Tasmota/tasmota/tasmota.ino

1721 lines
65 KiB
C++

/*
tasmota.ino - Tasmota firmware for iTead Sonoff, Wemos and NodeMCU hardware
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*====================================================
Prerequisites:
- Change libraries/PubSubClient/src/PubSubClient.h
#define MQTT_MAX_PACKET_SIZE 1000
- Select IDE Tools - Flash Mode: "DOUT"
- Select IDE Tools - Flash Size: "1M (no SPIFFS)"
====================================================*/
// Location specific includes
#include <core_version.h> // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_3_0)
#include "tasmota_version.h" // Tasmota version information
#include "tasmota.h" // Enumeration used in my_user_config.h
#include "my_user_config.h" // Fixed user configurable options
#ifdef USE_MQTT_TLS
#include <t_bearssl.h> // we need to include before "tasmota_post.h" to take precedence over the BearSSL version in Arduino
#endif // USE_MQTT_TLS
#include "tasmota_post.h" // Configuration overrides for all previous includes
#include "i18n.h" // Language support configured by my_user_config.h
#include "tasmota_template.h" // Hardware configuration
#ifdef ARDUINO_ESP8266_RELEASE_2_4_0
#include "lwip/init.h"
#if LWIP_VERSION_MAJOR != 1
#error Please use stable lwIP v1.4
#endif
#endif
// Libraries
#include <ESP8266HTTPClient.h> // Ota
#include <ESP8266httpUpdate.h> // Ota
#include <StreamString.h> // Webserver, Updater
#include <ArduinoJson.h> // WemoHue, IRremote, Domoticz
#ifdef USE_ARDUINO_OTA
#include <ArduinoOTA.h> // Arduino OTA
#ifndef USE_DISCOVERY
#define USE_DISCOVERY
#endif
#endif // USE_ARDUINO_OTA
#ifdef USE_DISCOVERY
#include <ESP8266mDNS.h> // MQTT, Webserver, Arduino OTA
#endif // USE_DISCOVERY
#ifdef USE_I2C
#include <Wire.h> // I2C support library
#endif // USE_I2C
#ifdef USE_SPI
#include <SPI.h> // SPI support, TFT
#endif // USE_SPI
// Structs
#include "settings.h"
const char kSleepMode[] PROGMEM = "Dynamic|Normal";
const char kPrefixes[] PROGMEM = D_CMND "|" D_STAT "|" D_TELE;
const char kCodeImage[] PROGMEM = "tasmota|minimal|sensors|knx|basic|display|ir";
// Global variables
SerialConfig serial_config = SERIAL_8N1; // Serial interface configuration 8 data bits, No parity, 1 stop bit
WiFiUDP PortUdp; // UDP Syslog and Alexa
unsigned long feature_drv1; // Compiled driver feature map
unsigned long feature_drv2; // Compiled driver feature map
unsigned long feature_sns1; // Compiled sensor feature map
unsigned long feature_sns2; // Compiled sensor feature map
unsigned long feature5; // Compiled feature map
unsigned long serial_polling_window = 0; // Serial polling window
unsigned long state_second = 0; // State second timer
unsigned long state_50msecond = 0; // State 50msecond timer
unsigned long state_100msecond = 0; // State 100msecond timer
unsigned long state_250msecond = 0; // State 250msecond timer
unsigned long pulse_timer[MAX_PULSETIMERS] = { 0 }; // Power off timer
unsigned long blink_timer = 0; // Power cycle timer
unsigned long backlog_delay = 0; // Command backlog delay
power_t power = 0; // Current copy of Settings.power
power_t last_power = 0; // Last power set state
power_t blink_power; // Blink power state
power_t blink_mask = 0; // Blink relay active mask
power_t blink_powersave; // Blink start power save state
power_t latching_power = 0; // Power state at latching start
power_t rel_inverted = 0; // Relay inverted flag (1 = (0 = On, 1 = Off))
int baudrate = APP_BAUDRATE; // Serial interface baud rate
int serial_in_byte_counter = 0; // Index in receive buffer
int ota_state_flag = 0; // OTA state flag
int ota_result = 0; // OTA result
int restart_flag = 0; // Tasmota restart flag
int wifi_state_flag = WIFI_RESTART; // Wifi state flag
int tele_period = 1; // Tele period timer
int blinks = 201; // Number of LED blinks
uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year
uint32_t loop_load_avg = 0; // Indicative loop load average
uint32_t global_update = 0; // Timestamp of last global temperature and humidity update
uint32_t web_log_index = 1; // Index in Web log buffer (should never be 0)
float global_temperature = 9999; // Provide a global temperature to be used by some sensors
float global_humidity = 0; // Provide a global humidity to be used by some sensors
float global_pressure = 0; // Provide a global pressure to be used by some sensors
char *ota_url; // OTA url string pointer
uint16_t mqtt_cmnd_publish = 0; // ignore flag for publish command
uint16_t blink_counter = 0; // Number of blink cycles
uint16_t seriallog_timer = 0; // Timer to disable Seriallog
uint16_t syslog_timer = 0; // Timer to re-enable syslog_level
int16_t save_data_counter; // Counter and flag for config save to Flash
RulesBitfield rules_flag; // Rule state flags (16 bits)
uint8_t state_250mS = 0; // State 250msecond per second flag
uint8_t latching_relay_pulse = 0; // Latching relay pulse timer
uint8_t sleep; // Current copy of Settings.sleep
uint8_t blinkspeed = 1; // LED blink rate
uint8_t pin[GPIO_MAX]; // Possible pin configurations
uint8_t active_device = 1; // Active device in ExecuteCommandPower
uint8_t leds_present = 0; // Max number of LED supported
uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off))
uint8_t led_power = 0; // LED power state
uint8_t ledlnk_inverted = 0; // Link LED inverted flag (1 = (0 = On, 1 = Off))
uint8_t pwm_inverted = 0; // PWM inverted flag (1 = inverted)
uint8_t energy_flg = 0; // Energy monitor configured
uint8_t light_flg = 0; // Light module configured
uint8_t light_type = 0; // Light types
uint8_t serial_in_byte; // Received byte
uint8_t ota_retry_counter = OTA_ATTEMPTS; // OTA retry counter
uint8_t devices_present = 0; // Max number of devices supported
uint8_t seriallog_level; // Current copy of Settings.seriallog_level
uint8_t syslog_level; // Current copy of Settings.syslog_level
uint8_t my_module_type; // Current copy of Settings.module or user template type
uint8_t my_adc0; // Active copy of Module ADC0
uint8_t last_source = 0; // Last command source
uint8_t shutters_present = 0; // Number of actual define shutters
//uint8_t mdns_delayed_start = 0; // mDNS delayed start
bool serial_local = false; // Handle serial locally;
bool fallback_topic_flag = false; // Use Topic or FallbackTopic
bool backlog_mutex = false; // Command backlog pending
bool interlock_mutex = false; // Interlock power command pending
bool stop_flash_rotate = false; // Allow flash configuration rotation
bool blinkstate = false; // LED state
//bool latest_uptime_flag = true; // Signal latest uptime
bool pwm_present = false; // Any PWM channel configured with SetOption15 0
bool i2c_flg = false; // I2C configured
bool spi_flg = false; // SPI configured
bool soft_spi_flg = false; // Software SPI configured
bool ntp_force_sync = false; // Force NTP sync
bool ntp_synced_message = false; // NTP synced message flag
bool prep_called = false; // Deep sleep flag to detect a proper start of initialize sensors
