mirror of https://github.com/arendst/Tasmota.git
723 lines
23 KiB
C++
723 lines
23 KiB
C++
// Copyright 2017 Jonny Graham
|
|
// Copyright 2017-2019 David Conran
|
|
#include "ir_Fujitsu.h"
|
|
#include <algorithm>
|
|
#ifndef ARDUINO
|
|
#include <string>
|
|
#endif
|
|
#include "IRsend.h"
|
|
#include "IRutils.h"
|
|
|
|
// Fujitsu A/C support added by Jonny Graham & David Conran
|
|
|
|
// Equipment it seems compatible with:
|
|
// * Fujitsu ASYG30LFCA with remote AR-RAH2E
|
|
// * Fujitsu AST9RSGCW with remote AR-DB1
|
|
// * Fujitsu ASYG7LMCA with remote AR-REB1E
|
|
// * Fujitsu AR-RAE1E remote.
|
|
// * Fujitsu General with remote AR-JW2
|
|
// * <Add models (A/C & remotes) you've gotten it working with here>
|
|
|
|
// Ref:
|
|
// These values are based on averages of measurements
|
|
const uint16_t kFujitsuAcHdrMark = 3324;
|
|
const uint16_t kFujitsuAcHdrSpace = 1574;
|
|
const uint16_t kFujitsuAcBitMark = 448;
|
|
const uint16_t kFujitsuAcOneSpace = 1182;
|
|
const uint16_t kFujitsuAcZeroSpace = 390;
|
|
const uint16_t kFujitsuAcMinGap = 8100;
|
|
|
|
using irutils::addBoolToString;
|
|
using irutils::addIntToString;
|
|
using irutils::addLabeledString;
|
|
using irutils::addModeToString;
|
|
using irutils::addFanToString;
|
|
using irutils::addTempToString;
|
|
|
|
#if SEND_FUJITSU_AC
|
|
// Send a Fujitsu A/C message.
|
|
//
|
|
// Args:
|
|
// data: An array of bytes containing the IR command.
|
|
// nbytes: Nr. of bytes of data in the array. Typically one of:
|
|
// kFujitsuAcStateLength
|
|
// kFujitsuAcStateLength - 1
|
|
// kFujitsuAcStateLengthShort
|
|
// kFujitsuAcStateLengthShort - 1
|
|
// repeat: Nr. of times the message is to be repeated.
|
|
// (Default = kFujitsuAcMinRepeat).
|
|
//
|
|
// Status: STABLE / Known Good.
|
|
//
|
|
void IRsend::sendFujitsuAC(const unsigned char data[], const uint16_t nbytes,
|
|
const uint16_t repeat) {
|
|
sendGeneric(kFujitsuAcHdrMark, kFujitsuAcHdrSpace, kFujitsuAcBitMark,
|
|
kFujitsuAcOneSpace, kFujitsuAcBitMark, kFujitsuAcZeroSpace,
|
|
kFujitsuAcBitMark, kFujitsuAcMinGap, data, nbytes, 38, false,
|
|
repeat, 50);
|
|
}
|
|
#endif // SEND_FUJITSU_AC
|
|
|
|
// Code to emulate Fujitsu A/C IR remote control unit.
|
|
|
|
// Initialise the object.
|
|
IRFujitsuAC::IRFujitsuAC(const uint16_t pin,
|
|
const fujitsu_ac_remote_model_t model,
|
|
const bool inverted, const bool use_modulation)
|
|
: _irsend(pin, inverted, use_modulation) {
|
|
this->setModel(model);
|
|
this->stateReset();
|
|
}
|
|
|
|
void IRFujitsuAC::setModel(const fujitsu_ac_remote_model_t model) {
|
|
_model = model;
|
|
switch (model) {
|
|
case ARDB1:
|
|
case ARJW2:
|
|
_state_length = kFujitsuAcStateLength - 1;
|
|
_state_length_short = kFujitsuAcStateLengthShort - 1;
|
|
break;
|
|
case ARRAH2E:
|
|
case ARREB1E:
|
|
default:
|
|
_state_length = kFujitsuAcStateLength;
|
|
_state_length_short = kFujitsuAcStateLengthShort;
|
|
}
|
|
}
|
|
|
|
fujitsu_ac_remote_model_t IRFujitsuAC::getModel(void) { return _model; }
|
|
|
|
// Reset the state of the remote to a known good state/sequence.
