Tasmota/sonoff/support.ino

1590 lines
45 KiB
C++

/*
support.ino - support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
IPAddress syslog_host_addr; // Syslog host IP address
uint32_t syslog_host_hash = 0; // Syslog host name hash
/*********************************************************************************************\
* Watchdog extension (https://github.com/esp8266/Arduino/issues/1532)
\*********************************************************************************************/
Ticker tickerOSWatch;
#define OSWATCH_RESET_TIME 120
static unsigned long oswatch_last_loop_time;
byte oswatch_blocked_loop = 0;
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
//void OsWatchTicker() ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
void OsWatchTicker()
{
unsigned long t = millis();
unsigned long last_run = abs(t - oswatch_last_loop_time);
#ifdef DEBUG_THEO
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d, last_run %d"), ESP.getFreeHeap(), WifiGetRssiAsQuality(WiFi.RSSI()), last_run);
AddLog(LOG_LEVEL_DEBUG);
#endif // DEBUG_THEO
if (last_run >= (OSWATCH_RESET_TIME * 1000)) {
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space
RtcSettings.oswatch_blocked_loop = 1;
RtcSettingsSave();
// ESP.restart(); // normal reboot
ESP.reset(); // hard reset
}
}
void OsWatchInit()
{
oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop;
RtcSettings.oswatch_blocked_loop = 0;
oswatch_last_loop_time = millis();
tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker);
}
void OsWatchLoop()
{
oswatch_last_loop_time = millis();
// while(1) delay(1000); // this will trigger the os watch
}
String GetResetReason()
{
char buff[32];
if (oswatch_blocked_loop) {
strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff));
return String(buff);
} else {
return ESP.getResetReason();
}
}
/*********************************************************************************************\
* Miscellaneous
\*********************************************************************************************/
#ifdef ARDUINO_ESP8266_RELEASE_2_3_0
// Functions not available in 2.3.0
// http://clc-wiki.net/wiki/C_standard_library:string.h:memchr
void* memchr(const void* ptr, int value, size_t num)
{
unsigned char *p = (unsigned char*)ptr;
while (num--) {
if (*p != (unsigned char)value) {
p++;
} else {
return p;
}
}
return 0;
}
// http://clc-wiki.net/wiki/C_standard_library:string.h:strspn
// Get span until any character in string
size_t strcspn(const char *str1, const char *str2)
{
size_t ret = 0;
while (*str1) {
if (strchr(str2, *str1)) { // Slow
return ret;
} else {
str1++;
ret++;
}
}
return ret;
}
#endif // ARDUINO_ESP8266_RELEASE_2_3_0
// Get span until single character in string
size_t strchrspn(const char *str1, int character)
{
size_t ret = 0;
char *start = (char*)str1;
char *end = strchr(str1, character);
if (end) ret = end - start;
return ret;
}
double CharToDouble(char *str)
{
// simple ascii to double, because atof or strtod are too large
char strbuf[24];
strcpy(strbuf, str);
char *pt;
double left = atoi(strbuf);
double right = 0;
short len = 0;
pt = strtok (strbuf, ".");
if (pt) {
pt = strtok (NULL, ".");
if (pt) {
right = atoi(pt);
len = strlen(pt);
double fac = 1;
while (len) {
fac /= 10.0;
len--;
}
// pow is also very large
//double fac=pow(10,-len);
right *= fac;
}
}
double result = left + right;
if (left < 0) { result = left - right; }
return result;
}
char* dtostrfd(double number, unsigned char prec, char *s)
{
return dtostrf(number, 1, prec, s);
}
char* Unescape(char* buffer, uint16_t* size)
{
uint8_t* read = (uint8_t*)buffer;
uint8_t* write = (uint8_t*)buffer;
uint16_t start_size = *size;
uint16_t end_size = *size;
uint8_t che = 0;
while (start_size > 0) {
uint8_t ch = *read++;
start_size--;
if (ch != '\\') {
*write++ = ch;
} else {
if (start_size > 0) {
uint8_t chi = *read++;