myio my_module; // Active copy of Module GPIOs (17 x 8 bits)
gpio_flag my_module_flag; // Active copy of Template GPIO flags
StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits)
char my_version[33]; // Composed version string
char my_image[33]; // Code image and/or commit
char my_hostname[33]; // Composed Wifi hostname
char mqtt_client[33]; // Composed MQTT Clientname
char mqtt_topic[33]; // Composed MQTT topic
char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer
char mqtt_data[MESSZ]; // MQTT publish buffer and web page ajax buffer
char log_data[LOGSZ]; // Logging
char web_log[WEB_LOG_SIZE] = {'\0'}; // Web log buffer
#ifdef SUPPORT_IF_STATEMENT
#include <LinkedList.h>
LinkedList<String> backlog; // Command backlog implemented with LinkedList
#define BACKLOG_EMPTY (backlog.size() == 0)
#else
uint8_t backlog_index = 0; // Command backlog index
uint8_t backlog_pointer = 0; // Command backlog pointer
String backlog[MAX_BACKLOG]; // Command backlog buffer
#define BACKLOG_EMPTY (backlog_pointer == backlog_index)
#endif
/********************************************************************************************/
char* Format(char* output, const char* input, int size)
{
char *token;
uint32_t digits = 0;
if (strstr(input, "%") != nullptr) {
strlcpy(output, input, size);
token = strtok(output, "%");
if (strstr(input, "%") == input) {
output[0] = '\0';
} else {
token = strtok(nullptr, "");
}
if (token != nullptr) {
digits = atoi(token);
if (digits) {
char tmp[size];
if (strchr(token, 'd')) {
snprintf_P(tmp, size, PSTR("%s%c0%dd"), output, '%', digits);
snprintf_P(output, size, tmp, ESP.getChipId() & 0x1fff); // %04d - short chip ID in dec, like in hostname
} else {
snprintf_P(tmp, size, PSTR("%s%c0%dX"), output, '%', digits);
snprintf_P(output, size, tmp, ESP.getChipId()); // %06X - full chip ID in hex
}
} else {
if (strchr(token, 'd')) {
snprintf_P(output, size, PSTR("%s%d"), output, ESP.getChipId()); // %d - full chip ID in dec
digits = 8;
}
}
}
}
if (!digits) {
strlcpy(output, input, size);
}
return output;
}
char* GetOtaUrl(char *otaurl, size_t otaurl_size)
{
if (strstr(Settings.ota_url, "%04d") != nullptr) { // OTA url contains placeholder for chip ID
snprintf(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId() & 0x1fff);
}
else if (strstr(Settings.ota_url, "%d") != nullptr) { // OTA url contains placeholder for chip ID
snprintf_P(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId());
}
else {
strlcpy(otaurl, Settings.ota_url, otaurl_size);
}
return otaurl;
}
char* GetTopic_P(char *stopic, uint32_t prefix, char *topic, const char* subtopic)
{
/* prefix 0 = Cmnd
prefix 1 = Stat
prefix 2 = Tele
prefix 4 = Cmnd fallback
prefix 5 = Stat fallback
prefix 6 = Tele fallback
*/
char romram[CMDSZ];
String fulltopic;
snprintf_P(romram, sizeof(romram), subtopic);
if (fallback_topic_flag || (prefix > 3)) {
prefix &= 3;
char stemp[11];
fulltopic = GetTextIndexed(stemp, sizeof(stemp), prefix, kPrefixes);
fulltopic += F("/");
fulltopic += mqtt_client;
fulltopic += F("_fb"); // cmnd/<mqttclient>_fb
} else {
fulltopic = Settings.mqtt_fulltopic;
if ((0 == prefix) && (-1 == fulltopic.indexOf(FPSTR(MQTT_TOKEN_PREFIX)))) {
fulltopic += F("/");
fulltopic += FPSTR(MQTT_TOKEN_PREFIX); // Need prefix for commands to handle mqtt topic loops
}
for (uint32_t i = 0; i < 3; i++) {
if ('\0' == Settings.mqtt_prefix[i][0]) {
GetTextIndexed(Settings.mqtt_prefix[i], sizeof(Settings.mqtt_prefix[i]), i, kPrefixes);
}
}
fulltopic.replace(FPSTR(MQTT_TOKEN_PREFIX), Settings.mqtt_prefix[prefix]);
fulltopic.replace(FPSTR(MQTT_TOKEN_TOPIC), topic);
fulltopic.replace(F("%hostname%"), my_hostname);
String token_id = WiFi.macAddress();
token_id.replace(":", "");
fulltopic.replace(F("%id%"), token_id);
}
fulltopic.replace(F("#"), "");
fulltopic.replace(F("//"), "/");
if (!fulltopic.endsWith("/")) {
fulltopic += "/";
}
snprintf_P(stopic, TOPSZ, PSTR("%s%s"), fulltopic.c_str(), romram);
return stopic;
}
char* GetFallbackTopic_P(char *stopic, uint32_t prefix, const char* subtopic)
{
return GetTopic_P(stopic, prefix +4, nullptr, subtopic);
}
char* GetStateText(uint32_t state)
{
if (state > 3) {
state = 1;
}
return Settings.state_text[state];
}
/********************************************************************************************/
void SetLatchingRelay(power_t lpower, uint32_t state)
{
// power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off
// power xx01 - toggle REL2 (On) and REL3 (Off) - device 1 On, device 2 Off
// power xx10 - toggle REL1 (Off) and REL4 (On) - device 1 Off, device 2 On
// power xx11 - toggle REL2 (On) and REL4 (On) - device 1 On, device 2 On
if (state && !latching_relay_pulse) { // Set latching relay to power if previous pulse has finished
latching_power = lpower;
latching_relay_pulse = 2; // max 200mS (initiated by stateloop())
}
for (uint32_t i = 0; i < devices_present; i++) {
uint32_t port = (i << 1) + ((latching_power >> i) &1);
if (pin[GPIO_REL1 +port] < 99) {
digitalWrite(pin[GPIO_REL1 +port], bitRead(rel_inverted, port) ? !state : state);
}
}
}
void SetDevicePower(power_t rpower, uint32_t source)
{
ShowSource(source);
last_source = source;
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { // All on and stay on
power = (1 << devices_present) -1;
rpower = power;
}
if (Settings.flag.interlock) { // Allow only one or no relay set
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) {
power_t mask = 1;
uint32_t count = 0;
for (uint32_t j = 0; j < devices_present; j++) {
if ((Settings.interlock[i] & mask) && (rpower & mask)) {
count++;
}
mask <<= 1;
}
if (count > 1) {
mask = ~Settings.interlock[i]; // Turn interlocked group off as there would be multiple relays on
power &= mask;
rpower &= mask;
}
}
}
if (rpower) { // Any power set
last_power = rpower;
}
XdrvMailbox.index = rpower;
XdrvCall(FUNC_SET_POWER); // Signal power state
XdrvMailbox.index = rpower;
XdrvMailbox.payload = source;
if (XdrvCall(FUNC_SET_DEVICE_POWER)) { // Set power state and stop if serviced
// Serviced
}
else if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) {
Serial.write(0xA0);
Serial.write(0x04);
Serial.write(rpower &0xFF);
Serial.write(0xA1);
Serial.write('\n');
Serial.flush();
}
else if (EXS_RELAY == my_module_type) {
SetLatchingRelay(rpower, 1);
}
else {
for (uint32_t i = 0; i < devices_present; i++) {
power_t state = rpower &1;
if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) {
digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? !state : state);
}
rpower >>= 1;
}
}
}
void RestorePower(bool publish_power, uint32_t source)
{
if (power != last_power) {
SetDevicePower(last_power, source);
if (publish_power) {
MqttPublishAllPowerState();
}
}
}
void SetAllPower(uint32_t state, uint32_t source)
{
// state 0 = POWER_OFF = Relay Off
// state 1 = POWER_ON = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled)
// state 2 = POWER_TOGGLE = Toggle relay
// state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState
// state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState
// state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState
// state 16 = POWER_SHOW_STATE = Show power state
bool publish_power = true;
if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) {
state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE
publish_power = false;
}
if ((state >= POWER_OFF) && (state <= POWER_TOGGLE)) {
power_t all_on = (1 << devices_present) -1;
switch (state) {
case POWER_OFF:
power = 0;
break;
case POWER_ON:
power = all_on;
break;
case POWER_TOGGLE:
power ^= all_on; // Complement current state
}
SetDevicePower(power, source);
}
if (publish_power) {
MqttPublishAllPowerState();
}
}
void SetLedPowerIdx(uint32_t led, uint32_t state)
{
if ((99 == pin[GPIO_LEDLNK]) && (0 == led)) { // Legacy - LED1 is link led only if LED2 is present
if (pin[GPIO_LED2] < 99) {
led = 1;
}
}
if (pin[GPIO_LED1 + led] < 99) {
uint32_t mask = 1 << led;
if (state) {
state = 1;
led_power |= mask;
} else {
led_power &= (0xFF ^ mask);
}
digitalWrite(pin[GPIO_LED1 + led], bitRead(led_inverted, led) ? !state : state);
}
}
void SetLedPower(uint32_t state)
{
if (99 == pin[GPIO_LEDLNK]) { // Legacy - Only use LED1 and/or LED2
SetLedPowerIdx(0, state);
} else {
power_t mask = 1;
for (uint32_t i = 0; i < leds_present; i++) { // Map leds to power
bool tstate = (power & mask);
SetLedPowerIdx(i, tstate);
mask <<= 1;
}
}
}
void SetLedPowerAll(uint32_t state)
{
for (uint32_t i = 0; i < leds_present; i++) {
SetLedPowerIdx(i, state);
}
}
void SetLedLink(uint32_t state)
{
uint32_t led_pin = pin[GPIO_LEDLNK];
uint32_t led_inv = ledlnk_inverted;
if (99 == led_pin) { // Legacy - LED1 is status
led_pin = pin[GPIO_LED1];
led_inv = bitRead(led_inverted, 0);
}
if (led_pin < 99) {
if (state) { state = 1; }
digitalWrite(led_pin, (led_inv) ? !state : state);
}
}
void SetPulseTimer(uint32_t index, uint32_t time)
{
pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L;
}
uint32_t GetPulseTimer(uint32_t index)
{
long time = TimePassedSince(pulse_timer[index]);
if (time < 0) {
time *= -1;
return (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0;
}
return 0;
}
/********************************************************************************************/
bool SendKey(uint32_t key, uint32_t device, uint32_t state)
{
// key 0 = KEY_BUTTON = button_topic
// key 1 = KEY_SWITCH = switch_topic
// state 0 = POWER_OFF = off
// state 1 = POWER_ON = on
// state 2 = POWER_TOGGLE = toggle
// state 3 = POWER_HOLD = hold
// state 9 = CLEAR_RETAIN = clear retain flag
char stopic[TOPSZ];
char scommand[CMDSZ];
char key_topic[sizeof(Settings.button_topic)];
bool result = false;
char *tmp = (key) ? Settings.switch_topic : Settings.button_topic;
Format(key_topic, tmp, sizeof(key_topic));
if (Settings.flag.mqtt_enabled && MqttIsConnected() && (strlen(key_topic) != 0) && strcmp(key_topic, "0")) {
if (!key && (device > devices_present)) {
device = 1; // Only allow number of buttons up to number of devices
}
GetTopic_P(stopic, CMND, key_topic,
GetPowerDevice(scommand, device, sizeof(scommand), (key + Settings.flag.device_index_enable))); // cmnd/switchtopic/POWERx
if (CLEAR_RETAIN == state) {
mqtt_data[0] = '\0';
} else {
if ((Settings.flag3.button_switch_force_local || !strcmp(mqtt_topic, key_topic) || !strcmp(Settings.mqtt_grptopic, key_topic)) && (POWER_TOGGLE == state)) {
state = ~(power >> (device -1)) &1; // POWER_OFF or POWER_ON
}
snprintf_P(mqtt_data, sizeof(mqtt_data), GetStateText(state));
}
#ifdef USE_DOMOTICZ
if (!(DomoticzSendKey(key, device, state, strlen(mqtt_data)))) {
MqttPublishDirect(stopic, ((key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain) && (state != POWER_HOLD || !Settings.flag3.no_hold_retain));
}
#else
MqttPublishDirect(stopic, ((key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain) && (state != POWER_HOLD || !Settings.flag3.no_hold_retain));
#endif // USE_DOMOTICZ
result = !Settings.flag3.button_switch_force_local;
} else {
Response_P(PSTR("{\"%s%d\":{\"State\":%d}}"), (key) ? "Switch" : "Button", device, state);
result = XdrvRulesProcess();
}
int32_t payload_save = XdrvMailbox.payload;
XdrvMailbox.payload = key << 16 | state << 8 | device;
XdrvCall(FUNC_ANY_KEY);
XdrvMailbox.payload = payload_save;
return result;
}
void ExecuteCommandPower(uint32_t device, uint32_t state, uint32_t source)
{
// device = Relay number 1 and up
// state 0 = POWER_OFF = Relay Off
// state 1 = POWER_ON = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled)
// state 2 = POWER_TOGGLE = Toggle relay
// state 3 = POWER_BLINK = Blink relay
// state 4 = POWER_BLINK_STOP = Stop blinking relay
// state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState
// state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState
// state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState
// state 16 = POWER_SHOW_STATE = Show power state
// ShowSource(source);
#ifdef USE_SONOFF_IFAN
if (IsModuleIfan()) {
blink_mask &= 1; // No blinking on the fan relays
Settings.flag.interlock = 0; // No interlock mode as it is already done by the microcontroller
Settings.pulse_timer[1] = 0; // No pulsetimers on the fan relays
Settings.pulse_timer[2] = 0;
Settings.pulse_timer[3] = 0;
}
#endif // USE_SONOFF_IFAN
bool publish_power = true;
if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) {
state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE
publish_power = false;
}
if ((device < 1) || (device > devices_present)) {
device = 1;
}
active_device = device;
if (device <= MAX_PULSETIMERS) {
SetPulseTimer(device -1, 0);
}
power_t mask = 1 << (device -1); // Device to control
if (state <= POWER_TOGGLE) {
if ((blink_mask & mask)) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
}
if (Settings.flag.interlock &&
!interlock_mutex &&
((POWER_ON == state) || ((POWER_TOGGLE == state) && !(power & mask)))
) {
interlock_mutex = true; // Clear all but masked relay in interlock group if new set requested
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) {
if (Settings.interlock[i] & mask) { // Find interlock group
for (uint32_t j = 0; j < devices_present; j++) {
power_t imask = 1 << j;
if ((Settings.interlock[i] & imask) && (power & imask) && (mask != imask)) {
ExecuteCommandPower(j +1, POWER_OFF, SRC_IGNORE);
delay(50); // Add some delay to make sure never have more than one relay on
}
}
break; // An interlocked relay is only present in one group so quit
}
}
interlock_mutex = false;
}
switch (state) {
case POWER_OFF: {
power &= (POWER_MASK ^ mask);
break; }
case POWER_ON:
power |= mask;
break;
case POWER_TOGGLE:
power ^= mask;
}
SetDevicePower(power, source);
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(device);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxUpdatePowerState(device, power);
#endif // USE_KNX
if (publish_power && Settings.flag3.hass_tele_on_power) {
MqttPublishTeleState();
}
if (device <= MAX_PULSETIMERS) { // Restart PulseTime if powered On
