MAX_DVARS) {
// only n indexes
mp++;
while (*mp==' ') mp++;
uint8_t ind=atoi(mp);
while (*mp>='0' && *mp<='9') mp++;
if (ind<1 || ind>SML_MAX_VARS) ind=1;
uint32_t delay=atoi(mp)*1000;
uint32_t dtime=millis()-dtimes[dindex];
if (dtime>delay) {
// calc difference
dtimes[dindex]=millis();
double vdiff = meter_vars[ind-1]-dvalues[dindex];
dvalues[dindex]=meter_vars[ind-1];
meter_vars[vindex]=(double)360000.0*vdiff/((double)dtime/10000.0);
mp=strchr(mp,'@');
if (mp) {
mp++;
SML_Immediate_MQTT((const char*)mp,vindex,mindex);
}
}
dindex++;
}
} else if (*mp=='h') {
// skip html tag line
mp = strchr(mp, '|');
if (mp) mp++;
continue;
}
} else {
// compare value
uint8_t found=1;
uint32_t ebus_dval=99;
float mbus_dval=99;
while (*mp!='@') {
if (meter_desc_p[mindex].type=='o' || meter_desc_p[mindex].type=='c') {
if (*mp++!=*cp++) {
found=0;
}
} else {
if (meter_desc_p[mindex].type=='s') {
// sml
uint8_t val = hexnibble(*mp++) << 4;
val |= hexnibble(*mp++);
if (val!=*cp++) {
found=0;
}
} else {
// ebus mbus pzem or raw
// XXHHHHSSUU
if (*mp=='x' && *(mp+1)=='x') {
//ignore
mp+=2;
cp++;
} else if (!strncmp(mp,"UUuuUUuu",8)) {
uint32_t val= (cp[0]<<24)|(cp[1]<<16)|(cp[2]<<8)|(cp[3]<<0);
ebus_dval=val;
mbus_dval=val;
mp+=8;
cp+=4;
} else if (*mp=='U' && *(mp+1)=='U' && *(mp+2)=='u' && *(mp+3)=='u'){
uint16_t val = cp[1]|(cp[0]<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
} else if (!strncmp(mp,"SSssSSss",8)) {
int32_t val= (cp[0]<<24)|(cp[1]<<16)|(cp[2]<<8)|(cp[3]<<0);
ebus_dval=val;
mbus_dval=val;
mp+=8;
cp+=4;
} else if (*mp=='u' && *(mp+1)=='u' && *(mp+2)=='U' && *(mp+3)=='U'){
uint16_t val = cp[0]|(cp[1]<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
} else if (*mp=='u' && *(mp+1)=='u') {
uint8_t val = *cp++;
mbus_dval=val;
ebus_dval=val;
mp+=2;
} else if (*mp=='s' && *(mp+1)=='s' && *(mp+2)=='S' && *(mp+3)=='S') {
int16_t val = *cp|(*(cp+1)<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
} else if (*mp=='S' && *(mp+1)=='S' && *(mp+2)=='s' && *(mp+3)=='s') {
int16_t val = cp[1]|(cp[0]<<8);
mbus_dval=val;
ebus_dval=val;
mp+=4;
cp+=2;
}
else if (*mp=='s' && *(mp+1)=='s') {
int8_t val = *cp++;
mbus_dval=val;
ebus_dval=val;
mp+=2;
}
else if (!strncmp(mp,"ffffffff",8)) {
uint32_t val= (cp[0]<<24)|(cp[1]<<16)|(cp[2]<<8)|(cp[3]<<0);
float *fp=(float*)&val;
ebus_dval=*fp;
mbus_dval=*fp;
mp+=8;
cp+=4;
}
else if (!strncmp(mp,"FFffFFff",8)) {
// reverse word float
uint32_t val= (cp[1]<<0)|(cp[0]<<8)|(cp[3]<<16)|(cp[2]<<24);
float *fp=(float*)&val;
ebus_dval=*fp;
mbus_dval=*fp;
mp+=8;
cp+=4;
}
else if (!strncmp(mp,"eeeeee",6)) {
uint32_t val=(cp[0]<<16)|(cp[1]<<8)|(cp[2]<<0);
mbus_dval=val;
mp+=6;
cp+=3;
}
else if (!strncmp(mp,"vvvvvv",6)) {
mbus_dval=(float)((cp[0]<<8)|(cp[1])) + ((float)cp[2]/10.0);
mp+=6;
cp+=3;
}
else if (!strncmp(mp,"cccccc",6)) {
mbus_dval=(float)((cp[0]<<8)|(cp[1])) + ((float)cp[2]/100.0);
mp+=6;
cp+=3;
}
else if (!strncmp(mp,"pppp",4)) {
mbus_dval=(float)((cp[0]<<8)|cp[1]);
mp+=4;
cp+=2;
}
else {
uint8_t val = hexnibble(*mp++) << 4;
val |= hexnibble(*mp++);
if (val!=*cp++) {
found=0;
}
}
}
}
}
if (found) {
// matches, get value
mp++;
#ifdef ED300L
g_mindex=mindex;
#endif
if (*mp=='#') {
// get string value
mp++;
if (meter_desc_p[mindex].type=='o') {
for (uint8_t p=0;p<METER_ID_SIZE;p++) {
if (*cp==*mp) {
meter_id[mindex][p]=0;
break;
}
meter_id[mindex][p]=*cp++;