|
|
void IRFujitsuAC::stateReset(void) {
|
|
_temp = 24;
|
|
_fanSpeed = kFujitsuAcFanHigh;
|
|
_mode = kFujitsuAcModeCool;
|
|
_swingMode = kFujitsuAcSwingBoth;
|
|
_cmd = kFujitsuAcCmdTurnOn;
|
|
this->buildState();
|
|
}
|
|
|
|
// Configure the pin for output.
|
|
void IRFujitsuAC::begin(void) { _irsend.begin(); }
|
|
|
|
#if SEND_FUJITSU_AC
|
|
// Send the current desired state to the IR LED.
|
|
void IRFujitsuAC::send(const uint16_t repeat) {
|
|
this->buildState();
|
|
_irsend.sendFujitsuAC(remote_state, getStateLength(), repeat);
|
|
}
|
|
#endif // SEND_FUJITSU_AC
|
|
|
|
void IRFujitsuAC::buildState(void) {
|
|
remote_state[0] = 0x14;
|
|
remote_state[1] = 0x63;
|
|
remote_state[2] = 0x00;
|
|
remote_state[3] = 0x10;
|
|
remote_state[4] = 0x10;
|
|
bool fullCmd = false;
|
|
switch (_cmd) {
|
|
case kFujitsuAcCmdTurnOff: // 0x02
|
|
case kFujitsuAcCmdEcono: // 0x09
|
|
case kFujitsuAcCmdPowerful: // 0x39
|
|
case kFujitsuAcCmdStepVert: // 0x6C
|
|
case kFujitsuAcCmdToggleSwingVert: // 0x6D
|
|
case kFujitsuAcCmdStepHoriz: // 0x79
|
|
case kFujitsuAcCmdToggleSwingHoriz: // 0x7A
|
|
remote_state[5] = _cmd;
|
|
break;
|
|
default:
|
|
switch (_model) {
|
|
case ARRAH2E:
|
|
case ARREB1E:
|
|
remote_state[5] = 0xFE;
|
|
break;
|
|
case ARDB1:
|
|
case ARJW2:
|
|
remote_state[5] = 0xFC;
|
|
break;
|
|
}
|
|
fullCmd = true;
|
|
break;
|
|
}
|
|
if (fullCmd) { // long codes
|
|
uint8_t tempByte = _temp - kFujitsuAcMinTemp;
|
|
// Nr. of bytes in the message after this byte.
|
|
remote_state[6] = _state_length - 7;
|
|
|
|
remote_state[7] = 0x30;
|
|
remote_state[8] = (_cmd == kFujitsuAcCmdTurnOn) | (tempByte << 4);
|
|
remote_state[9] = _mode | 0 << 4; // timer off
|
|
remote_state[10] = _fanSpeed;
|
|
remote_state[11] = 0; // timerOff values
|
|
remote_state[12] = 0; // timerOff/On values
|
|
remote_state[13] = 0; // timerOn values
|
|
remote_state[14] = 0;
|
|
uint8_t checksum = 0;
|
|
uint8_t checksum_complement = 0;
|
|
switch (_model) {
|
|
case ARDB1:
|
|
case ARJW2:
|
|
checksum = sumBytes(remote_state, _state_length - 1);
|
|
checksum_complement = 0x9B;
|
|
break;
|
|
case ARREB1E:
|
|
remote_state[14] |= (_outsideQuiet << 7);
|
|
// FALL THRU
|
|
case ARRAH2E:
|
|
remote_state[14] |= 0x20;
|
|
remote_state[10] |= _swingMode << 4;
|
|
// FALL THRU
|
|
default:
|
|
checksum = sumBytes(remote_state + _state_length_short,
|
|
_state_length - _state_length_short - 1);
|
|
}
|
|
// and negate the checksum and store it in the last byte.
|
|
remote_state[_state_length - 1] = checksum_complement - checksum;
|
|
} else { // short codes
|
|
switch (_model) {
|
|
case ARRAH2E:
|
|
case ARREB1E:
|
|
// The last byte is the inverse of penultimate byte
|
|
remote_state[_state_length_short - 1] =
|
|
~remote_state[_state_length_short - 2];
|
|
break;
|
|
default:
|
|
{}; // We don't need to do anything for the others.