start_size--;
end_size--;
switch (chi) {
case '\\': che = '\\'; break; // 5C Backslash
case 'a': che = '\a'; break; // 07 Bell (Alert)
case 'b': che = '\b'; break; // 08 Backspace
case 'e': che = '\e'; break; // 1B Escape
case 'f': che = '\f'; break; // 0C Formfeed
case 'n': che = '\n'; break; // 0A Linefeed (Newline)
case 'r': che = '\r'; break; // 0D Carriage return
case 's': che = ' '; break; // 20 Space
case 't': che = '\t'; break; // 09 Horizontal tab
case 'v': che = '\v'; break; // 0B Vertical tab
// case '?': che = '\?'; break; // 3F Question mark
default : {
che = chi;
*write++ = ch;
end_size++;
}
}
*write++ = che;
}
}
}
*size = end_size;
return buffer;
}
char* UpperCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = toupper(ch);
}
return dest;
}
char* UpperCase_P(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = pgm_read_byte(read++);
*write++ = toupper(ch);
}
return dest;
}
char* NoAlNumToUnderscore(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_';
}
return dest;
}
boolean ParseIp(uint32_t* addr, const char* str)
{
uint8_t *part = (uint8_t*)addr;
byte i;
*addr = 0;
for (i = 0; i < 4; i++) {
part[i] = strtoul(str, NULL, 10); // Convert byte
str = strchr(str, '.');
if (str == NULL || *str == '\0') {
break; // No more separators, exit
}
str++; // Point to next character after separator
}
return (3 == i);
}
void MakeValidMqtt(byte option, char* str)
{
// option 0 = replace by underscore
// option 1 = delete character
uint16_t i = 0;
while (str[i] > 0) {
// if ((str[i] == '/') || (str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if ((str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if (option) {
uint16_t j = i;
while (str[j] > 0) {
str[j] = str[j +1];
j++;
}
i--;
} else {
str[i] = '_';
}
}
i++;
}
}
// Function to parse & check if version_str is newer than our currently installed version.
bool NewerVersion(char* version_str)
{
uint32_t version = 0;
uint8_t i = 0;
char *str_ptr;
char* version_dup = strdup(version_str); // Duplicate the version_str as strtok_r will modify it.
if (!version_dup) {
return false; // Bail if we can't duplicate. Assume bad.
}
// Loop through the version string, splitting on '.' seperators.
for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(NULL, ".", &str_ptr), i++) {
int field = atoi(str);
// The fields in a version string can only range from 0-255.
if ((field < 0) || (field > 255)) {
free(version_dup);
return false;
}
// Shuffle the accumulated bytes across, and add the new byte.
version = (version << 8) + field;
// Check alpha delimiter after 1.2.3 only
if ((2 == i) && isalpha(str[strlen(str)-1])) {
field = str[strlen(str)-1] & 0x1f;
version = (version << 8) + field;
i++;
}
}
free(version_dup); // We no longer need this.
// A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1).
// If not, then don't consider it a valid version string.
if ((i < 2) || (i > sizeof(VERSION))) {
return false;
}
// Keep shifting the parsed version until we hit the maximum number of tokens.
// VERSION stores the major number of the version in the most significant byte of the uint32_t.
while (i < sizeof(VERSION)) {
version <<= 8;
i++;
}
// Now we should have a fully constructed version number in uint32_t form.
return (version > VERSION);
}
char* GetPowerDevice(char* dest, uint8_t idx, size_t size, uint8_t option)
{
char sidx[8];
strncpy_P(dest, S_RSLT_POWER, size);
if ((devices_present + option) > 1) {
snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx);
strncat(dest, sidx, size);
}
return dest;
}
char* GetPowerDevice(char* dest, uint8_t idx, size_t size)
{
return GetPowerDevice(dest, idx, size, 0);
}
float ConvertTemp(float c)
{
float result = c;
if (!isnan(c) && Settings.flag.temperature_conversion) {
result = c * 1.8 + 32; // Fahrenheit
}
return result;
}
char TempUnit()
{
return (Settings.flag.temperature_conversion) ? 'F' : 'C';
