mirror of https://github.com/arendst/Tasmota.git
440 lines
15 KiB
C++
440 lines
15 KiB
C++
/*
|
|
xdrv_23_zigbee.ino - zigbee support for Tasmota
|
|
|
|
Copyright (C) 2020 Theo Arends and Stephan Hadinger
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ZIGBEE
|
|
|
|
// Ensure persistence of devices into Flash
|
|
//
|
|
// Structure:
|
|
// (from file info):
|
|
// uint16 - start address in Flash (offset)
|
|
// uint16 - length in bytes (makes sure parsing stops)
|
|
//
|
|
// First byte:
|
|
// 0x00 - Empty or V3 format
|
|
// 0x01-0xFE - Legacy format
|
|
// 0xFF - invalid
|
|
//
|
|
//
|
|
// V1 Legacy
|
|
// =========
|
|
// File structure:
|
|
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
|
|
//
|
|
// [Array of devices]
|
|
// [Offset = 2]
|
|
// uint8 - length of device record
|
|
// uint16 - short address
|
|
// uint64 - long IEEE address
|
|
// uint8 - number of endpoints
|
|
// [Array of endpoints]
|
|
// uint8 - endpoint number
|
|
// uint16 - profileID of the endpoint
|
|
// Array of uint8 - clusters In codes, 0xFF end marker
|
|
// Array of uint8 - clusters Out codes, 0xFF end marker
|
|
//
|
|
// str - ModelID (null terminated C string, 32 chars max)
|
|
// str - Manuf (null terminated C string, 32 chars max)
|
|
// str - FriendlyName (null terminated C string, 32 chars max)
|
|
// reserved for extensions
|
|
// -- V2 --
|
|
// int8_t - zigbee profile of the device
|
|
//
|
|
// =======================
|
|
// v3 with version number
|
|
// File structure:
|
|
//
|
|
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
|
|
//
|
|
// [Array of devices]
|
|
// [Offset = 2]
|
|
// uint8 - length of device record
|
|
// uint16 - short address
|
|
// uint64 - long IEEE address
|
|
//
|
|
// str - ModelID (null terminated C string, 32 chars max)
|
|
// str - Manuf (null terminated C string, 32 chars max)
|
|
// str - FriendlyName (null terminated C string, 32 chars max)
|
|
//
|
|
// [Array of endpoints]
|
|
// uint8 - endpoint number, 0xFF marks the end of endpoints
|
|
// uint8[] - list of configuration bytes, 0xFF marks the end
|
|
// i.e. 0xFF-0xFF marks the end of the array of endpoints
|
|
//
|
|
|
|
|
|
// Memory footprint
|
|
#ifdef ESP8266
|
|
const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB
|
|
const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000
|
|
const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB
|
|
const static size_t z_spi_len = 0x1000; // 4kb blocks
|
|
const static size_t z_block_offset = 0x0800;
|
|
const static size_t z_block_len = 0x0800; // 2kb
|
|
#endif // ESP8266
|
|
#ifdef ESP32
|
|
uint8_t* z_dev_start;
|
|
const static size_t z_spi_len = 0x1000; // 4kb blocks
|
|
const static size_t z_block_offset = 0x0000; // No offset needed
|
|
const static size_t z_block_len = 0x1000; // 4kb
|
|
#endif // ESP32
|
|
|
|
// Each entry consumes 8 bytes
|
|
class Z_Flashentry {
|
|
public:
|
|
uint32_t name; // simple 4 letters name. Currently 'zig1', 'zig2'. 0xFFFFFFFF if not entry
|
|
uint16_t len; // len of object in bytes, 0xFFFF if no entry
|
|
uint16_t start; // address of start, 0xFFFF if empty, must be aligned on 128 bytes boundaries
|
|
};
|
|
|
|
class Z_Flashdirectory {
|
|
public:
|
|
// 8 bytes header
|
|
uint32_t magic; // magic value 'Tsmt' to check that the block is initialized
|
|
uint32_t clock; // clock vector to discard entries that are made before this one. This should be incremented by 1 for each new entry (future anti-weavering)
|
|
// entries, 14*8 = 112 bytes
|
|
Z_Flashentry entries[14];
|
|
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
|
|
uint16_t len; // len of object