|
|
}
|
|
// Zero the rest of the state.
|
|
for (uint8_t i = _state_length_short; i < kFujitsuAcStateLength; i++)
|
|
remote_state[i] = 0;
|
|
}
|
|
}
|
|
|
|
uint8_t IRFujitsuAC::getStateLength(void) {
|
|
this->buildState(); // Force an update of the internal state.
|
|
if (((_model == ARRAH2E || _model == ARREB1E) && remote_state[5] != 0xFE) ||
|
|
((_model == ARDB1 || _model == ARJW2) && remote_state[5] != 0xFC))
|
|
return _state_length_short;
|
|
else
|
|
return _state_length;
|
|
}
|
|
|
|
// Return a pointer to the internal state date of the remote.
|
|
uint8_t* IRFujitsuAC::getRaw(void) {
|
|
this->buildState();
|
|
return remote_state;
|
|
}
|
|
|
|
void IRFujitsuAC::buildFromState(const uint16_t length) {
|
|
switch (length) {
|
|
case kFujitsuAcStateLength - 1:
|
|
case kFujitsuAcStateLengthShort - 1:
|
|
this->setModel(ARDB1);
|
|
// ARJW2 has horizontal swing.
|
|
if (this->getSwing(true) > kFujitsuAcSwingVert) this->setModel(ARJW2);
|
|
break;
|
|
default:
|
|
switch (this->getCmd(true)) {
|
|
case kFujitsuAcCmdEcono:
|
|
case kFujitsuAcCmdPowerful:
|
|
this->setModel(fujitsu_ac_remote_model_t::ARREB1E);
|
|
break;
|
|
default:
|
|
this->setModel(fujitsu_ac_remote_model_t::ARRAH2E);
|
|
}
|
|
}
|
|
switch (remote_state[6]) {
|
|
case 8:
|
|
if (this->getModel() != fujitsu_ac_remote_model_t::ARJW2)
|
|
this->setModel(ARDB1);
|
|
break;
|
|
case 9:
|
|
if (this->getModel() != fujitsu_ac_remote_model_t::ARREB1E)
|
|
this->setModel(ARRAH2E);
|
|
break;
|
|
}
|
|
setTemp((remote_state[8] >> 4) + kFujitsuAcMinTemp);
|
|
if (remote_state[8] & 0x1)
|
|
setCmd(kFujitsuAcCmdTurnOn);
|
|
else
|
|
setCmd(kFujitsuAcCmdStayOn);
|
|
setMode(remote_state[9] & 0b111);
|
|
setFanSpeed(remote_state[10] & 0b111);
|
|
setSwing(remote_state[10] >> 4);
|
|
switch (remote_state[5]) {
|
|
case kFujitsuAcCmdTurnOff:
|
|
case kFujitsuAcCmdStepHoriz:
|
|
case kFujitsuAcCmdToggleSwingHoriz:
|
|
case kFujitsuAcCmdStepVert:
|
|
case kFujitsuAcCmdToggleSwingVert:
|
|
case kFujitsuAcCmdEcono:
|
|
case kFujitsuAcCmdPowerful:
|
|
setCmd(remote_state[5]);
|
|
break;
|
|
}
|
|
_outsideQuiet = this->getOutsideQuiet(true);
|
|
}
|
|
|
|
bool IRFujitsuAC::setRaw(const uint8_t newState[], const uint16_t length) {
|
|
if (length > kFujitsuAcStateLength) return false;
|
|
for (uint16_t i = 0; i < kFujitsuAcStateLength; i++) {
|
|
if (i < length)
|
|
remote_state[i] = newState[i];
|
|
else
|
|
remote_state[i] = 0;
|
|
}
|
|
buildFromState(length);
|
|
return true;
|
|
}
|
|
|
|
// Set the requested power state of the A/C to off.
|
|
void IRFujitsuAC::off(void) { this->setCmd(kFujitsuAcCmdTurnOff); }
|
|
|
|
void IRFujitsuAC::stepHoriz(void) { this->setCmd(kFujitsuAcCmdStepHoriz); }
|
|
|
|
void IRFujitsuAC::toggleSwingHoriz(const bool update) {
|
|
// Toggle the current setting.
