Tasmota/lib/lib_div/rfid-1.4.7/examples/MifareClassicValueBlock/MifareClassicValueBlock.ino

320 lines
13 KiB
C++

/**
* ----------------------------------------------------------------------------
* This is a MFRC522 library example; see https://github.com/miguelbalboa/rfid
* for further details and other examples.
*
* NOTE: The library file MFRC522.h has a lot of useful info. Please read it.
*
* Released into the public domain.
* ----------------------------------------------------------------------------
* This sample shows how to setup blocks on a MIFARE Classic PICC (= card/tag)
* to be in "Value Block" mode: in this mode the operations Increment/Decrement,
* Restore and Transfer can be used.
*
* BEWARE: Data will be written to the PICC, in sector #1 (blocks #4 to #7).
*
*
* Typical pin layout used:
* -----------------------------------------------------------------------------------------
* MFRC522 Arduino Arduino Arduino Arduino Arduino
* Reader/PCD Uno/101 Mega Nano v3 Leonardo/Micro Pro Micro
* Signal Pin Pin Pin Pin Pin Pin
* -----------------------------------------------------------------------------------------
* RST/Reset RST 9 5 D9 RESET/ICSP-5 RST
* SPI SS SDA(SS) 10 53 D10 10 10
* SPI MOSI MOSI 11 / ICSP-4 51 D11 ICSP-4 16
* SPI MISO MISO 12 / ICSP-1 50 D12 ICSP-1 14
* SPI SCK SCK 13 / ICSP-3 52 D13 ICSP-3 15
*
*/
#include <SPI.h>
#include <MFRC522.h>
#define RST_PIN 9 // Configurable, see typical pin layout above
#define SS_PIN 10 // Configurable, see typical pin layout above
MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance.
MFRC522::MIFARE_Key key;
/**
* Initialize.
*/
void setup() {
Serial.begin(9600); // Initialize serial communications with the PC
while (!Serial); // Do nothing if no serial port is opened (added for Arduinos based on ATMEGA32U4)
SPI.begin(); // Init SPI bus
mfrc522.PCD_Init(); // Init MFRC522 card
// Prepare the key (used both as key A and as key B)
// using FFFFFFFFFFFFh which is the default at chip delivery from the factory
for (byte i = 0; i < 6; i++) {
key.keyByte[i] = 0xFF;
}
Serial.println(F("Scan a MIFARE Classic PICC to demonstrate Value Block mode."));
Serial.print(F("Using key (for A and B):"));
dump_byte_array(key.keyByte, MFRC522::MF_KEY_SIZE);
Serial.println();
Serial.println(F("BEWARE: Data will be written to the PICC, in sector #1"));
}
/**
* Main loop.
*/
void loop() {
// Reset the loop if no new card present on the sensor/reader. This saves the entire process when idle.
if ( ! mfrc522.PICC_IsNewCardPresent())
return;
// Select one of the cards
if ( ! mfrc522.PICC_ReadCardSerial())
return;
// Show some details of the PICC (that is: the tag/card)
Serial.print(F("Card UID:"));
dump_byte_array(mfrc522.uid.uidByte, mfrc522.uid.size);
Serial.println();
Serial.print(F("PICC type: "));
MFRC522::PICC_Type piccType = mfrc522.PICC_GetType(mfrc522.uid.sak);
Serial.println(mfrc522.PICC_GetTypeName(piccType));
// Check for compatibility
if ( piccType != MFRC522::PICC_TYPE_MIFARE_MINI
&& piccType != MFRC522::PICC_TYPE_MIFARE_1K
&& piccType != MFRC522::PICC_TYPE_MIFARE_4K) {
Serial.println(F("This sample only works with MIFARE Classic cards."));
return;
}
// In this sample we use the second sector,
// that is: sector #1, covering block #4 up to and including block #7
byte sector = 1;
byte valueBlockA = 5;
byte valueBlockB = 6;
byte trailerBlock = 7;
MFRC522::StatusCode status;
byte buffer[18];
byte size = sizeof(buffer);
int32_t value;
// Authenticate using key A
Serial.println(F("Authenticating using key A..."));
status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, trailerBlock, &key, &(mfrc522.uid));
if (status != MFRC522::STATUS_OK) {
Serial.print(F("PCD_Authenticate() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// Show the whole sector as it currently is
Serial.println(F("Current data in sector:"));
mfrc522.PICC_DumpMifareClassicSectorToSerial(&(mfrc522.uid), &key, sector);
Serial.println();
// We need a sector trailer that defines blocks 5 and 6 as Value Blocks and enables key B
// The last block in a sector (block #3 for Mifare Classic 1K) is the Sector Trailer.
// See http://www.nxp.com/documents/data_sheet/MF1S503x.pdf sections 8.6 and 8.7:
// Bytes 0-5: Key A
// Bytes 6-8: Access Bits
// Bytes 9: User data
// Bytes 10-15: Key B (or user data)
byte trailerBuffer[] = {
255, 255, 255, 255, 255, 255, // Keep default key A
0, 0, 0,
0,
255, 255, 255, 255, 255, 255}; // Keep default key B
// The access bits are stored in a peculiar fashion.
// There are four groups:
// g[0] Access bits for block 0 (for sectors 0-31)
// or blocks 0-4 (for sectors 32-39)
// g[1] Access bits for block 1 (for sectors 0-31)
// or blocks 5-9 (for sectors 32-39)
// g[2] Access bits for block 2 (for sectors 0-31)
// or blocks 10-14 (for sectors 32-39)
// g[3] Access bits for the Sector Trailer: block 3 (for sectors 0-31)
// or block 15 (for sectors 32-39)
// Each group has access bits [C1 C2 C3], in this code C1 is MSB and C3 is LSB.