}
} else {
sml_getvalue(cp,mindex);
}
} else {
double dval;
if (meter_desc_p[mindex].type!='e' && meter_desc_p[mindex].type!='r' && meter_desc_p[mindex].type!='m' && meter_desc_p[mindex].type!='M' && meter_desc_p[mindex].type!='p') {
// get numeric values
if (meter_desc_p[mindex].type=='o' || meter_desc_p[mindex].type=='c') {
dval=CharToDouble((char*)cp);
} else {
dval=sml_getvalue(cp,mindex);
}
} else {
// ebus pzem or mbus or raw
if (*mp=='b') {
mp++;
uint8_t shift=*mp&7;
ebus_dval>>=shift;
ebus_dval&=1;
mp+=2;
}
if (*mp=='i') {
// mbus index
mp++;
uint8_t mb_index=strtol((char*)mp,(char**)&mp,10);
if (mb_index!=meter_desc_p[mindex].index) {
goto nextsect;
}
uint16_t pos = smltbuf[mindex][2]+3;
uint16_t crc = MBUS_calculateCRC(&smltbuf[mindex][0],pos);
if (lowByte(crc)!=smltbuf[mindex][pos]) goto nextsect;
if (highByte(crc)!=smltbuf[mindex][pos+1]) goto nextsect;
dval=mbus_dval;
//AddLog_P2(LOG_LEVEL_INFO, PSTR(">> %s"),mp);
mp++;
} else {
if (meter_desc_p[mindex].type=='p') {
uint8_t crc = SML_PzemCrc(&smltbuf[mindex][0],6);
if (crc!=smltbuf[mindex][6]) goto nextsect;
dval=mbus_dval;
} else {
dval=ebus_dval;
}
}
}
#ifdef USE_SML_MEDIAN_FILTER
if (meter_desc_p[mindex].flag&16) {
meter_vars[vindex]=sml_median(&sml_mf[vindex],dval);
} else {
meter_vars[vindex]=dval;
}
#else
meter_vars[vindex]=dval;
#endif
//AddLog_P2(LOG_LEVEL_INFO, PSTR(">> %s"),mp);
// get scaling factor
double fac=CharToDouble((char*)mp);
meter_vars[vindex]/=fac;
SML_Immediate_MQTT((const char*)mp,vindex,mindex);
}
}
}
nextsect:
// next section
if (vindex<SML_MAX_VARS-1) {
vindex++;
}
mp = strchr(mp, '|');
if (mp) mp++;
}
}
//"1-0:1.8.0*255(@1," D_TPWRIN ",kWh," DJ_TPWRIN ",4|"
void SML_Immediate_MQTT(const char *mp,uint8_t index,uint8_t mindex) {
char tpowstr[32];
char jname[24];
// we must skip sf,webname,unit
char *cp=strchr(mp,',');
if (cp) {
cp++;
// wn
cp=strchr(cp,',');
if (cp) {
cp++;
// unit
cp=strchr(cp,',');
if (cp) {
cp++;
// json mqtt
for (uint8_t count=0;count<sizeof(jname);count++) {
if (*cp==',') {
jname[count]=0;
break;
}
jname[count]=*cp++;
}
cp++;
uint8_t dp=atoi(cp);
if (dp&0x10) {
// immediate mqtt
dtostrfd(meter_vars[index],dp&0xf,tpowstr);
ResponseTime_P(PSTR(",\"%s\":{\"%s\":%s}}"),meter_desc_p[mindex].prefix,jname,tpowstr);
MqttPublishTeleSensor();
}
}
}
}
}
// web + json interface
void SML_Show(boolean json) {
int8_t count,mindex,cindex=0;
char tpowstr[32];
char name[24];
char unit[8];
char jname[24];
int8_t index=0,mid=0;
char *mp=(char*)meter_p;
char *cp;
//char b_mqtt_data[MESSZ];
//b_mqtt_data[0]=0;
int8_t lastmind=((*mp)&7)-1;
if (lastmind<0 || lastmind>=meters_used) lastmind=0;
while (mp != NULL) {
// setup sections
mindex=((*mp)&7)-1;
if (mindex<0 || mindex>=meters_used) mindex=0;
mp+=2;
if (*mp=='=' && *(mp+1)=='h') {
mp+=2;
// html tag
if (json) {
mp = strchr(mp, '|');
if (mp) mp++;
continue;
}
// web ui export
uint8_t i;
for (i=0;i<sizeof(tpowstr)-2;i++) {
if (*mp=='|' || *mp==0) break;
tpowstr[i]=*mp++;
}
tpowstr[i]=0;
// export html
//snprintf_P(b_mqtt_data, sizeof(b_mqtt_data), "%s{s}%s{e}", b_mqtt_data,tpowstr);
WSContentSend_PD(PSTR("{s}%s{e}"),tpowstr);
// rewind, to ensure strchr
mp--;
mp = strchr(mp, '|');
if (mp) mp++;
continue;
}
// skip compare section
cp=strchr(mp,'@');
if (cp) {
cp++;
if (*cp=='#') {
// meter id
sprintf(tpowstr,"\"%s\"",&meter_id[mindex][0]);