|
|
uint16_t reserved; // align on 4 bytes boundary
|
|
// link to next entry, none for now, but may be used for anti-weavering
|
|
uint16_t next_dir; // 0xFFFF if none
|
|
uint16_t reserved1; // must be 0xFFFF
|
|
uint32_t reserved2; // must be 0xFFFFFFFF
|
|
};
|
|
|
|
|
|
const static uint32_t ZIGB_NAME1 = 0x3167697A; // 'zig1' little endian
|
|
const static uint32_t ZIGB_NAME2 = 0x3267697A; // 'zig2' little endian, v2
|
|
const static uint32_t ZIGB_DATA2 = 0x32746164; // 'dat2' little endian, v2
|
|
const static size_t Z_MAX_FLASH = z_block_len - sizeof(Z_Flashentry); // 2040
|
|
|
|
bool hibernateDeviceConfiguration(SBuffer & buf, const class Z_Data_Set & data, uint8_t endpoint) {
|
|
bool found = false;
|
|
for (auto & elt : data) {
|
|
if (endpoint == elt.getEndpoint()) {
|
|
buf.add8(elt.getConfigByte());
|
|
found = true;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
class SBuffer hibernateDevicev2(const struct Z_Device &device) {
|
|
SBuffer buf(128);
|
|
|
|
buf.add8(0x00); // overall length, will be updated later
|
|
buf.add16(device.shortaddr);
|
|
buf.add64(device.longaddr);
|
|
|
|
char *names[3] = { device.modelId, device.manufacturerId, device.friendlyName };
|
|
|
|
for (uint32_t i=0; i<ARRAY_SIZE(names); i++) {
|
|
char *p = names[i];
|
|
if (p) {
|
|
size_t len = strlen(p);
|
|
if (len > 32) { len = 32; } // max 32 chars
|
|
buf.addBuffer(p, len);
|
|
}
|
|
buf.add8(0x00); // end of string marker
|
|
}
|
|
|
|
// check if we need to write fake endpoint 0x00
|
|
buf.add8(0x00);
|
|
if (hibernateDeviceConfiguration(buf, device.data, 0)) {
|
|
buf.add8(0xFF); // end of configuration
|
|
} else {
|
|
buf.setLen(buf.len()-1); // remove 1 byte header
|
|
}
|
|
// scan endpoints
|
|
for (uint32_t i=0; i<endpoints_max; i++) {
|
|
uint8_t endpoint = device.endpoints[i];
|
|
if (0x00 == endpoint) { break; }
|
|
buf.add8(endpoint);
|
|
hibernateDeviceConfiguration(buf, device.data, endpoint);
|
|
buf.add8(0xFF); // end of configuration
|
|
}
|
|
buf.add8(0xFF); // end of endpoints
|
|
|
|
// update overall length
|
|
buf.set8(0, buf.len());
|
|
|
|
return buf;
|
|
}
|
|
|
|
class SBuffer hibernateDevices(void) {
|
|
SBuffer buf(2048);
|
|
|
|
size_t devices_size = zigbee_devices.devicesSize();
|
|
if (devices_size > 32) { devices_size = 32; } // arbitrarily limit to 32 devices, for now
|
|
buf.add8(devices_size); // number of devices
|
|
|
|
for (uint32_t i = 0; i < devices_size; i++) {
|
|
const Z_Device & device = zigbee_devices.devicesAt(i);
|
|
const SBuffer buf_device = hibernateDevicev2(device);
|
|
buf.addBuffer(buf_device);
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
// parse a single string from the saved data
|
|
// if something wrong happens, returns nullptr to ignore the string
|
|
// Index d is incremented to just after the string
|
|
const char * hydrateSingleString(const SBuffer & buf, uint32_t *d) {
|
|
size_t s_len = buf.strlen(*d);
|
|
const char * ptr = s_len ? buf.charptr(*d) : "";
|
|
*d += s_len + 1;
|
|
return ptr;
|
|
}
|
|
|
|
void hydrateSingleDevice(const SBuffer & buf_d, uint32_t version = 2) {
|
|
uint32_t d = 1; // index in device buffer
|
|
uint16_t shortaddr = buf_d.get16(d); d += 2;
|
|
uint64_t longaddr = buf_d.get64(d); d += 8;
|
|
size_t buf_len = buf_d.len();
|
|
Z_Device & device = zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses
|
|
|
|
if (1 == version) {
|
|
uint32_t endpoints = buf_d.get8(d++);
|
|
for (uint32_t j = 0; j < endpoints; j++) {
|
|
uint8_t ep = buf_d.get8(d++);
|
|
// uint16_t ep_profile = buf_d.get16(d); d += 2;
|
|
device.addEndpoint(ep);
|
|
|
|
// in clusters
|