SetPulseTimer(device -1, (((POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? ~power : power) & mask) ? Settings.pulse_timer[device -1] : 0);
}
}
else if (POWER_BLINK == state) {
if (!(blink_mask & mask)) {
blink_powersave = (blink_powersave & (POWER_MASK ^ mask)) | (power & mask); // Save state
blink_power = (power >> (device -1))&1; // Prep to Toggle
}
blink_timer = millis() + 100;
blink_counter = ((!Settings.blinkcount) ? 64000 : (Settings.blinkcount *2)) +1;
blink_mask |= mask; // Set device mask
MqttPublishPowerBlinkState(device);
return;
}
else if (POWER_BLINK_STOP == state) {
bool flag = (blink_mask & mask);
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
if (flag) {
ExecuteCommandPower(device, (blink_powersave >> (device -1))&1, SRC_IGNORE); // Restore state
}
return;
}
if (publish_power) {
MqttPublishPowerState(device);
}
}
void StopAllPowerBlink(void)
{
power_t mask;
for (uint32_t i = 1; i <= devices_present; i++) {
mask = 1 << (i -1);
if (blink_mask & mask) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(i);
ExecuteCommandPower(i, (blink_powersave >> (i -1))&1, SRC_IGNORE); // Restore state
}
}
}
void MqttShowPWMState(void)
{
ResponseAppend_P(PSTR("\"" D_CMND_PWM "\":{"));
bool first = true;
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (pin[GPIO_PWM1 + i] < 99) {
ResponseAppend_P(PSTR("%s\"" D_CMND_PWM "%d\":%d"), first ? "" : ",", i+1, Settings.pwm_value[i]);
first = false;
}
}
ResponseJsonEnd();
}
void MqttShowState(void)
{
char stemp1[33];
ResponseAppendTime();
ResponseAppend_P(PSTR(",\"" D_JSON_UPTIME "\":\"%s\",\"UptimeSec\":%u"), GetUptime().c_str(), UpTime());
#ifdef USE_ADC_VCC
dtostrfd((double)ESP.getVcc()/1000, 3, stemp1);
ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1);
#endif
ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u,\"MqttCount\":%u"),
ESP.getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), sleep, loop_load_avg, MqttConnectCount());
for (uint32_t i = 1; i <= devices_present; i++) {
#ifdef USE_LIGHT
if ((LightDevice()) && (i >= LightDevice())) {
if (i == LightDevice()) { LightState(1); } // call it only once
} else {
#endif
ResponseAppend_P(PSTR(",\"%s\":\"%s\""), GetPowerDevice(stemp1, i, sizeof(stemp1), Settings.flag.device_index_enable), GetStateText(bitRead(power, i-1)));
#ifdef USE_SONOFF_IFAN
if (IsModuleIfan()) {
ResponseAppend_P(PSTR(",\"" D_CMND_FANSPEED "\":%d"), GetFanspeed());
break;
}
#endif // USE_SONOFF_IFAN
#ifdef USE_LIGHT
}
#endif
}
if (pwm_present) {
ResponseAppend_P(PSTR(","));
MqttShowPWMState();
}
ResponseAppend_P(PSTR(",\"" D_JSON_WIFI "\":{\"" D_JSON_AP "\":%d,\"" D_JSON_SSID "\":\"%s\",\"" D_JSON_BSSID "\":\"%s\",\"" D_JSON_CHANNEL "\":%d,\"" D_JSON_RSSI "\":%d,\"" D_JSON_LINK_COUNT "\":%d,\"" D_JSON_DOWNTIME "\":\"%s\"}}"),
Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active], WiFi.BSSIDstr().c_str(), WiFi.channel(), WifiGetRssiAsQuality(WiFi.RSSI()), WifiLinkCount(), WifiDowntime().c_str());
}
void MqttPublishTeleState(void)
{
mqtt_data[0] = '\0';
MqttShowState();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN);
#ifdef USE_SCRIPT
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_SCRIPT
}
bool MqttShowSensor(void)
{
ResponseAppendTime();
int json_data_start = strlen(mqtt_data);
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
#ifdef USE_TM1638
if ((pin[GPIO_SWT1 +i] < 99) || ((pin[GPIO_TM16CLK] < 99) && (pin[GPIO_TM16DIO] < 99) && (pin[GPIO_TM16STB] < 99))) {
#else
if (pin[GPIO_SWT1 +i] < 99) {
#endif // USE_TM1638
bool swm = ((FOLLOW_INV == Settings.switchmode[i]) || (PUSHBUTTON_INV == Settings.switchmode[i]) || (PUSHBUTTONHOLD_INV == Settings.switchmode[i]));
ResponseAppend_P(PSTR(",\"" D_JSON_SWITCH "%d\":\"%s\""), i +1, GetStateText(swm ^ SwitchLastState(i)));
}
}
XsnsCall(FUNC_JSON_APPEND);
XdrvCall(FUNC_JSON_APPEND);
bool json_data_available = (strlen(mqtt_data) - json_data_start);
if (strstr_P(mqtt_data, PSTR(D_JSON_PRESSURE)) != nullptr) {
ResponseAppend_P(PSTR(",\"" D_JSON_PRESSURE_UNIT "\":\"%s\""), PressureUnit().c_str());
}
if (strstr_P(mqtt_data, PSTR(D_JSON_TEMPERATURE)) != nullptr) {
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit());
}
ResponseJsonEnd();
if (json_data_available) { XdrvCall(FUNC_SHOW_SENSOR); }
return json_data_available;
}
/********************************************************************************************/
void PerformEverySecond(void)
{
uptime++;
if (ntp_synced_message) {
// Moved here to fix syslog UDP exception 9 during RtcSecond
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NTP: Drift %d, (" D_UTC_TIME ") %s, (" D_DST_TIME ") %s, (" D_STD_TIME ") %s"),
DriftTime(), GetTime(0).c_str(), GetTime(2).c_str(), GetTime(3).c_str());
ntp_synced_message = false;
}
if (POWER_CYCLE_TIME == uptime) {
UpdateQuickPowerCycle(false);
}
if (BOOT_LOOP_TIME == uptime) {
RtcReboot.fast_reboot_count = 0;
RtcRebootSave();
Settings.bootcount++; // Moved to here to stop flash writes during start-up
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_BOOT_COUNT " %d"), Settings.bootcount);
}
if (seriallog_timer) {
seriallog_timer--;
if (!seriallog_timer) {
if (seriallog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SERIAL_LOGGING_DISABLED));
}
seriallog_level = 0;
}
}
if (syslog_timer) { // Restore syslog level
syslog_timer--;
if (!syslog_timer) {
syslog_level = Settings.syslog_level;
if (Settings.syslog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_LOGGING_REENABLED)); // Might trigger disable again (on purpose)
}
}
}
ResetGlobalValues();
if (Settings.tele_period) {
tele_period++;
// increase time for prepare and document state to ensure TELEPERIOD deliver results
if (tele_period == Settings.tele_period -3 && !prep_called) {
// sensores must be called later if driver switch on e.g. power on deepsleep
XdrvCall(FUNC_PREP_BEFORE_TELEPERIOD);
XsnsCall(FUNC_PREP_BEFORE_TELEPERIOD);
prep_called = true;
}
if (tele_period >= Settings.tele_period && prep_called) {
tele_period = 0;
MqttPublishTeleState();
mqtt_data[0] = '\0';
if (MqttShowSensor()) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
#if defined(USE_RULES) || defined(USE_SCRIPT)
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_RULES
}
prep_called = true;
XdrvCall(FUNC_AFTER_TELEPERIOD);
}
}
}
/*********************************************************************************************\
* State loops
\*********************************************************************************************/
/*-------------------------------------------------------------------------------------------*\
* Every 0.1 second
\*-------------------------------------------------------------------------------------------*/
void Every100mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop will shift in time...
power_t power_now;
if (latching_relay_pulse) {
latching_relay_pulse--;
if (!latching_relay_pulse) SetLatchingRelay(0, 0);
}
for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) {
if (pulse_timer[i] != 0L) { // Timer active?