mid=1;
} else {
mid=0;
}
// skip scaling
cp=strchr(cp,',');
if (cp) {
// this is the name in web UI
cp++;
for (count=0;count<sizeof(name);count++) {
if (*cp==',') {
name[count]=0;
break;
}
name[count]=*cp++;
}
cp++;
for (count=0;count<sizeof(unit);count++) {
if (*cp==',') {
unit[count]=0;
break;
}
unit[count]=*cp++;
}
cp++;
for (count=0;count<sizeof(jname);count++) {
if (*cp==',') {
jname[count]=0;
break;
}
jname[count]=*cp++;
}
cp++;
if (!mid) {
uint8_t dp=atoi(cp)&0xf;
dtostrfd(meter_vars[index],dp,tpowstr);
}
if (json) {
// json export
if (index==0) {
//snprintf_P(b_mqtt_data, sizeof(b_mqtt_data), "%s,\"%s\":{\"%s\":%s", b_mqtt_data,meter_desc_p[mindex].prefix,jname,tpowstr);
ResponseAppend_P(PSTR(",\"%s\":{\"%s\":%s"),meter_desc_p[mindex].prefix,jname,tpowstr);
}
else {
if (lastmind!=mindex) {
// meter changed, close mqtt
//snprintf_P(b_mqtt_data, sizeof(b_mqtt_data), "%s}", b_mqtt_data);
ResponseAppend_P(PSTR("}"));
// and open new
//snprintf_P(b_mqtt_data, sizeof(b_mqtt_data), "%s,\"%s\":{\"%s\":%s", b_mqtt_data,meter_desc_p[mindex].prefix,jname,tpowstr);
ResponseAppend_P(PSTR(",\"%s\":{\"%s\":%s"),meter_desc_p[mindex].prefix,jname,tpowstr);
lastmind=mindex;
} else {
//snprintf_P(b_mqtt_data, sizeof(b_mqtt_data), "%s,\"%s\":%s", b_mqtt_data,jname,tpowstr);
ResponseAppend_P(PSTR(",\"%s\":%s"),jname,tpowstr);
}
}
} else {
// web ui export
//snprintf_P(b_mqtt_data, sizeof(b_mqtt_data), "%s{s}%s %s: {m}%s %s{e}", b_mqtt_data,meter_desc[mindex].prefix,name,tpowstr,unit);
if (strcmp(name,"*")) WSContentSend_PD(PSTR("{s}%s %s: {m}%s %s{e}"),meter_desc_p[mindex].prefix,name,tpowstr,unit);
}
}
}
if (index<SML_MAX_VARS-1) {
index++;
}
// next section
mp = strchr(cp, '|');
if (mp) mp++;
}
if (json) {
//snprintf_P(b_mqtt_data, sizeof(b_mqtt_data), "%s}", b_mqtt_data);
//ResponseAppend_P(PSTR("%s"),b_mqtt_data);
ResponseAppend_P(PSTR("}"));
} else {
//WSContentSend_PD(PSTR("%s"),b_mqtt_data);
}
/*
#ifdef USE_DOMOTICZ
if (json && !tele_period) {
char str[16];
dtostrfd(meter_vars[0], 1, str);
DomoticzSensorPowerEnergy(meter_vars[1], str); // PowerUsage, EnergyToday
dtostrfd(meter_vars[2], 1, str);
DomoticzSensor(DZ_VOLTAGE, str); // Voltage
dtostrfd(meter_vars[3], 1, str);
DomoticzSensor(DZ_CURRENT, str); // Current
}
#endif // USE_DOMOTICZ
*/
}
struct SML_COUNTER {
uint8_t sml_cnt_debounce;
uint8_t sml_cnt_old_state;
uint32_t sml_cnt_last_ts;
uint32_t sml_counter_ltime;
uint16_t sml_debounce;
uint8_t sml_cnt_updated;
#ifdef ANALOG_OPTO_SENSOR
int16_t ana_curr;
int16_t ana_max;
int16_t ana_min;
int16_t ana_cmpl;
int16_t ana_cmph;
#endif
} sml_counters[MAX_COUNTERS];
#ifndef ARDUINO_ESP8266_RELEASE_2_3_0 // Fix core 2.5.x ISR not in IRAM Exception
void SML_CounterUpd(uint8_t index) ICACHE_RAM_ATTR;
void SML_CounterUpd1(void) ICACHE_RAM_ATTR;
void SML_CounterUpd2(void) ICACHE_RAM_ATTR;
void SML_CounterUpd3(void) ICACHE_RAM_ATTR;
void SML_CounterUpd4(void) ICACHE_RAM_ATTR;
#endif // ARDUINO_ESP8266_RELEASE_2_3_0
void SML_CounterUpd(uint8_t index) {
uint8_t level=digitalRead(meter_desc_p[sml_counters[index].sml_cnt_old_state].srcpin);
if (!level) {
// falling edge
uint32_t ltime=millis()-sml_counters[index].sml_counter_ltime;
sml_counters[index].sml_counter_ltime=millis();
if (ltime>sml_counters[index].sml_debounce) {
RtcSettings.pulse_counter[index]++;
sml_counters[index].sml_cnt_updated=1;