|
while (d < buf_len) { // safe guard against overflow
|
|
uint8_t ep_cluster = buf_d.get8(d++);
|
|
if (0xFF == ep_cluster) { break; } // end of block
|
|
// ignore
|
|
}
|
|
// out clusters
|
|
while (d < buf_len) { // safe guard against overflow
|
|
uint8_t ep_cluster = buf_d.get8(d++);
|
|
if (0xFF == ep_cluster) { break; } // end of block
|
|
// ignore
|
|
}
|
|
}
|
|
}
|
|
|
|
// ModelId
|
|
device.setModelId(hydrateSingleString(buf_d, &d));
|
|
|
|
// ManufID
|
|
device.setManufId(hydrateSingleString(buf_d, &d));
|
|
|
|
// FriendlyName
|
|
device.setFriendlyName(hydrateSingleString(buf_d, &d));
|
|
|
|
if (d >= buf_len) { return; }
|
|
|
|
// Hue bulbtype - if present
|
|
if (1 == version) {
|
|
device.setLightChannels(buf_d.get8(d));
|
|
d++;
|
|
} else if (2 == version) {
|
|
// v2 parser
|
|
while (d < buf_len) {
|
|
uint8_t ep = buf_d.get8(d++);
|
|
if (0xFF == ep) { break; } // ep 0xFF marks the end of the endpoints
|
|
if (ep > 240) { ep = 0xFF; } // ep == 0xFF means ignore
|
|
device.addEndpoint(ep); // it will ignore invalid endpoints
|
|
while (d < buf_len) {
|
|
uint8_t config_type = buf_d.get8(d++);
|
|
if (0xFF == config_type) { break; } // 0xFF marks the end of congiguration
|
|
uint8_t config = config_type & 0x0F;
|
|
Z_Data_Type type = (Z_Data_Type) (config_type >> 4);
|
|
// set the configuration
|
|
if (ep != 0xFF) {
|
|
Z_Data & z_data = device.data.getByType(type, ep);
|
|
if (&z_data != nullptr) {
|
|
z_data.setConfig(config);
|
|
Z_Data_Set::updateData(z_data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void hydrateDevices(const SBuffer &buf, uint32_t version) {
|
|
uint32_t buf_len = buf.len();
|
|
if (buf_len <= 10) { return; }
|
|
|
|
uint32_t k = 0; // byte index in global buffer
|
|
uint32_t num_devices = buf.get8(k++);
|
|
for (uint32_t i = 0; (i < num_devices) && (k < buf_len); i++) {
|
|
uint32_t dev_record_len = buf.get8(k);
|
|
|
|
SBuffer buf_d = buf.subBuffer(k, dev_record_len);
|
|
hydrateSingleDevice(buf_d, version);
|
|
|
|
// next iteration
|
|
k += dev_record_len;
|
|
}
|
|
}
|
|
|
|
// dump = true, only dump to logs, don't actually load
|
|
void loadZigbeeDevices(bool dump_only = false) {
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
if (loadZigbeeDevicesFromEEPROM()) {
|
|
return; // we succesfully loaded from EEPROM, skip the read from Flash
|
|
}
|
|
#endif
|
|
#ifdef ESP32
|
|
// first copy SPI buffer into ram
|
|
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
|
|
if (!spi_buffer) {
|
|
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
|
|
return;
|
|
}
|
|
ZigbeeRead(spi_buffer, z_spi_len);
|
|
z_dev_start = spi_buffer;
|
|
#endif // ESP32
|
|
Z_Flashentry flashdata;
|
|
memcpy_P(&flashdata, z_dev_start, sizeof(Z_Flashentry));
|
|
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Memory %d"), ESP_getFreeHeap());
|
|
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len);
|
|
|
|
// Check the signature
|
|
if ( ((flashdata.name == ZIGB_NAME1) || (flashdata.name == ZIGB_NAME2))
|
|
&& (flashdata.len > 0)) {
|
|
uint16_t buf_len = flashdata.len;
|
|
uint32_t version = (flashdata.name == ZIGB_NAME2) ? 2 : 1;
|
|
// parse what seems to be a valid entry
|
|
SBuffer buf(buf_len);
|
|
buf.addBuffer(z_dev_start + sizeof(Z_Flashentry), buf_len);
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information in %s (%d bytes)"), PSTR("Flash"), buf_len);
|
|
|
|
if (dump_only) {
|
|
size_t buf_len = buf.len();
|
|
if (buf_len > 192) { buf_len = 192; }
|
|
AddLogBuffer(LOG_LEVEL_INFO, buf.getBuffer(), buf_len);
|
|
// Serial.printf(">> Buffer=");
|
|
// for (uint32_t i=0; i<buf.len(); i++) Serial.printf("%02X ", buf.get8(i));