|
|
if (update) this->setSwing(this->getSwing() ^ kFujitsuAcSwingHoriz);
|
|
// and set the appropriate special command.
|
|
this->setCmd(kFujitsuAcCmdToggleSwingHoriz);
|
|
}
|
|
|
|
void IRFujitsuAC::stepVert(void) { this->setCmd(kFujitsuAcCmdStepVert); }
|
|
|
|
void IRFujitsuAC::toggleSwingVert(const bool update) {
|
|
// Toggle the current setting.
|
|
if (update) this->setSwing(this->getSwing() ^ kFujitsuAcSwingVert);
|
|
// and set the appropriate special command.
|
|
this->setCmd(kFujitsuAcCmdToggleSwingVert);
|
|
}
|
|
|
|
// Set the requested command of the A/C.
|
|
void IRFujitsuAC::setCmd(const uint8_t cmd) {
|
|
switch (cmd) {
|
|
case kFujitsuAcCmdTurnOff:
|
|
case kFujitsuAcCmdTurnOn:
|
|
case kFujitsuAcCmdStayOn:
|
|
case kFujitsuAcCmdStepVert:
|
|
case kFujitsuAcCmdToggleSwingVert:
|
|
_cmd = cmd;
|
|
break;
|
|
case kFujitsuAcCmdStepHoriz:
|
|
case kFujitsuAcCmdToggleSwingHoriz:
|
|
switch (_model) {
|
|
// Only these remotes have step horizontal.
|
|
case ARRAH2E:
|
|
case ARJW2:
|
|
_cmd = cmd;
|
|
break;
|
|
default:
|
|
_cmd = kFujitsuAcCmdStayOn;
|
|
}
|
|
break;
|
|
case kFujitsuAcCmdEcono:
|
|
case kFujitsuAcCmdPowerful:
|
|
switch (_model) {
|
|
// Only these remotes have these commands.
|
|
case ARREB1E:
|
|
_cmd = cmd;
|
|
break;
|
|
default:
|
|
_cmd = kFujitsuAcCmdStayOn;
|
|
}
|
|
break;
|
|
default:
|
|
_cmd = kFujitsuAcCmdStayOn;
|
|
}
|
|
}
|
|
|
|
// Get the special command part of the message.
|
|
// Args:
|
|
// raw: Do we need to get it from first principles from the raw data?
|
|
// Returns:
|
|
// A uint8_t containing the contents of the special command byte.
|
|
uint8_t IRFujitsuAC::getCmd(const bool raw) {
|
|
if (raw) return remote_state[5];
|
|
return _cmd;
|
|
}
|
|
|
|
bool IRFujitsuAC::getPower(void) { return _cmd != kFujitsuAcCmdTurnOff; }
|
|
|
|
void IRFujitsuAC::setOutsideQuiet(const bool on) {
|
|
_outsideQuiet = on;
|
|
this->setCmd(kFujitsuAcCmdStayOn); // No special command involved.
|
|
}
|
|
|
|
// Get the status of the Outside Quiet setting.
|
|
// Args:
|
|
// raw: Do we get the result from base data?
|
|
// Returns:
|
|
// A boolean for if it is set or not.
|
|
bool IRFujitsuAC::getOutsideQuiet(const bool raw) {
|
|
if (_state_length == kFujitsuAcStateLength && raw) {
|
|
_outsideQuiet = remote_state[14] & 0b10000000;
|
|
// Only ARREB1E seems to have this mode.
|
|
if (_outsideQuiet) this->setModel(fujitsu_ac_remote_model_t::ARREB1E);
|
|
}
|
|
return _outsideQuiet;
|
|
}
|
|
|
|
// Set the temp. in deg C
|
|
void IRFujitsuAC::setTemp(const uint8_t temp) {
|
|
_temp = std::max((uint8_t)kFujitsuAcMinTemp, temp);
|
|
_temp = std::min((uint8_t)kFujitsuAcMaxTemp, _temp);
|
|
this->setCmd(kFujitsuAcCmdStayOn); // No special command involved.
|
|
}
|
|
|
|
uint8_t IRFujitsuAC::getTemp(void) { return _temp; }
|
|
|
|
// Set the speed of the fan
|
|
void IRFujitsuAC::setFanSpeed(const uint8_t fanSpeed) {
|
|
if (fanSpeed > kFujitsuAcFanQuiet)
|
|
_fanSpeed = kFujitsuAcFanHigh; // Set the fan to maximum if out of range.