}
double FastPrecisePow(double a, double b)
{
// https://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
// calculate approximation with fraction of the exponent
int e = (int)b;
union {
double d;
int x[2];
} u = { a };
u.x[1] = (int)((b - e) * (u.x[1] - 1072632447) + 1072632447);
u.x[0] = 0;
// exponentiation by squaring with the exponent's integer part
// double r = u.d makes everything much slower, not sure why
double r = 1.0;
while (e) {
if (e & 1) {
r *= a;
}
a *= a;
e >>= 1;
}
return r * u.d;
}
char* GetTextIndexed(char* destination, size_t destination_size, uint16_t index, const char* haystack)
{
// Returns empty string if not found
// Returns text of found
char* write = destination;
const char* read = haystack;
index++;
while (index--) {
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
if (0 == ch) {
if (index) {
write = destination;
}
break;
}
}
*write = '\0';
return destination;
}
int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack)
{
// Returns -1 of not found
// Returns index and command if found
int result = -1;
const char* read = haystack;
char* write = destination;
while (true) {
result++;
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
*write = '\0';
if (!strcasecmp(needle, destination)) {
break;
}
if (0 == ch) {
result = -1;
break;
}
}
return result;
}
void SetSerialBaudrate(int baudrate)
{
Settings.baudrate = baudrate / 1200;
if (Serial.baudRate() != baudrate) {
if (seriallog_level) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SET_BAUDRATE_TO " %d"), baudrate);
AddLog(LOG_LEVEL_INFO);
}
delay(100);
Serial.flush();
Serial.begin(baudrate, serial_config);
delay(10);
Serial.println();
}
}
uint32_t GetHash(const char *buffer, size_t size)
{
uint32_t hash = 0;
for (uint16_t i = 0; i <= size; i++) {
hash += (uint8_t)*buffer++ * (i +1);
}
return hash;
}
/*********************************************************************************************\
* Wifi
\*********************************************************************************************/
#define WIFI_CONFIG_SEC 180 // seconds before restart
#define WIFI_CHECK_SEC 20 // seconds
#define WIFI_RETRY_OFFSET_SEC 20 // seconds
uint8_t wifi_counter;
uint8_t wifi_retry_init;
uint8_t wifi_retry;
uint8_t wifi_status;
uint8_t wps_result;
uint8_t wifi_config_type = 0;
uint8_t wifi_config_counter = 0;
int WifiGetRssiAsQuality(int rssi)
{
int quality = 0;
if (rssi <= -100) {
quality = 0;
} else if (rssi >= -50) {
quality = 100;
} else {
quality = 2 * (rssi + 100);
}
return quality;
}
boolean WifiConfigCounter()
{
if (wifi_config_counter) {
wifi_config_counter = WIFI_CONFIG_SEC;
}
return (wifi_config_counter);
}
extern "C" {
#include "user_interface.h"
}
void WifiWpsStatusCallback(wps_cb_status status);
void WifiWpsStatusCallback(wps_cb_status status)
{
/* from user_interface.h:
enum wps_cb_status {
WPS_CB_ST_SUCCESS = 0,
WPS_CB_ST_FAILED,
WPS_CB_ST_TIMEOUT,
WPS_CB_ST_WEP, // WPS failed because that WEP is not supported
WPS_CB_ST_SCAN_ERR, // can not find the target WPS AP
};
*/
wps_result = status;
if (WPS_CB_ST_SUCCESS == wps_result) {
wifi_wps_disable();
} else {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WPS_FAILED_WITH_STATUS " %d"), wps_result);
AddLog(LOG_LEVEL_DEBUG);
wifi_config_counter = 2;
}
}
boolean WifiWpsConfigDone(void)
{
return (!wps_result);
}
boolean WifiWpsConfigBegin(void)
{
wps_result = 99;
if (!wifi_wps_disable()) {
return false;
}
if (!wifi_wps_enable(WPS_TYPE_PBC)) {
return false; // so far only WPS_TYPE_PBC is supported (SDK 2.0.0)
}
if (!wifi_set_wps_cb((wps_st_cb_t) &WifiWpsStatusCallback)) {
return false;
}
if (!wifi_wps_start()) {
return false;
}
return true;
}
void WifiConfig(uint8_t type)
{
if (!wifi_config_type) {
if (type >= WIFI_RETRY) { // WIFI_RETRY and WIFI_WAIT
return;
}
#if defined(USE_WEBSERVER) && defined(USE_EMULATION)