|
|
// Serial.printf("\n");
|
|
} else {
|
|
hydrateDevices(buf, version);
|
|
zigbee_devices.clean(); // don't write back to Flash what we just loaded
|
|
}
|
|
} else {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information in %s"), PSTR("Flash"));
|
|
}
|
|
#ifdef ESP32
|
|
free(spi_buffer);
|
|
#endif // ESP32
|
|
}
|
|
|
|
void saveZigbeeDevices(void) {
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
if (zigbee.eeprom_ready) {
|
|
if (hibernateDevicesInEEPROM()) {
|
|
return; // saved in EEPROM successful, non need to write in Flash
|
|
}
|
|
}
|
|
#endif
|
|
SBuffer buf = hibernateDevices();
|
|
size_t buf_len = buf.len();
|
|
if (buf_len > 2040) {
|
|
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Buffer too big to fit in Flash (%d bytes)"), buf_len);
|
|
return;
|
|
}
|
|
|
|
// first copy SPI buffer into ram
|
|
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
|
|
if (!spi_buffer) {
|
|
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
|
|
return;
|
|
}
|
|
// copy the flash into RAM to make local change, and write back the whole buffer
|
|
#ifdef ESP8266
|
|
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
#endif // ESP8266
|
|
#ifdef ESP32
|
|
ZigbeeRead(spi_buffer, z_spi_len);
|
|
#endif // ESP32
|
|
|
|
Z_Flashentry *flashdata = (Z_Flashentry*)(spi_buffer + z_block_offset);
|
|
flashdata->name = ZIGB_NAME2; // v2
|
|
flashdata->len = buf_len;
|
|
flashdata->start = 0;
|
|
|
|
memcpy(spi_buffer + z_block_offset + sizeof(Z_Flashentry), buf.getBuffer(), buf_len);
|
|
|
|
// buffer is now ready, write it back
|
|
#ifdef ESP8266
|
|
if (ESP.flashEraseSector(z_spi_start_sector)) {
|
|
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
}
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len);
|
|
#endif // ESP8266
|
|
#ifdef ESP32
|
|
ZigbeeWrite(spi_buffer, z_spi_len);
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved in %s (%d bytes)"), PSTR("Flash"), buf_len);
|
|
#endif // ESP32
|
|
free(spi_buffer);
|
|
}
|
|
|
|
// Erase the flash area containing the ZigbeeData
|
|
void eraseZigbeeDevices(void) {
|
|
zigbee_devices.clean(); // avoid writing data to flash after erase
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
ZFS_Erase();
|
|
#endif // USE_ZIGBEE_EZSP
|
|
#ifdef ESP8266
|
|
// first copy SPI buffer into ram
|
|
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
|
|
if (!spi_buffer) {
|
|
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
|
|
return;
|
|
}
|
|
// copy the flash into RAM to make local change, and write back the whole buffer
|
|
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
|
|
// Fill the Zigbee area with 0xFF
|
|
memset(spi_buffer + z_block_offset, 0xFF, z_block_len);
|
|
|
|
// buffer is now ready, write it back
|
|
if (ESP.flashEraseSector(z_spi_start_sector)) {
|
|
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
}
|
|
|
|
free(spi_buffer);
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("Flash"));
|
|
#endif // ESP8266
|
|
#ifdef ESP32
|
|
ZigbeeErase(z_block_len);
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased (%d bytes)"), z_block_len);
|
|
#endif // ESP32
|
|
}
|
|
|
|
void restoreDumpAllDevices(void) {
|
|
for (const auto & device : zigbee_devices.getDevices()) {
|
|
const SBuffer buf = hibernateDevicev2(device);
|
|
if (buf.len() > 0) {
|
|
char hex_char[buf.len()*2+2];
|
|
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_RESTORE "\":\"ZbRestore %s\"}"),
|
|
ToHex_P(buf.buf(0), buf.len(), hex_char, sizeof(hex_char)));
|
|
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // USE_ZIGBEE
|