|
|
else
|
|
_fanSpeed = fanSpeed;
|
|
this->setCmd(kFujitsuAcCmdStayOn); // No special command involved.
|
|
}
|
|
uint8_t IRFujitsuAC::getFanSpeed(void) { return _fanSpeed; }
|
|
|
|
// Set the requested climate operation mode of the a/c unit.
|
|
void IRFujitsuAC::setMode(const uint8_t mode) {
|
|
if (mode > kFujitsuAcModeHeat)
|
|
_mode = kFujitsuAcModeHeat; // Set the mode to maximum if out of range.
|
|
else
|
|
_mode = mode;
|
|
this->setCmd(kFujitsuAcCmdStayOn); // No special command involved.
|
|
}
|
|
|
|
uint8_t IRFujitsuAC::getMode(void) { return _mode; }
|
|
|
|
// Set the requested swing operation mode of the a/c unit.
|
|
void IRFujitsuAC::setSwing(const uint8_t swingMode) {
|
|
_swingMode = swingMode;
|
|
switch (_model) {
|
|
// No Horizontal support.
|
|
case ARDB1:
|
|
case ARREB1E:
|
|
// Set the mode to max if out of range
|
|
if (swingMode > kFujitsuAcSwingVert) _swingMode = kFujitsuAcSwingVert;
|
|
break;
|
|
// Has Horizontal support.
|
|
case ARRAH2E:
|
|
case ARJW2:
|
|
default:
|
|
// Set the mode to max if out of range
|
|
if (swingMode > kFujitsuAcSwingBoth) _swingMode = kFujitsuAcSwingBoth;
|
|
}
|
|
this->setCmd(kFujitsuAcCmdStayOn); // No special command involved.
|
|
}
|
|
|
|
// Get what the swing part of the message should be.
|
|
// Args:
|
|
// raw: Do we need to get it from first principles from the raw data?
|
|
// Returns:
|
|
// A uint8_t containing the contents of the swing state.
|
|
uint8_t IRFujitsuAC::getSwing(const bool raw) {
|
|
if (raw) _swingMode = remote_state[10] >> 4;
|
|
return _swingMode;
|
|
}
|
|
|
|
bool IRFujitsuAC::validChecksum(uint8_t state[], const uint16_t length) {
|
|
uint8_t sum = 0;
|
|
uint8_t sum_complement = 0;
|
|
uint8_t checksum = state[length - 1];
|
|
switch (length) {
|
|
case kFujitsuAcStateLengthShort: // ARRAH2E & ARREB1E
|
|
return state[length - 1] == (uint8_t)~state[length - 2];
|
|
case kFujitsuAcStateLength - 1: // ARDB1 & ARJW2
|
|
sum = sumBytes(state, length - 1);
|
|
sum_complement = 0x9B;
|
|
break;
|
|
case kFujitsuAcStateLength: // ARRAH2E & ARREB1E
|
|
sum = sumBytes(state + kFujitsuAcStateLengthShort,
|
|
length - 1 - kFujitsuAcStateLengthShort);
|
|
break;
|
|
default: // Includes ARDB1 & ARJW2 short.
|
|
return true; // Assume the checksum is valid for other lengths.
|
|
}
|
|
return checksum == (uint8_t)(sum_complement - sum); // Does it match?
|
|
}
|
|
|
|
// Convert a standard A/C mode into its native mode.
|
|
uint8_t IRFujitsuAC::convertMode(const stdAc::opmode_t mode) {
|
|
switch (mode) {
|
|
case stdAc::opmode_t::kCool:
|
|
return kFujitsuAcModeCool;
|
|
case stdAc::opmode_t::kHeat:
|
|
return kFujitsuAcModeHeat;
|
|
case stdAc::opmode_t::kDry:
|
|
return kFujitsuAcModeDry;
|
|
case stdAc::opmode_t::kFan:
|
|
return kFujitsuAcModeFan;
|
|
default:
|
|
return kFujitsuAcModeAuto;
|
|
}
|
|
}
|
|
|
|
// Convert a standard A/C Fan speed into its native fan speed.