UdpDisconnect();
#endif // USE_EMULATION
WiFi.disconnect(); // Solve possible Wifi hangs
wifi_config_type = type;
wifi_config_counter = WIFI_CONFIG_SEC; // Allow up to WIFI_CONFIG_SECS seconds for phone to provide ssid/pswd
wifi_counter = wifi_config_counter +5;
blinks = 1999;
if (WIFI_RESTART == wifi_config_type) {
restart_flag = 2;
}
else if (WIFI_SMARTCONFIG == wifi_config_type) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_1_SMARTCONFIG " " D_ACTIVE_FOR_3_MINUTES));
WiFi.beginSmartConfig();
}
else if (WIFI_WPSCONFIG == wifi_config_type) {
if (WifiWpsConfigBegin()) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG " " D_ACTIVE_FOR_3_MINUTES));
} else {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG " " D_FAILED_TO_START));
wifi_config_counter = 3;
}
}
#ifdef USE_WEBSERVER
else if (WIFI_MANAGER == wifi_config_type) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_2_WIFIMANAGER " " D_ACTIVE_FOR_3_MINUTES));
WifiManagerBegin();
}
#endif // USE_WEBSERVER
}
}
void WifiBegin(uint8_t flag)
{
const char kWifiPhyMode[] = " BGN";
#if defined(USE_WEBSERVER) && defined(USE_EMULATION)
UdpDisconnect();
#endif // USE_EMULATION
#ifdef ARDUINO_ESP8266_RELEASE_2_3_0 // (!strncmp_P(ESP.getSdkVersion(),PSTR("1.5.3"),5))
AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_PATCH_ISSUE_2186));
WiFi.mode(WIFI_OFF); // See https://github.com/esp8266/Arduino/issues/2186
#endif
WiFi.disconnect(true); // Delete SDK wifi config
delay(200);
WiFi.mode(WIFI_STA); // Disable AP mode
if (Settings.sleep) {
#ifndef ARDUINO_ESP8266_RELEASE_2_4_1 // See https://github.com/arendst/Sonoff-Tasmota/issues/2559
WiFi.setSleepMode(WIFI_LIGHT_SLEEP); // Allow light sleep during idle times
#endif
}
// if (WiFi.getPhyMode() != WIFI_PHY_MODE_11N) {
// WiFi.setPhyMode(WIFI_PHY_MODE_11N);
// }
if (!WiFi.getAutoConnect()) {
WiFi.setAutoConnect(true);
}
// WiFi.setAutoReconnect(true);
switch (flag) {
case 0: // AP1
case 1: // AP2
Settings.sta_active = flag;
break;
case 2: // Toggle
Settings.sta_active ^= 1;
} // 3: Current AP
if (0 == strlen(Settings.sta_ssid[1])) {
Settings.sta_active = 0;
}
if (Settings.ip_address[0]) {
WiFi.config(Settings.ip_address[0], Settings.ip_address[1], Settings.ip_address[2], Settings.ip_address[3]); // Set static IP
}
WiFi.hostname(my_hostname);
WiFi.begin(Settings.sta_ssid[Settings.sta_active], Settings.sta_pwd[Settings.sta_active]);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_CONNECTING_TO_AP "%d %s " D_IN_MODE " 11%c " D_AS " %s..."),
Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active], kWifiPhyMode[WiFi.getPhyMode() & 0x3], my_hostname);
AddLog(LOG_LEVEL_INFO);
}
void WifiCheckIp()
{
if ((WL_CONNECTED == WiFi.status()) && (static_cast<uint32_t>(WiFi.localIP()) != 0)) {
wifi_counter = WIFI_CHECK_SEC;
wifi_retry = wifi_retry_init;
AddLog_P((wifi_status != WL_CONNECTED) ? LOG_LEVEL_INFO : LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CONNECTED));
if (wifi_status != WL_CONNECTED) {
// AddLog_P(LOG_LEVEL_INFO, PSTR("Wifi: Set IP addresses"));
Settings.ip_address[1] = (uint32_t)WiFi.gatewayIP();
Settings.ip_address[2] = (uint32_t)WiFi.subnetMask();
Settings.ip_address[3] = (uint32_t)WiFi.dnsIP();
}
wifi_status = WL_CONNECTED;
} else {
wifi_status = WiFi.status();
switch (wifi_status) {
case WL_CONNECTED:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_NO_IP_ADDRESS));
wifi_status = 0;
wifi_retry = wifi_retry_init;
break;
case WL_NO_SSID_AVAIL:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_NOT_REACHED));
if (WIFI_WAIT == Settings.sta_config) {
wifi_retry = wifi_retry_init;
} else {
if (wifi_retry > (wifi_retry_init / 2)) {
wifi_retry = wifi_retry_init / 2;
}
else if (wifi_retry) {
wifi_retry = 0;
}
}
break;
case WL_CONNECT_FAILED:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_WRONG_PASSWORD));
if (wifi_retry > (wifi_retry_init / 2)) {