if (TimeReached(pulse_timer[i])) { // Timer finished?
pulse_timer[i] = 0L; // Turn off this timer
ExecuteCommandPower(i +1, (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER);
}
}
}
if (blink_mask) {
if (TimeReached(blink_timer)) {
SetNextTimeInterval(blink_timer, 100 * Settings.blinktime);
blink_counter--;
if (!blink_counter) {
StopAllPowerBlink();
} else {
blink_power ^= 1;
power_now = (power & (POWER_MASK ^ blink_mask)) | ((blink_power) ? blink_mask : 0);
SetDevicePower(power_now, SRC_IGNORE);
}
}
}
}
/*-------------------------------------------------------------------------------------------*\
* Every 0.25 second
\*-------------------------------------------------------------------------------------------*/
void Every250mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop should always be taken...
uint32_t blinkinterval = 1;
state_250mS++;
state_250mS &= 0x3;
if (mqtt_cmnd_publish) mqtt_cmnd_publish--; // Clean up
if (!Settings.flag.global_state) { // Problem blinkyblinky enabled
if (global_state.data) { // Any problem
if (global_state.mqtt_down) { blinkinterval = 7; } // MQTT problem so blink every 2 seconds (slowest)
if (global_state.wifi_down) { blinkinterval = 3; } // Wifi problem so blink every second (slow)
blinks = 201; // Allow only a single blink in case the problem is solved
}
}
if (blinks || restart_flag || ota_state_flag) {
if (restart_flag || ota_state_flag) { // Overrule blinks and keep led lit
blinkstate = true; // Stay lit
} else {
blinkspeed--;
if (!blinkspeed) {
blinkspeed = blinkinterval; // Set interval to 0.2 (default), 1 or 2 seconds
blinkstate ^= 1; // Blink
}
}
if ((!(Settings.ledstate &0x08)) && ((Settings.ledstate &0x06) || (blinks > 200) || (blinkstate))) {
SetLedLink(blinkstate); // Set led on or off
}
if (!blinkstate) {
blinks--;
if (200 == blinks) blinks = 0; // Disable blink
}
}
if (Settings.ledstate &1 && (pin[GPIO_LEDLNK] < 99 || !(blinks || restart_flag || ota_state_flag)) ) {
bool tstate = power & Settings.ledmask;
if ((SONOFF_TOUCH == my_module_type) || (SONOFF_T11 == my_module_type) || (SONOFF_T12 == my_module_type) || (SONOFF_T13 == my_module_type)) {
tstate = (!power) ? 1 : 0; // As requested invert signal for Touch devices to find them in the dark
}
SetLedPower(tstate);
}
/*-------------------------------------------------------------------------------------------*\
* Every second at 0.25 second interval
\*-------------------------------------------------------------------------------------------*/
switch (state_250mS) {
case 0: // Every x.0 second
if (ota_state_flag && BACKLOG_EMPTY) {
ota_state_flag--;
if (2 == ota_state_flag) {
ota_url = Settings.ota_url;
RtcSettings.ota_loader = 0; // Try requested image first
ota_retry_counter = OTA_ATTEMPTS;
ESPhttpUpdate.rebootOnUpdate(false);
SettingsSave(1); // Free flash for OTA update
}
if (ota_state_flag <= 0) {
#ifdef USE_WEBSERVER
if (Settings.webserver) StopWebserver();
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
ota_state_flag = 92;
ota_result = 0;
ota_retry_counter--;
if (ota_retry_counter) {
strlcpy(mqtt_data, GetOtaUrl(log_data, sizeof(log_data)), sizeof(mqtt_data));
#ifndef FIRMWARE_MINIMAL
if (RtcSettings.ota_loader) {
char *bch = strrchr(mqtt_data, '/'); // Only consider filename after last backslash prevent change of urls having "-" in it
char *pch = strrchr((bch != nullptr) ? bch : mqtt_data, '-'); // Change from filename-DE.bin into filename-minimal.bin
char *ech = strrchr((bch != nullptr) ? bch : mqtt_data, '.'); // Change from filename.bin into filename-minimal.bin
if (!pch) { pch = ech; }
if (pch) {
mqtt_data[pch - mqtt_data] = '\0';
char *ech = strrchr(Settings.ota_url, '.'); // Change from filename.bin into filename-minimal.bin
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s-" D_JSON_MINIMAL "%s"), mqtt_data, ech); // Minimal filename must be filename-minimal
}
}
#endif // FIRMWARE_MINIMAL
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "%s"), mqtt_data);
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(mqtt_data));
#else
// If using core stage or 2.5.0+ the syntax has changed
WiFiClient OTAclient;
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(OTAclient, mqtt_data));
#endif
if (!ota_result) {
#ifndef FIRMWARE_MINIMAL
int ota_error = ESPhttpUpdate.getLastError();
DEBUG_CORE_LOG(PSTR("OTA: Error %d"), ota_error);
if ((HTTP_UE_TOO_LESS_SPACE == ota_error) || (HTTP_UE_BIN_FOR_WRONG_FLASH == ota_error)) {
RtcSettings.ota_loader = 1; // Try minimal image next
}
#endif // FIRMWARE_MINIMAL
ota_state_flag = 2; // Upgrade failed - retry
}
}
}
if (90 == ota_state_flag) { // Allow MQTT to reconnect
ota_state_flag = 0;
if (ota_result) {
// SetFlashModeDout(); // Force DOUT for both ESP8266 and ESP8285
Response_P(PSTR(D_JSON_SUCCESSFUL ". " D_JSON_RESTARTING));
} else {
Response_P(PSTR(D_JSON_FAILED " %s"), ESPhttpUpdate.getLastErrorString().c_str());
}
restart_flag = 2; // Restart anyway to keep memory clean webserver
MqttPublishPrefixTopic_P(STAT, PSTR(D_CMND_UPGRADE));
}
}
break;
case 1: // Every x.25 second
if (MidnightNow()) {
XsnsCall(FUNC_SAVE_AT_MIDNIGHT);
}
if (save_data_counter && BACKLOG_EMPTY) {
save_data_counter--;
if (save_data_counter <= 0) {
if (Settings.flag.save_state) {
power_t mask = POWER_MASK;
for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) {
if ((Settings.pulse_timer[i] > 0) && (Settings.pulse_timer[i] < 30)) { // 3 seconds
mask &= ~(1 << i);
}
}
if (!((Settings.power &mask) == (power &mask))) {
Settings.power = power;
}
} else {
Settings.power = 0;
}
SettingsSave(0);
save_data_counter = Settings.save_data;
}
}
if (restart_flag && BACKLOG_EMPTY) {
if ((214 == restart_flag) || (215 == restart_flag) || (216 == restart_flag)) {
char storage_wifi[sizeof(Settings.sta_ssid) +
sizeof(Settings.sta_pwd)];
char storage_mqtt[sizeof(Settings.mqtt_host) +
sizeof(Settings.mqtt_port) +
sizeof(Settings.mqtt_client) +
sizeof(Settings.mqtt_user) +
sizeof(Settings.mqtt_pwd) +
sizeof(Settings.mqtt_topic)];
memcpy(storage_wifi, Settings.sta_ssid, sizeof(storage_wifi)); // Backup current SSIDs and Passwords
if (216 == restart_flag) {
memcpy(storage_mqtt, Settings.mqtt_host, sizeof(storage_mqtt)); // Backup mqtt host, port, client, username and password
}
if ((215 == restart_flag) || (216 == restart_flag)) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
}
SettingsDefault();
memcpy(Settings.sta_ssid, storage_wifi, sizeof(storage_wifi)); // Restore current SSIDs and Passwords
if (216 == restart_flag) {
memcpy(Settings.mqtt_host, storage_mqtt, sizeof(storage_mqtt)); // Restore the mqtt host, port, client, username and password
strlcpy(Settings.mqtt_client, MQTT_CLIENT_ID, sizeof(Settings.mqtt_client)); // Set client to default
}
restart_flag = 2;
}
else if (213 == restart_flag) {
SettingsSdkErase(); // Erase flash SDK parameters
restart_flag = 2;
}
else if (212 == restart_flag) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
restart_flag = 211;
}
if (211 == restart_flag) {
SettingsDefault();
restart_flag = 2;
}
if (2 == restart_flag) {
SettingsSaveAll();
}
restart_flag--;
if (restart_flag <= 0) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING));
EspRestart();
}
}
break;
case 2: // Every x.5 second
WifiCheck(wifi_state_flag);
wifi_state_flag = WIFI_RESTART;
break;
case 3: // Every x.75 second
if (!global_state.wifi_down) { MqttCheck(); }
break;
}
}
#ifdef USE_ARDUINO_OTA
/*********************************************************************************************\
* Allow updating via the Arduino OTA-protocol.