//InjektCounterValue(sml_counters[index].sml_cnt_old_state,RtcSettings.pulse_counter[index]);
}
} else {
// rising edge
sml_counters[index].sml_counter_ltime=millis();
}
}
void SML_CounterUpd1(void) {
SML_CounterUpd(0);
}
void SML_CounterUpd2(void) {
SML_CounterUpd(1);
}
void SML_CounterUpd3(void) {
SML_CounterUpd(2);
}
void SML_CounterUpd4(void) {
SML_CounterUpd(3);
}
#ifdef USE_SCRIPT
struct METER_DESC script_meter_desc[MAX_METERS];
uint8_t *script_meter;
#endif
#ifndef METER_DEF_SIZE
#define METER_DEF_SIZE 3000
#endif
#ifdef SML_REPLACE_VARS
#define SML_SRCBSIZE 256
uint32_t SML_getlinelen(char *lp) {
uint32_t cnt;
for (cnt=0; cnt<SML_SRCBSIZE-1; cnt++) {
if (lp[cnt]==SCRIPT_EOL) {
break;
}
}
return cnt;
}
uint32_t SML_getscriptsize(char *lp) {
uint32_t mlen=0;
char dstbuf[SML_SRCBSIZE*2];
while (1) {
Replace_Cmd_Vars(lp,1,dstbuf,sizeof(dstbuf));
lp+=SML_getlinelen(lp)+1;
uint32_t slen=strlen(dstbuf);
//AddLog_P2(LOG_LEVEL_INFO, PSTR("%d - %s"),slen,dstbuf);
mlen+=slen+1;
if (*lp=='#') break;
if (*lp=='>') break;
if (*lp==0) break;
}
//AddLog_P2(LOG_LEVEL_INFO, PSTR("len=%d"),mlen);
return mlen+32;
}
#else
uint32_t SML_getscriptsize(char *lp) {
uint32_t mlen=0;
for (uint32_t cnt=0;cnt<METER_DEF_SIZE-1;cnt++) {
if (lp[cnt]=='\n' && lp[cnt+1]=='#') {
mlen=cnt+3;
break;
}
}
//AddLog_P2(LOG_LEVEL_INFO, PSTR("len=%d"),mlen);
return mlen;
}
#endif
bool Gpio_used(uint8_t gpiopin) {
/*
for (uint16_t i=0;i<GPIO_SENSOR_END;i++) {
// if (pin_gpio[i]==gpiopin) {
if (Pin(i)==gpiopin) {
return true;
}
}
*/
if ((gpiopin < ARRAY_SIZE(gpio_pin)) && (gpio_pin[gpiopin] > 0)) {
return true;
}
return false;
}
void SML_Init(void) {
meters_used=METERS_USED;
meter_desc_p=meter_desc;
meter_p=meter;
sml_desc_cnt=0;
for (uint32_t cnt=0;cnt<SML_MAX_VARS;cnt++) {
meter_vars[cnt]=0;
}
for (uint32_t cnt=0;cnt<MAX_METERS;cnt++) {
meter_spos[cnt]=0;
}
#ifdef USE_SCRIPT
for (uint32_t cnt=0;cnt<MAX_METERS;cnt++) {
if (script_meter_desc[cnt].txmem) {
free(script_meter_desc[cnt].txmem);
}
script_meter_desc[cnt].txmem=0;
script_meter_desc[cnt].trxpin=-1;
if (meter_ss[cnt]) {
delete meter_ss[cnt];
meter_ss[cnt]=NULL;
}
}
if (bitRead(Settings.rule_enabled, 0)) {
uint8_t meter_script=Run_Scripter(">M",-2,0);
if (meter_script==99) {
// use script definition
if (script_meter) free(script_meter);
script_meter=0;
uint8_t *tp=0;
uint16_t index=0;
uint8_t section=0;
uint8_t srcpin=0;
char *lp=glob_script_mem.scriptptr;
sml_send_blocks=0;
while (lp) {
if (!section) {
if (*lp=='>' && *(lp+1)=='M') {
lp+=2;
meters_used=strtol(lp,0,10);
section=1;
uint32_t mlen=SML_getscriptsize(lp);
if (mlen==0) return; // missing end #
script_meter=(uint8_t*)calloc(mlen,1);
if (!script_meter) {
goto dddef_exit;
}
tp=script_meter;
goto next_line;
}
}
else {
if (!*lp || *lp=='#' || *lp=='>') {
if (*(tp-1)=='|') *(tp-1)=0;
break;
}
if (*lp=='+') {
// add descriptor +1,1,c,0,10,H20
//toLogEOL(">>",lp);
lp++;
index=*lp&7;
lp+=2;
if (index<1 || index>meters_used) goto next_line;
index--;
srcpin=strtol(lp,&lp,10);
if (Gpio_used(srcpin)) {
AddLog_P(LOG_LEVEL_INFO, PSTR("gpio rx double define!"));
dddef_exit:
if (script_meter) free(script_meter);
script_meter=0;
meters_used=METERS_USED;
goto init10;
}
script_meter_desc[index].srcpin=srcpin;
if (*lp!=',') goto next_line;
lp++;
script_meter_desc[index].type=*lp;
lp+=2;