wifi_retry = wifi_retry_init / 2;
}
else if (wifi_retry) {
wifi_retry = 0;
}
break;
default: // WL_IDLE_STATUS and WL_DISCONNECTED
if (!wifi_retry || ((wifi_retry_init / 2) == wifi_retry)) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_TIMEOUT));
} else {
AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_ATTEMPTING_CONNECTION));
}
}
if (wifi_retry) {
if (wifi_retry_init == wifi_retry) {
WifiBegin(3); // Select default SSID
}
if ((Settings.sta_config != WIFI_WAIT) && ((wifi_retry_init / 2) == wifi_retry)) {
WifiBegin(2); // Select alternate SSID
}
wifi_counter = 1;
wifi_retry--;
} else {
WifiConfig(Settings.sta_config);
wifi_counter = 1;
wifi_retry = wifi_retry_init;
}
}
}
void WifiCheck(uint8_t param)
{
wifi_counter--;
switch (param) {
case WIFI_SMARTCONFIG:
case WIFI_MANAGER:
case WIFI_WPSCONFIG:
WifiConfig(param);
break;
default:
if (wifi_config_counter) {
wifi_config_counter--;
wifi_counter = wifi_config_counter +5;
if (wifi_config_counter) {
if ((WIFI_SMARTCONFIG == wifi_config_type) && WiFi.smartConfigDone()) {
wifi_config_counter = 0;
}
if ((WIFI_WPSCONFIG == wifi_config_type) && WifiWpsConfigDone()) {
wifi_config_counter = 0;
}
if (!wifi_config_counter) {
if (strlen(WiFi.SSID().c_str())) {
strlcpy(Settings.sta_ssid[0], WiFi.SSID().c_str(), sizeof(Settings.sta_ssid[0]));
}
if (strlen(WiFi.psk().c_str())) {
strlcpy(Settings.sta_pwd[0], WiFi.psk().c_str(), sizeof(Settings.sta_pwd[0]));
}
Settings.sta_active = 0;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WCFG_1_SMARTCONFIG D_CMND_SSID "1 %s"), Settings.sta_ssid[0]);
AddLog(LOG_LEVEL_INFO);
}
}
if (!wifi_config_counter) {
if (WIFI_SMARTCONFIG == wifi_config_type) {
WiFi.stopSmartConfig();
}
SettingsSdkErase();
restart_flag = 2;
}
} else {
if (wifi_counter <= 0) {
AddLog_P(LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CHECKING_CONNECTION));
wifi_counter = WIFI_CHECK_SEC;
WifiCheckIp();
}
if ((WL_CONNECTED == WiFi.status()) && (static_cast<uint32_t>(WiFi.localIP()) != 0) && !wifi_config_type) {
#ifdef BE_MINIMAL
if (1 == RtcSettings.ota_loader) {
RtcSettings.ota_loader = 0;
ota_state_flag = 3;
}
#endif // BE_MINIMAL
#ifdef USE_DISCOVERY
if (!mdns_begun) {
mdns_begun = MDNS.begin(my_hostname);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS "%s"), (mdns_begun) ? D_INITIALIZED : D_FAILED);
AddLog(LOG_LEVEL_INFO);
}
#endif // USE_DISCOVERY
#ifdef USE_WEBSERVER
if (Settings.webserver) {
StartWebserver(Settings.webserver, WiFi.localIP());
#ifdef USE_DISCOVERY
#ifdef WEBSERVER_ADVERTISE
MDNS.addService("http", "tcp", 80);
#endif // WEBSERVER_ADVERTISE
#endif // USE_DISCOVERY
} else {
StopWebserver();
}
#ifdef USE_EMULATION
if (Settings.flag2.emulation) {
UdpConnect();
}
#endif // USE_EMULATION
#endif // USE_WEBSERVER
} else {
#if defined(USE_WEBSERVER) && defined(USE_EMULATION)
UdpDisconnect();
#endif // USE_EMULATION
mdns_begun = false;
}
}
}
}
int WifiState()
{
int state;
if ((WL_CONNECTED == WiFi.status()) && (static_cast<uint32_t>(WiFi.localIP()) != 0)) {
state = WIFI_RESTART;
}
if (wifi_config_type) {
state = wifi_config_type;
}
return state;
}
void WifiConnect()
{
WiFi.persistent(false); // Solve possible wifi init errors
wifi_status = 0;
wifi_retry_init = WIFI_RETRY_OFFSET_SEC + ((ESP.getChipId() & 0xF) * 2);
wifi_retry = wifi_retry_init;
wifi_counter = 1;
}
#ifdef USE_DISCOVERY
/*********************************************************************************************\
* mDNS
\*********************************************************************************************/
#ifdef MQTT_HOST_DISCOVERY
boolean MdnsDiscoverMqttServer()
{
if (!mdns_begun) {
return false;
}
int n = MDNS.queryService("mqtt", "tcp"); // Search for mqtt service
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_QUERY_DONE " %d"), n);
AddLog(LOG_LEVEL_INFO);
if (n > 0) {
// Note: current strategy is to get the first MQTT service (even when many are found)