*
* - Once started disables current wifi clients and udp
* - Perform restart when done to re-init wifi clients
\*********************************************************************************************/
bool arduino_ota_triggered = false;
uint16_t arduino_ota_progress_dot_count = 0;
void ArduinoOTAInit(void)
{
ArduinoOTA.setPort(8266);
ArduinoOTA.setHostname(my_hostname);
if (Settings.web_password[0] !=0) { ArduinoOTA.setPassword(Settings.web_password); }
ArduinoOTA.onStart([]()
{
SettingsSave(1); // Free flash for OTA update
#ifdef USE_WEBSERVER
if (Settings.webserver) { StopWebserver(); }
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
if (Settings.flag.mqtt_enabled) { MqttDisconnect(); }
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_UPLOAD_STARTED));
arduino_ota_triggered = true;
arduino_ota_progress_dot_count = 0;
delay(100); // Allow time for message xfer
});
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total)
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) {
arduino_ota_progress_dot_count++;
Serial.printf(".");
if (!(arduino_ota_progress_dot_count % 80)) { Serial.println(); }
}
});
ArduinoOTA.onError([](ota_error_t error)
{
/*
From ArduinoOTA.h:
typedef enum { OTA_AUTH_ERROR, OTA_BEGIN_ERROR, OTA_CONNECT_ERROR, OTA_RECEIVE_ERROR, OTA_END_ERROR } ota_error_t;
*/
char error_str[100];
if ((LOG_LEVEL_DEBUG <= seriallog_level) && arduino_ota_progress_dot_count) { Serial.println(); }
switch (error) {
case OTA_BEGIN_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_2), sizeof(error_str)); break;
case OTA_RECEIVE_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_5), sizeof(error_str)); break;
case OTA_END_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_7), sizeof(error_str)); break;
default:
snprintf_P(error_str, sizeof(error_str), PSTR(D_UPLOAD_ERROR_CODE " %d"), error);
}
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA %s. " D_RESTARTING), error_str);
EspRestart();
});
ArduinoOTA.onEnd([]()
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) { Serial.println(); }
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_SUCCESSFUL ". " D_RESTARTING));
EspRestart();
});
ArduinoOTA.begin();
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_ENABLED " " D_PORT " 8266"));
}
#endif // USE_ARDUINO_OTA
/********************************************************************************************/
void SerialInput(void)
{
while (Serial.available()) {
// yield();
delay(0);
serial_in_byte = Serial.read();
/*-------------------------------------------------------------------------------------------*\
* Sonoff dual and ch4 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) {
serial_in_byte = ButtonSerial(serial_in_byte);
}
/*-------------------------------------------------------------------------------------------*/
if (XdrvCall(FUNC_SERIAL)) {
serial_in_byte_counter = 0;
Serial.flush();
return;
}
/*-------------------------------------------------------------------------------------------*/
if (serial_in_byte > 127 && !Settings.flag.mqtt_serial_raw) { // Discard binary data above 127 if no raw reception allowed
serial_in_byte_counter = 0;
Serial.flush();
return;
}
if (!Settings.flag.mqtt_serial) { // SerialSend active
if (isprint(serial_in_byte)) { // Any char between 32 and 127
if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
} else {
serial_in_byte_counter = 0;
}
}
} else {
if (serial_in_byte || Settings.flag.mqtt_serial_raw) { // Any char between 1 and 127 or any char (0 - 255)
if ((serial_in_byte_counter < INPUT_BUFFER_SIZE -1) && // Add char to string if it still fits and ...
((isprint(serial_in_byte) && (128 == Settings.serial_delimiter)) || // Any char between 32 and 127
((serial_in_byte != Settings.serial_delimiter) && (128 != Settings.serial_delimiter)) || // Any char between 1 and 127 and not being delimiter
Settings.flag.mqtt_serial_raw)) { // Any char between 0 and 255
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
serial_polling_window = millis();
} else {
serial_polling_window = 0; // Reception done - send mqtt
break;
}
}
}
#ifdef USE_SONOFF_SC
/*-------------------------------------------------------------------------------------------*\
* Sonoff SC 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if (SONOFF_SC == my_module_type) {
if (serial_in_byte == '\x1B') { // Sonoff SC status from ATMEGA328P
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
SonoffScSerialInput(serial_in_buffer);
serial_in_byte_counter = 0;
Serial.flush();
return;
}
} else
#endif // USE_SONOFF_SC
/*-------------------------------------------------------------------------------------------*/
if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) {
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings.seriallog_level;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), serial_in_buffer);
ExecuteCommand(serial_in_buffer, SRC_SERIAL);
serial_in_byte_counter = 0;
serial_polling_window = 0;
Serial.flush();
return;
}
}
if (Settings.flag.mqtt_serial && serial_in_byte_counter && (millis() > (serial_polling_window + SERIAL_POLLING))) {
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
char hex_char[(serial_in_byte_counter * 2) + 2];
Response_P(PSTR(",\"" D_JSON_SERIALRECEIVED "\":\"%s\"}"),
(Settings.flag.mqtt_serial_raw) ? ToHex_P((unsigned char*)serial_in_buffer, serial_in_byte_counter, hex_char, sizeof(hex_char)) : serial_in_buffer);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_SERIALRECEIVED));
XdrvRulesProcess();
serial_in_byte_counter = 0;
}
}
/********************************************************************************************/
void GpioInit(void)
{
uint32_t mpin;
if (!ValidModule(Settings.module)) {
uint32_t module = MODULE;
if (!ValidModule(MODULE)) { module = SONOFF_BASIC; }
Settings.module = module;
Settings.last_module = module;
}
SetModuleType();
if (Settings.module != Settings.last_module) {
baudrate = APP_BAUDRATE;
}
for (uint32_t i = 0; i < sizeof(Settings.user_template.gp); i++) {
if ((Settings.user_template.gp.io[i] >= GPIO_SENSOR_END) && (Settings.user_template.gp.io[i] < GPIO_USER)) {
Settings.user_template.gp.io[i] = GPIO_USER; // Fix not supported sensor ids in template
}
}
myio def_gp;
ModuleGpios(&def_gp);
for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) {