script_meter_desc[index].flag=strtol(lp,&lp,10);
if (*lp!=',') goto next_line;
lp++;
script_meter_desc[index].params=strtol(lp,&lp,10);
if (*lp!=',') goto next_line;
lp++;
script_meter_desc[index].prefix[7]=0;
for (uint32_t cnt=0; cnt<8; cnt++) {
if (*lp==SCRIPT_EOL || *lp==',') {
script_meter_desc[index].prefix[cnt]=0;
break;
}
script_meter_desc[index].prefix[cnt]=*lp++;
}
if (*lp==',') {
lp++;
script_meter_desc[index].trxpin=strtol(lp,&lp,10);
if (Gpio_used(script_meter_desc[index].trxpin)) {
AddLog_P(LOG_LEVEL_INFO, PSTR("gpio tx double define!"));
goto dddef_exit;
}
if (*lp!=',') goto next_line;
lp++;
script_meter_desc[index].tsecs=strtol(lp,&lp,10);
if (*lp==',') {
lp++;
char txbuff[256];
uint32_t txlen=0,tx_entries=1;
for (uint32_t cnt=0; cnt<sizeof(txbuff); cnt++) {
if (*lp==SCRIPT_EOL) {
txbuff[cnt]=0;
txlen=cnt;
break;
}
if (*lp==',') tx_entries++;
txbuff[cnt]=*lp++;
}
if (txlen) {
script_meter_desc[index].txmem=(char*)calloc(txlen+2,1);
if (script_meter_desc[index].txmem) {
strcpy(script_meter_desc[index].txmem,txbuff);
}
script_meter_desc[index].index=0;
script_meter_desc[index].max_index=tx_entries;
sml_send_blocks++;
}
}
}
if (*lp==SCRIPT_EOL) lp--;
goto next_line;
}
#ifdef SML_REPLACE_VARS
char dstbuf[SML_SRCBSIZE*2];
Replace_Cmd_Vars(lp,1,dstbuf,sizeof(dstbuf));
lp+=SML_getlinelen(lp);
//AddLog_P2(LOG_LEVEL_INFO, PSTR("%s"),dstbuf);
char *lp1=dstbuf;
if (*lp1=='-' || isdigit(*lp1)) {
//toLogEOL(">>",lp);
// add meters line -1,1-0:1.8.0*255(@10000,H2OIN,cbm,COUNTER,4|
if (*lp1=='-') lp1++;
uint8_t mnum=strtol(lp1,0,10);
if (mnum<1 || mnum>meters_used) goto next_line;
while (1) {
if (*lp1==0) {
*tp++='|';
goto next_line;
}
*tp++=*lp1++;
index++;
if (index>=METER_DEF_SIZE) break;
}
}
#else
if (*lp=='-' || isdigit(*lp)) {
//toLogEOL(">>",lp);
// add meters line -1,1-0:1.8.0*255(@10000,H2OIN,cbm,COUNTER,4|
if (*lp=='-') lp++;
uint8_t mnum=strtol(lp,0,10);
if (mnum<1 || mnum>meters_used) goto next_line;
while (1) {
if (*lp==SCRIPT_EOL) {
if (*(tp-1)!='|') *tp++='|';
goto next_line;
}
*tp++=*lp++;
index++;
if (index>=METER_DEF_SIZE) break;
}
}
#endif
}
next_line:
if (*lp==SCRIPT_EOL) {
lp++;
} else {
lp = strchr(lp, SCRIPT_EOL);
if (!lp) break;
lp++;
}
}
*tp=0;
meter_desc_p=script_meter_desc;
meter_p=script_meter;
}
}
#endif
init10:
typedef void (*function)();
function counter_callbacks[] = {SML_CounterUpd1,SML_CounterUpd2,SML_CounterUpd3,SML_CounterUpd4};
uint8_t cindex=0;
// preloud counters
for (byte i = 0; i < MAX_COUNTERS; i++) {
RtcSettings.pulse_counter[i]=Settings.pulse_counter[i];
sml_counters[i].sml_cnt_last_ts=millis();
}
uint32_t uart_index=2;
for (uint8_t meters=0; meters<meters_used; meters++) {
if (meter_desc_p[meters].type=='c') {
if (meter_desc_p[meters].flag&2) {
// analog mode
#ifdef ANALOG_OPTO_SENSOR
ADS1115_init();
sml_counters[cindex].ana_max=-32768;
sml_counters[cindex].ana_min=+32767;
#endif
} else {
// counters, set to input with pullup
if (meter_desc_p[meters].flag&1) {
pinMode(meter_desc_p[meters].srcpin,INPUT_PULLUP);
} else {
pinMode(meter_desc_p[meters].srcpin,INPUT);
}
// check for irq mode
if (meter_desc_p[meters].params<=0) {
// init irq mode
attachInterrupt(meter_desc_p[meters].srcpin, counter_callbacks[cindex], CHANGE);
sml_counters[cindex].sml_cnt_old_state=meters;
sml_counters[cindex].sml_debounce=-meter_desc_p[meters].params;
}