snprintf_P(Settings.mqtt_host, sizeof(Settings.mqtt_host), MDNS.IP(0).toString().c_str());
Settings.mqtt_port = MDNS.port(0);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_MQTT_SERVICE_FOUND " %s, " D_IP_ADDRESS " %s, " D_PORT " %d"),
MDNS.hostname(0).c_str(), Settings.mqtt_host, Settings.mqtt_port);
AddLog(LOG_LEVEL_INFO);
}
return n > 0;
}
#endif // MQTT_HOST_DISCOVERY
#endif // USE_DISCOVERY
/*********************************************************************************************\
* Basic I2C routines
\*********************************************************************************************/
#ifdef USE_I2C
#define I2C_RETRY_COUNTER 3
uint32_t i2c_buffer = 0;
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size)
{
byte x = I2C_RETRY_COUNTER;
i2c_buffer = 0;
do {
Wire.beginTransmission(addr); // start transmission to device
Wire.write(reg); // sends register address to read from
if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request...
Wire.requestFrom((int)addr, (int)size); // send data n-bytes read
if (Wire.available() == size) {
for (byte i = 0; i < size; i++) {
i2c_buffer = i2c_buffer << 8 | Wire.read(); // receive DATA
}
}
}
x--;
} while (Wire.endTransmission(true) != 0 && x != 0); // end transmission
return (x);
}
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 1);
*data = (uint8_t)i2c_buffer;
return status;
}
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (uint16_t)i2c_buffer;
return status;
}
bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (int16_t)i2c_buffer;
return status;
}
bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16(&ldata, addr, reg);
*data = (ldata >> 8) | (ldata << 8);
return status;
}
bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16LE(&ldata, addr, reg);
*data = (int16_t)ldata;
return status;
}
bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 3);
*data = i2c_buffer;
return status;
}
uint8_t I2cRead8(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 1);
return (uint8_t)i2c_buffer;
}
uint16_t I2cRead16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (uint16_t)i2c_buffer;
}
int16_t I2cReadS16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (int16_t)i2c_buffer;
}
uint16_t I2cRead16LE(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
uint16_t temp = (uint16_t)i2c_buffer;
return (temp >> 8) | (temp << 8);
}
int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg)
{
return (int16_t)I2cRead16LE(addr, reg);
}
int32_t I2cRead24(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 3);
return i2c_buffer;
}
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size)
{
byte x = I2C_RETRY_COUNTER;
do {
Wire.beginTransmission((uint8_t)addr); // start transmission to device
Wire.write(reg); // sends register address to write to
uint8_t bytes = size;
while (bytes--) {
Wire.write((val >> (8 * bytes)) & 0xFF); // write data
}
x--;
} while (Wire.endTransmission(true) != 0 && x != 0); // end transmission
return (x);
}
bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 1);
}
bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 2);
}
void I2cScan(char *devs, unsigned int devs_len)
{
byte error;
byte address;
byte any = 0;
char tstr[10];
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT));
for (address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (0 == error) {
snprintf_P(tstr, sizeof(tstr), PSTR(" 0x%2x"), address);
strncat(devs, tstr, devs_len);
any = 1;
}
else if (4 == error) {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_UNKNOWN_ERROR_AT " 0x%2x\"}"), address);
}
}
if (any) {
strncat(devs, "\"}", devs_len);
} else {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}"));
}
}
boolean I2cDevice(byte addr)
{
for (byte address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
if (!Wire.endTransmission() && (address == addr)) {