|
|
uint8_t IRFujitsuAC::convertFan(stdAc::fanspeed_t speed) {
|
|
switch (speed) {
|
|
case stdAc::fanspeed_t::kMin:
|
|
return kFujitsuAcFanQuiet;
|
|
case stdAc::fanspeed_t::kLow:
|
|
return kFujitsuAcFanLow;
|
|
case stdAc::fanspeed_t::kMedium:
|
|
return kFujitsuAcFanMed;
|
|
case stdAc::fanspeed_t::kHigh:
|
|
case stdAc::fanspeed_t::kMax:
|
|
return kFujitsuAcFanHigh;
|
|
default:
|
|
return kFujitsuAcFanAuto;
|
|
}
|
|
}
|
|
|
|
// Convert a native mode to it's common equivalent.
|
|
stdAc::opmode_t IRFujitsuAC::toCommonMode(const uint8_t mode) {
|
|
switch (mode) {
|
|
case kFujitsuAcModeCool: return stdAc::opmode_t::kCool;
|
|
case kFujitsuAcModeHeat: return stdAc::opmode_t::kHeat;
|
|
case kFujitsuAcModeDry: return stdAc::opmode_t::kDry;
|
|
case kFujitsuAcModeFan: return stdAc::opmode_t::kFan;
|
|
default: return stdAc::opmode_t::kAuto;
|
|
}
|
|
}
|
|
|
|
// Convert a native fan speed to it's common equivalent.
|
|
stdAc::fanspeed_t IRFujitsuAC::toCommonFanSpeed(const uint8_t speed) {
|
|
switch (speed) {
|
|
case kFujitsuAcFanHigh: return stdAc::fanspeed_t::kMax;
|
|
case kFujitsuAcFanMed: return stdAc::fanspeed_t::kMedium;
|
|
case kFujitsuAcFanLow: return stdAc::fanspeed_t::kLow;
|
|
case kFujitsuAcFanQuiet: return stdAc::fanspeed_t::kMin;
|
|
default: return stdAc::fanspeed_t::kAuto;
|
|
}
|
|
}
|
|
|
|
// Convert the A/C state to it's common equivalent.
|
|
stdAc::state_t IRFujitsuAC::toCommon(void) {
|
|
stdAc::state_t result;
|
|
result.protocol = decode_type_t::FUJITSU_AC;
|
|
result.model = this->getModel();
|
|
result.power = this->getPower();
|
|
result.mode = this->toCommonMode(this->getMode());
|
|
result.celsius = true;
|
|
result.degrees = this->getTemp();
|
|
result.fanspeed = this->toCommonFanSpeed(this->getFanSpeed());
|
|
uint8_t swing = this->getSwing();
|
|
switch (result.model) {
|
|
case fujitsu_ac_remote_model_t::ARREB1E:
|
|
case fujitsu_ac_remote_model_t::ARRAH2E:
|
|
result.swingv = (swing & kFujitsuAcSwingVert) ? stdAc::swingv_t::kAuto :
|
|
stdAc::swingv_t::kOff;
|
|
result.swingh = (swing & kFujitsuAcSwingHoriz) ? stdAc::swingh_t::kAuto :
|
|
stdAc::swingh_t::kOff;
|
|
break;
|
|
case fujitsu_ac_remote_model_t::ARDB1:
|
|
case fujitsu_ac_remote_model_t::ARJW2:
|
|
default:
|
|
result.swingv = stdAc::swingv_t::kOff;
|
|
result.swingh = stdAc::swingh_t::kOff;
|
|
}
|
|
|
|
result.quiet = (this->getFanSpeed() == kFujitsuAcFanQuiet);
|
|
result.turbo = this->getCmd() == kFujitsuAcCmdPowerful;
|
|
result.econo = this->getCmd() == kFujitsuAcCmdEcono;
|
|
// Not supported.
|
|
result.light = false;
|
|
result.filter = false;
|
|
result.clean = false;
|
|
result.beep = false;
|
|
result.sleep = -1;
|
|
result.clock = -1;
|
|
return result;
|
|
}
|
|
|
|
// Convert the internal state into a human readable string.
|
|
String IRFujitsuAC::toString(void) {
|
|
String result = "";
|
|
result.reserve(100); // Reserve some heap for the string to reduce fragging.