// Determine the bit pattern needed using MIFARE_SetAccessBits:
// g0=0 access bits for block 0 (of this sector) using [0 0 0] = 000b = 0
// which means key A|B have r/w for block 0 of this sector
// which (in this example) translates to block #4 within sector #1;
// this is the transport configuration (at factory delivery).
// g1=6 access bits for block 1 (of this sector) using [1 1 0] = 110b = 6
// which means block 1 (of this sector) is used as a value block,
// which (in this example) translates to block #5 within sector #1;
// where key A|B have r, key B has w, key B can increment,
// and key A|B can decrement, transfer, and restore.
// g2=6 same thing for block 2 (of this sector): set it to a value block;
// which (in this example) translates to block #6 within sector #1;
// g3=3 access bits for block 3 (of this sector): the Sector Trailer here;
// using [0 1 1] = 011b = 3 which means only key B has r/w access
// to the Sector Trailer (block 3 of this sector) from now on
// which (in this example) translates to block #7 within sector #1;
mfrc522.MIFARE_SetAccessBits(&trailerBuffer[6], 0, 6, 6, 3);
// Read the sector trailer as it is currently stored on the PICC
Serial.println(F("Reading sector trailer..."));
status = mfrc522.MIFARE_Read(trailerBlock, buffer, &size);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Read() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// Check if it matches the desired access pattern already;
// because if it does, we don't need to write it again...
if ( buffer[6] != trailerBuffer[6]
|| buffer[7] != trailerBuffer[7]
|| buffer[8] != trailerBuffer[8]) {
// They don't match (yet), so write it to the PICC
Serial.println(F("Writing new sector trailer..."));
status = mfrc522.MIFARE_Write(trailerBlock, trailerBuffer, 16);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Write() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
}
// Authenticate using key B
Serial.println(F("Authenticating again using key B..."));
status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_B, trailerBlock, &key, &(mfrc522.uid));
if (status != MFRC522::STATUS_OK) {
Serial.print(F("PCD_Authenticate() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// A value block has a 32 bit signed value stored three times
// and an 8 bit address stored 4 times. Make sure that valueBlockA
// and valueBlockB have that format (note that it will only format
// the block when it doesn't comply to the expected format already).
formatValueBlock(valueBlockA);
formatValueBlock(valueBlockB);
// Add 1 to the value of valueBlockA and store the result in valueBlockA.
Serial.print("Adding 1 to value of block "); Serial.println(valueBlockA);
status = mfrc522.MIFARE_Increment(valueBlockA, 1);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Increment() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
status = mfrc522.MIFARE_Transfer(valueBlockA);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Transfer() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// Show the new value of valueBlockA
status = mfrc522.MIFARE_GetValue(valueBlockA, &value);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("mifare_GetValue() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
Serial.print("New value of value block "); Serial.print(valueBlockA);
Serial.print(" = "); Serial.println(value);
// Decrement 10 from the value of valueBlockB and store the result in valueBlockB.
Serial.print("Subtracting 10 from value of block "); Serial.println(valueBlockB);
status = mfrc522.MIFARE_Decrement(valueBlockB, 10);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Decrement() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
status = mfrc522.MIFARE_Transfer(valueBlockB);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Transfer() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// Show the new value of valueBlockB
status = mfrc522.MIFARE_GetValue(valueBlockB, &value);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("mifare_GetValue() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
Serial.print(F("New value of value block ")); Serial.print(valueBlockB);
Serial.print(F(" = ")); Serial.println(value);
// Check some boundary...
if (value <= -100) {
Serial.println(F("Below -100, so resetting it to 255 = 0xFF just for fun..."));
status = mfrc522.MIFARE_SetValue(valueBlockB, 255);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("mifare_SetValue() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
}
// Dump the sector data
mfrc522.PICC_DumpMifareClassicSectorToSerial(&(mfrc522.uid), &key, sector);
Serial.println();
// Halt PICC
mfrc522.PICC_HaltA();
// Stop encryption on PCD
mfrc522.PCD_StopCrypto1();
}
/**
* Helper routine to dump a byte array as hex values to Serial.
*/
void dump_byte_array(byte *buffer, byte bufferSize) {
for (byte i = 0; i < bufferSize; i++) {
Serial.print(buffer[i] < 0x10 ? " 0" : " ");
Serial.print(buffer[i], HEX);
}
}
/**
* Ensure that a given block is formatted as a Value Block.
*/
void formatValueBlock(byte blockAddr) {
byte buffer[18];
byte size = sizeof(buffer);
MFRC522::StatusCode status;
Serial.print(F("Reading block ")); Serial.println(blockAddr);
status = mfrc522.MIFARE_Read(blockAddr, buffer, &size);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Read() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
if ( (buffer[0] == (byte)~buffer[4])
&& (buffer[1] == (byte)~buffer[5])
&& (buffer[2] == (byte)~buffer[6])
&& (buffer[3] == (byte)~buffer[7])
&& (buffer[0] == buffer[8])
&& (buffer[1] == buffer[9])
&& (buffer[2] == buffer[10])
&& (buffer[3] == buffer[11])
&& (buffer[12] == (byte)~buffer[13])
&& (buffer[12] == buffer[14])
&& (buffer[12] == (byte)~buffer[15])) {
Serial.println(F("Block has correct Value Block format."));
}
else {
Serial.println(F("Formatting as Value Block..."));
byte valueBlock[] = {
0, 0, 0, 0,
255, 255, 255, 255,
0, 0, 0, 0,
blockAddr, ~blockAddr, blockAddr, ~blockAddr };
status = mfrc522.MIFARE_Write(blockAddr, valueBlock, 16);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Write() failed: "));
Serial.println(mfrc522.GetStatusCodeName(status));
}
}
}