return true;
}
}
return false;
}
#endif // USE_I2C
/*********************************************************************************************\
* Real Time Clock
*
* Sources: Time by Michael Margolis and Paul Stoffregen (https://github.com/PaulStoffregen/Time)
* Timezone by Jack Christensen (https://github.com/JChristensen/Timezone)
\*********************************************************************************************/
extern "C" {
#include "sntp.h"
}
#define SECS_PER_MIN ((uint32_t)(60UL))
#define SECS_PER_HOUR ((uint32_t)(3600UL))
#define SECS_PER_DAY ((uint32_t)(SECS_PER_HOUR * 24UL))
#define LEAP_YEAR(Y) (((1970+Y)>0) && !((1970+Y)%4) && (((1970+Y)%100) || !((1970+Y)%400)))
Ticker TickerRtc;
static const uint8_t kDaysInMonth[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; // API starts months from 1, this array starts from 0
static const char kMonthNamesEnglish[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
uint32_t utc_time = 0;
uint32_t local_time = 0;
uint32_t daylight_saving_time = 0;
uint32_t standard_time = 0;
uint32_t ntp_time = 0;
uint32_t midnight = 1451602800;
uint32_t restart_time = 0;
int16_t time_timezone = 0; // Timezone * 10
uint8_t midnight_now = 0;
uint8_t ntp_sync_minute = 0;
String GetBuildDateAndTime()
{
// "2017-03-07T11:08:02" - ISO8601:2004
char bdt[21];
char *p;
char mdate[] = __DATE__; // "Mar 7 2017"
char *smonth = mdate;
int day = 0;
int year = 0;
// sscanf(mdate, "%s %d %d", bdt, &day, &year); // Not implemented in 2.3.0 and probably too much code
byte i = 0;
for (char *str = strtok_r(mdate, " ", &p); str && i < 3; str = strtok_r(NULL, " ", &p)) {
switch (i++) {
case 0: // Month
smonth = str;
break;
case 1: // Day
day = atoi(str);
break;
case 2: // Year
year = atoi(str);
}
}
int month = (strstr(kMonthNamesEnglish, smonth) -kMonthNamesEnglish) /3 +1;
snprintf_P(bdt, sizeof(bdt), PSTR("%d" D_YEAR_MONTH_SEPARATOR "%02d" D_MONTH_DAY_SEPARATOR "%02d" D_DATE_TIME_SEPARATOR "%s"), year, month, day, __TIME__);
return String(bdt);
}
String GetDateAndTime(byte time_type)
{
// enum GetDateAndTimeOptions { DT_LOCAL, DT_UTC, DT_RESTART, DT_UPTIME };
// "2017-03-07T11:08:02" - ISO8601:2004
char dt[21];
TIME_T tmpTime;
if (DT_UPTIME == time_type) {
if (restart_time) {
BreakTime(utc_time - restart_time, tmpTime);
} else {
BreakTime(uptime, tmpTime);
}
// "P128DT14H35M44S" - ISO8601:2004 - https://en.wikipedia.org/wiki/ISO_8601 Durations
// snprintf_P(dt, sizeof(dt), PSTR("P%dDT%02dH%02dM%02dS"), ut.days, ut.hour, ut.minute, ut.second);
// "128 14:35:44" - OpenVMS
// "128T14:35:44" - Tasmota
snprintf_P(dt, sizeof(dt), PSTR("%dT%02d:%02d:%02d"),
tmpTime.days, tmpTime.hour, tmpTime.minute, tmpTime.second);
} else {
switch (time_type) {
case DT_UTC:
BreakTime(utc_time, tmpTime);
tmpTime.year += 1970;
break;
case DT_RESTART:
if (restart_time == 0) {
return "";
}
BreakTime(restart_time, tmpTime);
tmpTime.year += 1970;
break;
default:
tmpTime = RtcTime;
}
snprintf_P(dt, sizeof(dt), PSTR("%04d-%02d-%02dT%02d:%02d:%02d"),
tmpTime.year, tmpTime.month, tmpTime.day_of_month, tmpTime.hour, tmpTime.minute, tmpTime.second);
}
return String(dt);
}
String GetUptime()
{
char dt[16];
TIME_T ut;
if (restart_time) {
BreakTime(utc_time - restart_time, ut);
} else {
BreakTime(uptime, ut);
}
// "P128DT14H35M44S" - ISO8601:2004 - https://en.wikipedia.org/wiki/ISO_8601 Durations
// snprintf_P(dt, sizeof(dt), PSTR("P%dDT%02dH%02dM%02dS"), ut.days, ut.hour, ut.minute, ut.second);
// "128 14:35:44" - OpenVMS
// "128T14:35:44" - Tasmota
snprintf_P(dt, sizeof(dt), PSTR("%dT%02d:%02d:%02d"),
ut.days, ut.hour, ut.minute, ut.second);
return String(dt);
}
void BreakTime(uint32_t time_input, TIME_T &tm)
{
// break the given time_input into time components
// this is a more compact version of the C library localtime function
// note that year is offset from 1970 !!!