|
|
fujitsu_ac_remote_model_t model = this->getModel();
|
|
result += addIntToString(model, F("Model"), false);
|
|
switch (model) {
|
|
case fujitsu_ac_remote_model_t::ARRAH2E: result += F(" (ARRAH2E)"); break;
|
|
case fujitsu_ac_remote_model_t::ARDB1: result += F(" (ARDB1)"); break;
|
|
case fujitsu_ac_remote_model_t::ARREB1E: result += F(" (ARREB1E)"); break;
|
|
case fujitsu_ac_remote_model_t::ARJW2: result += F(" (ARJW2)"); break;
|
|
default: result += F(" (UNKNOWN)");
|
|
}
|
|
result += addBoolToString(getPower(), F("Power"));
|
|
result += addModeToString(getMode(), kFujitsuAcModeAuto, kFujitsuAcModeCool,
|
|
kFujitsuAcModeHeat, kFujitsuAcModeDry,
|
|
kFujitsuAcModeFan);
|
|
result += addTempToString(getTemp());
|
|
result += addFanToString(getFanSpeed(), kFujitsuAcFanHigh, kFujitsuAcFanLow,
|
|
kFujitsuAcFanAuto, kFujitsuAcFanQuiet,
|
|
kFujitsuAcFanMed);
|
|
switch (model) {
|
|
// These models have no internal swing state.
|
|
case fujitsu_ac_remote_model_t::ARDB1:
|
|
case fujitsu_ac_remote_model_t::ARJW2:
|
|
break;
|
|
default: // Assume everything else does.
|
|
result += F(", Swing: ");
|
|
switch (this->getSwing()) {
|
|
case kFujitsuAcSwingOff:
|
|
result += F("Off");
|
|
break;
|
|
case kFujitsuAcSwingVert:
|
|
result += F("Vert");
|
|
break;
|
|
case kFujitsuAcSwingHoriz:
|
|
result += F("Horiz");
|
|
break;
|
|
case kFujitsuAcSwingBoth:
|
|
result += F("Vert + Horiz");
|
|
break;
|
|
default:
|
|
result += F("UNKNOWN");
|
|
}
|
|
}
|
|
result += F(", Command: ");
|
|
switch (this->getCmd()) {
|
|
case kFujitsuAcCmdStepHoriz:
|
|
result += F("Step vane horizontally");
|
|
break;
|
|
case kFujitsuAcCmdStepVert:
|
|
result += F("Step vane vertically");
|
|
break;
|
|
case kFujitsuAcCmdToggleSwingHoriz:
|
|
result += F("Toggle horizontal swing");
|
|
break;
|
|
case kFujitsuAcCmdToggleSwingVert:
|
|
result += F("Toggle vertically swing");
|
|
break;
|
|
case kFujitsuAcCmdEcono:
|
|
result += F("Economy");
|
|
break;
|
|
case kFujitsuAcCmdPowerful:
|
|
result += F("Powerful");
|
|
break;
|
|
default:
|
|
result += F("N/A");
|
|
}
|
|
if (this->getModel() == fujitsu_ac_remote_model_t::ARREB1E)
|
|
result += addBoolToString(getOutsideQuiet(), F("Outside Quiet"));
|
|
return result;
|
|
}
|
|
|
|
#if DECODE_FUJITSU_AC
|
|
// Decode a Fujitsu AC IR message if possible.
|
|
// Places successful decode information in the results pointer.
|
|
// Args:
|
|
// results: Ptr to the data to decode and where to store the decode result.
|
|
// nbits: The number of data bits to expect. Typically kFujitsuAcBits.
|
|
// strict: Flag to indicate if we strictly adhere to the specification.
|
|
// Returns:
|
|
// boolean: True if it can decode it, false if it can't.
|
|
//
|
|
// Status: ALPHA / Untested.
|
|
//
|
|
// Ref:
|
|
//
|
|
bool IRrecv::decodeFujitsuAC(decode_results* results, uint16_t nbits,
|
|
bool strict) {
|
|
uint16_t offset = kStartOffset;
|
|
uint16_t dataBitsSoFar = 0;
|
|
|
|
// Have we got enough data to successfully decode?
|
|
if (results->rawlen < (2 * kFujitsuAcMinBits) + kHeader + kFooter - 1)
|
|
return false; // Can't possibly be a valid message.