InjektCounterValue(meters,RtcSettings.pulse_counter[cindex]);
cindex++;
}
} else {
// serial input, init
#ifdef SPECIAL_SS
if (meter_desc_p[meters].type=='m' || meter_desc_p[meters].type=='M' || meter_desc_p[meters].type=='p') {
meter_ss[meters] = new TasmotaSerial(meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin,1,0,TMSBSIZ);
} else {
meter_ss[meters] = new TasmotaSerial(meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin,1,1,TMSBSIZ);
}
#else
#ifdef ESP32
meter_ss[meters] = new HardwareSerial(uart_index);
if (uart_index==0) { ClaimSerial(); }
uart_index--;
if (uart_index<0) uart_index=0;
meter_ss[meters]->setRxBufferSize(TMSBSIZ);
#else
meter_ss[meters] = new TasmotaSerial(meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin,1,0,TMSBSIZ);
#endif
#endif
#ifdef ESP32
if (meter_desc_p[meters].type=='M') {
meter_ss[meters]->begin(meter_desc_p[meters].params, SERIAL_8E1,meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin);
} else {
meter_ss[meters]->begin(meter_desc_p[meters].params,SERIAL_8N1,meter_desc_p[meters].srcpin,meter_desc_p[meters].trxpin);
}
#else
if (meter_ss[meters]->begin(meter_desc_p[meters].params)) {
meter_ss[meters]->flush();
}
if (meter_ss[meters]->hardwareSerial()) {
if (meter_desc_p[meters].type=='M') {
Serial.begin(meter_desc_p[meters].params, SERIAL_8E1);
}
ClaimSerial();
//Serial.setRxBufferSize(512);
}
#endif
}
}
}
#ifdef USE_SML_SCRIPT_CMD
uint32_t SML_SetBaud(uint32_t meter, uint32_t br) {
if (meter<1 || meter>meters_used) return 0;
meter--;
if (!meter_ss[meter]) return 0;
#ifdef ESP32
meter_ss[meter]->flush();
if (meter_desc_p[meter].type=='M') {
meter_ss[meter]->begin(br,SERIAL_8E1,meter_desc_p[meter].srcpin,meter_desc_p[meter].trxpin);
} else {
meter_ss[meter]->begin(br,SERIAL_8N1,meter_desc_p[meter].srcpin,meter_desc_p[meter].trxpin);
}
#else
if (meter_ss[meter]->begin(br)) {
meter_ss[meter]->flush();
}
if (meter_ss[meter]->hardwareSerial()) {
if (meter_desc_p[meter].type=='M') {
Serial.begin(br, SERIAL_8E1);
}
}
#endif
return 1;
}
uint32_t SML_Status(uint32_t meter) {
if (meter<1 || meter>meters_used) return 0;
meter--;
#ifdef ED300L
return sml_status[meter];
#else
return 0;
#endif
}
uint32_t SML_Write(uint32_t meter,char *hstr) {
if (meter<1 || meter>meters_used) return 0;
meter--;
if (!meter_ss[meter]) return 0;
SML_Send_Seq(meter,hstr);
return 1;
}
float SML_GetVal(uint32_t index) {
if (index<1 && index>SML_MAX_VARS) { index = 1;}
return meter_vars[index-1];
}
#endif // USE_SML_SCRIPT_CMD
void SetDBGLed(uint8_t srcpin, uint8_t ledpin) {
pinMode(ledpin, OUTPUT);
if (digitalRead(srcpin)) {
digitalWrite(ledpin,LOW);
} else {
digitalWrite(ledpin,HIGH);
}
}
// fast counter polling
void SML_Counter_Poll(void) {
uint16_t meters,cindex=0;
uint32_t ctime=millis();
for (meters=0; meters<meters_used; meters++) {
if (meter_desc_p[meters].type=='c') {
// poll for counters and debouce
if (meter_desc_p[meters].params>0) {
if (ctime-sml_counters[cindex].sml_cnt_last_ts>meter_desc_p[meters].params) {
sml_counters[cindex].sml_cnt_last_ts=ctime;
if (meter_desc_p[meters].flag&2) {
// analog mode, get next value
#ifdef ANALOG_OPTO_SENSOR
if (ads1115_up) {
int16_t val = adc.read_sample();
if (val>sml_counters[cindex].ana_max) sml_counters[cindex].ana_max=val;
if (val<sml_counters[cindex].ana_min) sml_counters[cindex].ana_min=val;
sml_counters[cindex].ana_curr=val;