if ((Settings.my_gp.io[i] >= GPIO_SENSOR_END) && (Settings.my_gp.io[i] < GPIO_USER)) {
Settings.my_gp.io[i] = GPIO_NONE; // Fix not supported sensor ids in module
}
else if (Settings.my_gp.io[i] > GPIO_NONE) {
my_module.io[i] = Settings.my_gp.io[i]; // Set User selected Module sensors
}
if ((def_gp.io[i] > GPIO_NONE) && (def_gp.io[i] < GPIO_USER)) {
my_module.io[i] = def_gp.io[i]; // Force Template override
}
}
if ((Settings.my_adc0 >= ADC0_END) && (Settings.my_adc0 < ADC0_USER)) {
Settings.my_adc0 = ADC0_NONE; // Fix not supported sensor ids in module
}
else if (Settings.my_adc0 > ADC0_NONE) {
my_adc0 = Settings.my_adc0; // Set User selected Module sensors
}
my_module_flag = ModuleFlag();
uint32_t template_adc0 = my_module_flag.data &15;
if ((template_adc0 > ADC0_NONE) && (template_adc0 < ADC0_USER)) {
my_adc0 = template_adc0; // Force Template override
}
for (uint32_t i = 0; i < GPIO_MAX; i++) {
pin[i] = 99;
}
for (uint32_t i = 0; i < sizeof(my_module.io); i++) {
mpin = ValidPin(i, my_module.io[i]);
DEBUG_CORE_LOG(PSTR("INI: gpio pin %d, mpin %d"), i, mpin);
if (mpin) {
XdrvMailbox.index = mpin;
XdrvMailbox.payload = i;
if ((mpin >= GPIO_SWT1_NP) && (mpin < (GPIO_SWT1_NP + MAX_SWITCHES))) {
SwitchPullupFlag(mpin - GPIO_SWT1_NP);
mpin -= (GPIO_SWT1_NP - GPIO_SWT1);
}
else if ((mpin >= GPIO_KEY1_NP) && (mpin < (GPIO_KEY1_NP + MAX_KEYS))) {
ButtonPullupFlag(mpin - GPIO_KEY1_NP); // 0 .. 3
mpin -= (GPIO_KEY1_NP - GPIO_KEY1);
}
else if ((mpin >= GPIO_KEY1_INV) && (mpin < (GPIO_KEY1_INV + MAX_KEYS))) {
ButtonInvertFlag(mpin - GPIO_KEY1_INV); // 0 .. 3
mpin -= (GPIO_KEY1_INV - GPIO_KEY1);
}
else if ((mpin >= GPIO_KEY1_INV_NP) && (mpin < (GPIO_KEY1_INV_NP + MAX_KEYS))) {
ButtonPullupFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3
ButtonInvertFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3
mpin -= (GPIO_KEY1_INV_NP - GPIO_KEY1);
}
else if ((mpin >= GPIO_REL1_INV) && (mpin < (GPIO_REL1_INV + MAX_RELAYS))) {
bitSet(rel_inverted, mpin - GPIO_REL1_INV);
mpin -= (GPIO_REL1_INV - GPIO_REL1);
}
else if ((mpin >= GPIO_LED1_INV) && (mpin < (GPIO_LED1_INV + MAX_LEDS))) {
bitSet(led_inverted, mpin - GPIO_LED1_INV);
mpin -= (GPIO_LED1_INV - GPIO_LED1);
}
else if (mpin == GPIO_LEDLNK_INV) {
ledlnk_inverted = 1;
mpin -= (GPIO_LEDLNK_INV - GPIO_LEDLNK);
}
else if ((mpin >= GPIO_PWM1_INV) && (mpin < (GPIO_PWM1_INV + MAX_PWMS))) {
bitSet(pwm_inverted, mpin - GPIO_PWM1_INV);
mpin -= (GPIO_PWM1_INV - GPIO_PWM1);
}
else if (XdrvCall(FUNC_PIN_STATE)) {
mpin = XdrvMailbox.index;
}
else if (XsnsCall(FUNC_PIN_STATE)) {
mpin = XdrvMailbox.index;
};
}
if (mpin) pin[mpin] = i;
}
if ((2 == pin[GPIO_TXD]) || (H801 == my_module_type)) { Serial.set_tx(2); }
analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h)
analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c)
#ifdef USE_SPI
spi_flg = ((((pin[GPIO_SPI_CS] < 99) && (pin[GPIO_SPI_CS] > 14)) || (pin[GPIO_SPI_CS] < 12)) || (((pin[GPIO_SPI_DC] < 99) && (pin[GPIO_SPI_DC] > 14)) || (pin[GPIO_SPI_DC] < 12)));
if (spi_flg) {
for (uint32_t i = 0; i < GPIO_MAX; i++) {
if ((pin[i] >= 12) && (pin[i] <=14)) pin[i] = 99;
}
my_module.io[12] = GPIO_SPI_MISO;
pin[GPIO_SPI_MISO] = 12;
my_module.io[13] = GPIO_SPI_MOSI;
pin[GPIO_SPI_MOSI] = 13;
my_module.io[14] = GPIO_SPI_CLK;
pin[GPIO_SPI_CLK] = 14;
}
soft_spi_flg = ((pin[GPIO_SSPI_CS] < 99) && (pin[GPIO_SSPI_SCLK] < 99) && ((pin[GPIO_SSPI_MOSI] < 99) || (pin[GPIO_SSPI_MOSI] < 99)));
#endif // USE_SPI
#ifdef USE_I2C
i2c_flg = ((pin[GPIO_I2C_SCL] < 99) && (pin[GPIO_I2C_SDA] < 99));
if (i2c_flg) {
Wire.begin(pin[GPIO_I2C_SDA], pin[GPIO_I2C_SCL]);
}
#endif // USE_I2C
devices_present = 0;
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
if (XdrvCall(FUNC_MODULE_INIT)) {
// Serviced
}
else if (YTF_IR_BRIDGE == my_module_type) {
ClaimSerial(); // Stop serial loopback mode
// devices_present = 1;
}
else if (SONOFF_DUAL == my_module_type) {
Settings.flag.mqtt_serial = 0;
devices_present = 2;
baudrate = 19200;
}
else if (CH4 == my_module_type) {
Settings.flag.mqtt_serial = 0;
devices_present = 4;
baudrate = 19200;
}
#ifdef USE_SONOFF_SC
else if (SONOFF_SC == my_module_type) {
Settings.flag.mqtt_serial = 0;
devices_present = 0;
baudrate = 19200;
}
#endif // USE_SONOFF_SC
if (!light_type) {
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (pin[GPIO_PWM1 +i] < 99) {
pwm_present = true;
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]);
}
}
}
for (uint32_t i = 0; i < MAX_RELAYS; i++) {
if (pin[GPIO_REL1 +i] < 99) {
pinMode(pin[GPIO_REL1 +i], OUTPUT);
devices_present++;
if (EXS_RELAY == my_module_type) {
digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? 1 : 0);
if (i &1) { devices_present--; }
}
}
}
for (uint32_t i = 0; i < MAX_LEDS; i++) {
if (pin[GPIO_LED1 +i] < 99) {
#ifdef USE_ARILUX_RF
if ((3 == i) && (leds_present < 2) && (99 == pin[GPIO_ARIRFSEL])) {
pin[GPIO_ARIRFSEL] = pin[GPIO_LED4]; // Legacy support where LED4 was Arilux RF enable
pin[GPIO_LED4] = 99;
} else {
#endif
pinMode(pin[GPIO_LED1 +i], OUTPUT);
leds_present++;
digitalWrite(pin[GPIO_LED1 +i], bitRead(led_inverted, i));
#ifdef USE_ARILUX_RF
}
#endif
}
}
if (pin[GPIO_LEDLNK] < 99) {
pinMode(pin[GPIO_LEDLNK], OUTPUT);
digitalWrite(pin[GPIO_LEDLNK], ledlnk_inverted);
}
ButtonInit();
SwitchInit();
#ifdef ROTARY_V1
RotaryInit();
#endif
SetLedPower(Settings.ledstate &8);
SetLedLink(Settings.ledstate &8);
XdrvCall(FUNC_PRE_INIT);
}
extern "C" {
extern struct rst_info resetInfo;
}
void setup(void)
{
global_state.data = 3; // Init global state (wifi_down, mqtt_down) to solve possible network issues
RtcRebootLoad();
if (!RtcRebootValid()) {
RtcReboot.fast_reboot_count = 0;
}
RtcReboot.fast_reboot_count++;
RtcRebootSave();
Serial.begin(baudrate);
delay(10);
Serial.println();
seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded
snprintf_P(my_version, sizeof(my_version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0
if (VERSION & 0xff) { // Development or patched version 6.3.0.10
snprintf_P(my_version, sizeof(my_version), PSTR("%s.%d"), my_version, VERSION & 0xff);
}
char code_image[20];
snprintf_P(my_image, sizeof(my_image), PSTR("(%s)"), GetTextIndexed(code_image, sizeof(code_image), CODE_IMAGE, kCodeImage));
SettingsLoad();
SettingsDelta();
OsWatchInit();
GetFeatures();
if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well
UpdateQuickPowerCycle(true);
XdrvCall(FUNC_SETTINGS_OVERRIDE);