|
|
|
|
// Compliance
|
|
if (strict) {
|
|
switch (nbits) {
|
|
case kFujitsuAcBits:
|
|
case kFujitsuAcBits - 8:
|
|
case kFujitsuAcMinBits:
|
|
case kFujitsuAcMinBits + 8:
|
|
break;
|
|
default:
|
|
return false; // Must be called with the correct nr. of bits.
|
|
}
|
|
}
|
|
|
|
// Header
|
|
if (!matchMark(results->rawbuf[offset++], kFujitsuAcHdrMark)) return false;
|
|
if (!matchSpace(results->rawbuf[offset++], kFujitsuAcHdrSpace)) return false;
|
|
|
|
// Data (Fixed signature)
|
|
match_result_t data_result =
|
|
matchData(&(results->rawbuf[offset]), kFujitsuAcMinBits - 8,
|
|
kFujitsuAcBitMark, kFujitsuAcOneSpace, kFujitsuAcBitMark,
|
|
kFujitsuAcZeroSpace, kTolerance, kMarkExcess, false);
|
|
if (data_result.success == false) return false; // Fail
|
|
if (data_result.data != 0x1010006314) return false; // Signature failed.
|
|
dataBitsSoFar += kFujitsuAcMinBits - 8;
|
|
offset += data_result.used;
|
|
results->state[0] = 0x14;
|
|
results->state[1] = 0x63;
|
|
results->state[2] = 0x00;
|
|
results->state[3] = 0x10;
|
|
results->state[4] = 0x10;
|
|
|
|
// Keep reading bytes until we either run out of message or state to fill.
|
|
for (uint16_t i = 5;
|
|
offset <= results->rawlen - 16 && i < kFujitsuAcStateLength;
|
|
i++, dataBitsSoFar += 8, offset += data_result.used) {
|
|
data_result = matchData(
|
|
&(results->rawbuf[offset]), 8, kFujitsuAcBitMark, kFujitsuAcOneSpace,
|
|
kFujitsuAcBitMark, kFujitsuAcZeroSpace, kTolerance, kMarkExcess, false);
|
|
if (data_result.success == false) break; // Fail
|
|
results->state[i] = data_result.data;
|
|
}
|
|
|
|
// Footer
|
|
if (offset > results->rawlen ||
|
|
!matchMark(results->rawbuf[offset++], kFujitsuAcBitMark))
|
|
return false;
|
|
// The space is optional if we are out of capture.
|
|
if (offset < results->rawlen &&
|
|
!matchAtLeast(results->rawbuf[offset], kFujitsuAcMinGap))
|
|
return false;
|
|
|
|
// Compliance
|
|
if (strict) {
|
|
if (dataBitsSoFar != nbits) return false;
|
|
}
|
|
|
|
results->decode_type = FUJITSU_AC;
|
|
results->bits = dataBitsSoFar;
|
|
|
|
// Compliance
|
|
switch (dataBitsSoFar) {
|
|
case kFujitsuAcMinBits:
|
|
// Check if this values indicate that this should have been a long state
|
|
// message.
|
|
if (results->state[5] == 0xFC) return false;
|
|
return true; // Success
|
|
case kFujitsuAcMinBits + 8:
|
|
// Check if this values indicate that this should have been a long state
|
|
// message.
|
|
if (results->state[5] == 0xFE) return false;
|
|
// The last byte needs to be the inverse of the penultimate byte.
|
|
if (results->state[5] != (uint8_t)~results->state[6]) return false;
|
|
return true; // Success
|
|
case kFujitsuAcBits - 8:
|
|
// Long messages of this size require this byte be correct.
|
|
if (results->state[5] != 0xFC) return false;
|
|
break;
|
|
case kFujitsuAcBits:
|
|
// Long messages of this size require this byte be correct.
|
|
if (results->state[5] != 0xFE) return false;
|
|
break;
|
|
default:
|
|
return false; // Unexpected size.
|
|
}
|
|
if (!IRFujitsuAC::validChecksum(results->state, dataBitsSoFar / 8))
|
|
return false;
|
|
|
|
// Success
|
|
return true; // All good.
|
|
}
|
|
#endif // DECODE_FUJITSU_AC
|