int16_t range=sml_counters[cindex].ana_max-sml_counters[cindex].ana_min;
}
#endif
} else {
// poll digital input
uint8_t state;
sml_counters[cindex].sml_cnt_debounce<<=1;
sml_counters[cindex].sml_cnt_debounce|=(digitalRead(meter_desc_p[meters].srcpin)&1)|0x80;
if (sml_counters[cindex].sml_cnt_debounce==0xc0) {
// is 1
state=1;
} else {
// is 0, means switch down
state=0;
}
if (sml_counters[cindex].sml_cnt_old_state!=state) {
// state has changed
sml_counters[cindex].sml_cnt_old_state=state;
if (state==0) {
// inc counter
RtcSettings.pulse_counter[cindex]++;
InjektCounterValue(meters,RtcSettings.pulse_counter[cindex]);
}
}
}
}
#ifdef DEBUG_CNT_LED1
if (cindex==0) SetDBGLed(meter_desc_p[meters].srcpin,DEBUG_CNT_LED1);
#endif
#ifdef DEBUG_CNT_LED2
if (cindex==1) SetDBGLed(meter_desc_p[meters].srcpin,DEBUG_CNT_LED2);
#endif
} else {
if (ctime-sml_counters[cindex].sml_cnt_last_ts>10) {
sml_counters[cindex].sml_cnt_last_ts=ctime;
#ifdef DEBUG_CNT_LED1
if (cindex==0) SetDBGLed(meter_desc_p[meters].srcpin,DEBUG_CNT_LED1);
#endif
#ifdef DEBUG_CNT_LED2
if (cindex==1) SetDBGLed(meter_desc_p[meters].srcpin,DEBUG_CNT_LED2);
#endif
}
if (sml_counters[cindex].sml_cnt_updated) {
InjektCounterValue(sml_counters[cindex].sml_cnt_old_state,RtcSettings.pulse_counter[cindex]);
sml_counters[cindex].sml_cnt_updated=0;
}
}
cindex++;
}
}
}
#ifdef USE_SCRIPT
char *SML_Get_Sequence(char *cp,uint32_t index) {
if (!index) return cp;
uint32_t cindex=0;
while (cp) {
cp=strchr(cp,',');
if (cp) {
cp++;
cindex++;
if (cindex==index) {
return cp;
}
}
}
}
void SML_Check_Send(void) {
sml_100ms_cnt++;
char *cp;
for (uint32_t cnt=sml_desc_cnt; cnt<meters_used; cnt++) {
if (script_meter_desc[cnt].trxpin>=0 && script_meter_desc[cnt].txmem) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("100 ms>> %d - %s - %d"),sml_desc_cnt,script_meter_desc[cnt].txmem,script_meter_desc[cnt].tsecs);
if ((sml_100ms_cnt>=script_meter_desc[cnt].tsecs)) {
sml_100ms_cnt=0;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("100 ms>> 2"),cp);
if (script_meter_desc[cnt].max_index>1) {
script_meter_desc[cnt].index++;
if (script_meter_desc[cnt].index>=script_meter_desc[cnt].max_index) {
script_meter_desc[cnt].index=0;
sml_desc_cnt++;
}
cp=SML_Get_Sequence(script_meter_desc[cnt].txmem,script_meter_desc[cnt].index);
//SML_Send_Seq(cnt,cp);
} else {
cp=script_meter_desc[cnt].txmem;
//SML_Send_Seq(cnt,cp);
sml_desc_cnt++;
}
//AddLog_P2(LOG_LEVEL_INFO, PSTR(">> %s"),cp);
SML_Send_Seq(cnt,cp);
if (sml_desc_cnt>=meters_used) {
sml_desc_cnt=0;
}
break;
}
} else {
sml_desc_cnt++;
}
if (sml_desc_cnt>=meters_used) {
sml_desc_cnt=0;
}
}
}
uint8_t sml_hexnibble(char chr) {
uint8_t rVal = 0;
if (isdigit(chr)) {
rVal = chr - '0';
} else {
if (chr >= 'A' && chr <= 'F') rVal = chr + 10 - 'A';
if (chr >= 'a' && chr <= 'f') rVal = chr + 10 - 'a';
}
return rVal;
}
// send sequence every N Seconds
void SML_Send_Seq(uint32_t meter,char *seq) {
uint8_t sbuff[32];
uint8_t *ucp=sbuff,slen=0;
char *cp=seq;
uint8_t rflg = 0;
if (*cp=='r') {
rflg = 1;
cp++;
}
while (*cp) {
if (!*cp || !*(cp+1)) break;
if (*cp==',') break;
uint8_t iob=(sml_hexnibble(*cp) << 4) | sml_hexnibble(*(cp+1));
cp+=2;
*ucp++=iob;
slen++;
if (slen>=sizeof(sbuff)) break;
}
if (script_meter_desc[meter].type=='m' || script_meter_desc[meter].type=='M') {
if (!rflg) {
*ucp++=0;
*ucp++=2;
slen+=2;
}