}
baudrate = Settings.baudrate * 300;
// mdns_delayed_start = Settings.param[P_MDNS_DELAYED_START];
seriallog_level = Settings.seriallog_level;
seriallog_timer = SERIALLOG_TIMER;
syslog_level = Settings.syslog_level;
stop_flash_rotate = Settings.flag.stop_flash_rotate;
save_data_counter = Settings.save_data;
sleep = Settings.sleep;
#ifndef USE_EMULATION
Settings.flag2.emulation = 0;
#else
#ifndef USE_EMULATION_WEMO
if (EMUL_WEMO == Settings.flag2.emulation) { Settings.flag2.emulation = 0; }
#endif
#ifndef USE_EMULATION_HUE
if (EMUL_HUE == Settings.flag2.emulation) { Settings.flag2.emulation = 0; }
#endif
#endif // USE_EMULATION
if (Settings.param[P_BOOT_LOOP_OFFSET]) {
// Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts)
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET]) { // Restart twice
Settings.flag3.user_esp8285_enable = 0; // Disable ESP8285 Generic GPIOs interfering with flash SPI
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +1) { // Restart 3 times
for (uint32_t i = 0; i < MAX_RULE_SETS; i++) {
if (bitRead(Settings.rule_stop, i)) {
bitWrite(Settings.rule_enabled, i, 0); // Disable rules causing boot loop
}
}
}
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +2) { // Restarted 4 times
Settings.rule_enabled = 0; // Disable all rules
}
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +3) { // Restarted 5 times
for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) {
Settings.my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors
}
Settings.my_adc0 = ADC0_NONE; // Reset user defined ADC0 disabling sensors
}
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times
Settings.module = SONOFF_BASIC; // Reset module to Sonoff Basic
// Settings.last_module = SONOFF_BASIC;
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count);
}
}
Format(mqtt_client, Settings.mqtt_client, sizeof(mqtt_client));
Format(mqtt_topic, Settings.mqtt_topic, sizeof(mqtt_topic));
if (strstr(Settings.hostname, "%") != nullptr) {
strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname));
snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname, mqtt_topic, ESP.getChipId() & 0x1FFF);
} else {
snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname);
}
GpioInit();
SetSerialBaudrate(baudrate);
WifiConnect();
if (MOTOR == my_module_type) { Settings.poweronstate = POWER_ALL_ON; } // Needs always on else in limbo!
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) {
SetDevicePower(1, SRC_RESTART);
} else {
if ((resetInfo.reason == REASON_DEFAULT_RST) || (resetInfo.reason == REASON_EXT_SYS_RST)) {
switch (Settings.poweronstate) {
case POWER_ALL_OFF:
case POWER_ALL_OFF_PULSETIME_ON:
power = 0;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_ON: // All on
power = (1 << devices_present) -1;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_SAVED_TOGGLE:
power = (Settings.power & ((1 << devices_present) -1)) ^ POWER_MASK;
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
break;
case POWER_ALL_SAVED:
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
break;
}
} else {
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
}
}
// Issue #526 and #909
for (uint32_t i = 0; i < devices_present; i++) {
if (!Settings.flag3.no_power_feedback) { // #5594 and #5663
if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) {
bitWrite(power, i, digitalRead(pin[GPIO_REL1 +i]) ^ bitRead(rel_inverted, i));
}
}
if ((i < MAX_PULSETIMERS) && (bitRead(power, i) || (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate))) {
SetPulseTimer(i, Settings.pulse_timer[i]);
}
}
blink_powersave = power;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s %s " D_VERSION " %s%s-" ARDUINO_ESP8266_RELEASE), PROJECT, Settings.friendlyname[0], my_version, my_image);
#ifdef FIRMWARE_MINIMAL
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION));
#endif // FIRMWARE_MINIMAL
RtcInit();
#ifdef USE_ARDUINO_OTA
ArduinoOTAInit();
#endif // USE_ARDUINO_OTA
XdrvCall(FUNC_INIT);
XsnsCall(FUNC_INIT);
}
static void BacklogLoop()
{
if (TimeReached(backlog_delay)) {
if (!BACKLOG_EMPTY && !backlog_mutex) {
backlog_mutex = true;
#ifdef SUPPORT_IF_STATEMENT
ExecuteCommand((char*)backlog.shift().c_str(), SRC_BACKLOG);
#else
ExecuteCommand((char*)backlog[backlog_pointer].c_str(), SRC_BACKLOG);
backlog_pointer++;
if (backlog_pointer >= MAX_BACKLOG) { backlog_pointer = 0; }
#endif
backlog_mutex = false;
}
}
}
void loop(void)
{
uint32_t my_sleep = millis();
XdrvCall(FUNC_LOOP);
XsnsCall(FUNC_LOOP);
OsWatchLoop();
ButtonLoop();
SwitchLoop();
#ifdef ROTARY_V1
RotaryLoop();
#endif
BacklogLoop();
if (TimeReached(state_50msecond)) {
SetNextTimeInterval(state_50msecond, 50);
XdrvCall(FUNC_EVERY_50_MSECOND);
XsnsCall(FUNC_EVERY_50_MSECOND);
}
if (TimeReached(state_100msecond)) {
SetNextTimeInterval(state_100msecond, 100);
Every100mSeconds();
XdrvCall(FUNC_EVERY_100_MSECOND);
XsnsCall(FUNC_EVERY_100_MSECOND);
}
if (TimeReached(state_250msecond)) {
SetNextTimeInterval(state_250msecond, 250);
Every250mSeconds();
XdrvCall(FUNC_EVERY_250_MSECOND);
XsnsCall(FUNC_EVERY_250_MSECOND);
}
if (TimeReached(state_second)) {
SetNextTimeInterval(state_second, 1000);
PerformEverySecond();
XdrvCall(FUNC_EVERY_SECOND);
XsnsCall(FUNC_EVERY_SECOND);
}
if (!serial_local) { SerialInput(); }
#ifdef USE_ARDUINO_OTA
MDNS.update();
ArduinoOTA.handle();
// Once OTA is triggered, only handle that and dont do other stuff. (otherwise it fails)
while (arduino_ota_triggered) ArduinoOTA.handle();
#endif // USE_ARDUINO_OTA
uint32_t my_activity = millis() - my_sleep;
if (Settings.flag3.sleep_normal) {
// yield(); // yield == delay(0), delay contains yield, auto yield in loop
delay(sleep); // https://github.com/esp8266/Arduino/issues/2021
} else {
if (my_activity < (uint32_t)sleep) {
delay((uint32_t)sleep - my_activity); // Provide time for background tasks like wifi
} else {
if (global_state.wifi_down) {
delay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/3 of my_activity period
}
}
}
if (!my_activity) { my_activity++; } // We cannot divide by 0
uint32_t loop_delay = sleep;
if (!loop_delay) { loop_delay++; } // We cannot divide by 0
uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second
uint32_t this_cycle_ratio = 100 * my_activity / loop_delay;
loop_load_avg = loop_load_avg - (loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one
}