// append crc
uint16_t crc = MBUS_calculateCRC(sbuff,slen);
*ucp++=lowByte(crc);
*ucp++=highByte(crc);
slen+=2;
}
if (script_meter_desc[meter].type=='o') {
for (uint32_t cnt=0;cnt<slen;cnt++) {
sbuff[cnt]|=(CalcEvenParity(sbuff[cnt])<<7);
}
}
if (script_meter_desc[meter].type=='p') {
*ucp++=0xc0;
*ucp++=0xa8;
*ucp++=1;
*ucp++=1;
*ucp++=0;
*ucp++=SML_PzemCrc(sbuff,6);
slen+=6;
}
meter_ss[meter]->write(sbuff,slen);
}
#endif // USE_SCRIPT
uint16_t MBUS_calculateCRC(uint8_t *frame, uint8_t num) {
uint16_t crc, flag;
crc = 0xFFFF;
for (uint32_t i = 0; i < num; i++) {
crc ^= frame[i];
for (uint32_t j = 8; j; j--) {
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
return crc;
}
uint8_t SML_PzemCrc(uint8_t *data, uint8_t len) {
uint16_t crc = 0;
for (uint32_t i = 0; i < len; i++) crc += *data++;
return (uint8_t)(crc & 0xFF);
}
// for odd parity init with 1
uint8_t CalcEvenParity(uint8_t data) {
uint8_t parity=0;
while(data) {
parity^=(data &1);
data>>=1;
}
return parity;
}
// dump to log shows serial data on console
// has to be off for normal use
// in console sensor53 d1,d2,d3 .. or. d0 for normal use
// set counter => sensor53 c1 xxxx
// restart driver => sensor53 r
bool XSNS_53_cmd(void) {
bool serviced = true;
if (XdrvMailbox.data_len > 0) {
char *cp=XdrvMailbox.data;
if (*cp=='d') {
// set dump mode
cp++;
uint8_t index=atoi(cp);
if ((index&7)>meters_used) index=1;
if (index>0 && meter_desc_p[(index&7)-1].type=='c') {
index=0;
}
dump2log=index;
ResponseTime_P(PSTR(",\"SML\":{\"CMD\":\"dump: %d\"}}"),dump2log);
} else if (*cp=='c') {
// set ounter
cp++;
uint8_t index=*cp&7;
if (index<1 || index>MAX_COUNTERS) index=1;
cp++;
while (*cp==' ') cp++;
if (isdigit(*cp)) {
uint32_t cval=atoi(cp);
while (isdigit(*cp)) cp++;
RtcSettings.pulse_counter[index-1]=cval;
uint8_t cindex=0;
for (uint8_t meters=0; meters<meters_used; meters++) {
if (meter_desc_p[meters].type=='c') {
InjektCounterValue(meters,RtcSettings.pulse_counter[cindex]);
cindex++;
}
}
}
ResponseTime_P(PSTR(",\"SML\":{\"CMD\":\"counter%d: %d\"}}"),index,RtcSettings.pulse_counter[index-1]);
} else if (*cp=='r') {
// restart
ResponseTime_P(PSTR(",\"SML\":{\"CMD\":\"restart\"}}"));
SML_CounterSaveState();
SML_Init();
} else {
serviced=false;
}
}
return serviced;
}
void InjektCounterValue(uint8_t meter,uint32_t counter) {
sprintf((char*)&smltbuf[meter][0],"1-0:1.8.0*255(%d)",counter);
SML_Decode(meter);
}
void SML_CounterSaveState(void) {
for (byte i = 0; i < MAX_COUNTERS; i++) {
Settings.pulse_counter[i] = RtcSettings.pulse_counter[i];
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns53(byte function) {
bool result = false;
switch (function) {
case FUNC_INIT:
SML_Init();
break;
case FUNC_LOOP:
SML_Counter_Poll();
if (dump2log) Dump2log();
else SML_Poll();
break;
// case FUNC_EVERY_50_MSECOND:
// if (dump2log) Dump2log();
// else SML_Poll();
// break;
#ifdef USE_SCRIPT
case FUNC_EVERY_100_MSECOND:
if (bitRead(Settings.rule_enabled, 0)) {
SML_Check_Send();
}
break;
#endif // USE_SCRIPT
case FUNC_JSON_APPEND:
SML_Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
SML_Show(0);
break;
#endif // USE_WEBSERVER
case FUNC_COMMAND_SENSOR:
if (XSNS_53 == XdrvMailbox.index) {
result = XSNS_53_cmd();
}
break;
case FUNC_SAVE_BEFORE_RESTART:
case FUNC_SAVE_AT_MIDNIGHT:
SML_CounterSaveState();
break;
}
return result;
}
#endif // USE_SML