uint8_t year;
uint8_t month;
uint8_t month_length;
uint32_t time;
unsigned long days;
time = time_input;
tm.second = time % 60;
time /= 60; // now it is minutes
tm.minute = time % 60;
time /= 60; // now it is hours
tm.hour = time % 24;
time /= 24; // now it is days
tm.days = time;
tm.day_of_week = ((time + 4) % 7) + 1; // Sunday is day 1
year = 0;
days = 0;
while((unsigned)(days += (LEAP_YEAR(year) ? 366 : 365)) <= time) {
year++;
}
tm.year = year; // year is offset from 1970
days -= LEAP_YEAR(year) ? 366 : 365;
time -= days; // now it is days in this year, starting at 0
tm.day_of_year = time;
days = 0;
month = 0;
month_length = 0;
for (month = 0; month < 12; month++) {
if (1 == month) { // february
if (LEAP_YEAR(year)) {
month_length = 29;
} else {
month_length = 28;
}
} else {
month_length = kDaysInMonth[month];
}
if (time >= month_length) {
time -= month_length;
} else {
break;
}
}
strlcpy(tm.name_of_month, kMonthNames + (month *3), 4);
tm.month = month + 1; // jan is month 1
tm.day_of_month = time + 1; // day of month
tm.valid = (time_input > 1451602800); // 2016-01-01
}
uint32_t MakeTime(TIME_T &tm)
{
// assemble time elements into time_t
// note year argument is offset from 1970
int i;
uint32_t seconds;
// seconds from 1970 till 1 jan 00:00:00 of the given year
seconds = tm.year * (SECS_PER_DAY * 365);
for (i = 0; i < tm.year; i++) {
if (LEAP_YEAR(i)) {
seconds += SECS_PER_DAY; // add extra days for leap years
}
}
// add days for this year, months start from 1
for (i = 1; i < tm.month; i++) {
if ((2 == i) && LEAP_YEAR(tm.year)) {
seconds += SECS_PER_DAY * 29;
} else {
seconds += SECS_PER_DAY * kDaysInMonth[i-1]; // monthDay array starts from 0
}
}
seconds+= (tm.day_of_month - 1) * SECS_PER_DAY;
seconds+= tm.hour * SECS_PER_HOUR;
seconds+= tm.minute * SECS_PER_MIN;
seconds+= tm.second;
return seconds;
}
uint32_t RuleToTime(TimeChangeRule r, int yr)
{
TIME_T tm;
uint32_t t;
uint8_t m;
uint8_t w; // temp copies of r.month and r.week
m = r.month;
w = r.week;
if (0 == w) { // Last week = 0
if (++m > 12) { // for "Last", go to the next month
m = 1;
yr++;
}
w = 1; // and treat as first week of next month, subtract 7 days later
}
tm.hour = r.hour;
tm.minute = 0;
tm.second = 0;
tm.day_of_month = 1;
tm.month = m;
tm.year = yr - 1970;
t = MakeTime(tm); // First day of the month, or first day of next month for "Last" rules
BreakTime(t, tm);
t += (7 * (w - 1) + (r.dow - tm.day_of_week + 7) % 7) * SECS_PER_DAY;
if (0 == r.week) {
t -= 7 * SECS_PER_DAY; // back up a week if this is a "Last" rule
}
return t;
}
String GetTime(int type)
{
char stime[25]; // Skip newline
uint32_t time = utc_time;
if (1 == type) time = local_time;
if (2 == type) time = daylight_saving_time;
if (3 == type) time = standard_time;
snprintf_P(stime, sizeof(stime), sntp_get_real_time(time));
return String(stime);
}
uint32_t LocalTime()
{
return local_time;
}
uint32_t Midnight()
{
return midnight;
}
boolean MidnightNow()
{
boolean mnflg = midnight_now;
if (mnflg) midnight_now = 0;
return mnflg;
}
void RtcSecond()
{
int32_t stdoffset;
int32_t dstoffset;
TIME_T tmpTime;
if ((ntp_sync_minute > 59) && (RtcTime.minute > 2)) ntp_sync_minute = 1; // If sync prepare for a new cycle
uint8_t offset = (uptime < 30) ? RtcTime.second : (((ESP.getChipId() & 0xF) * 3) + 3) ; // First try ASAP to sync. If fails try once every 60 seconds based on chip id
if ((WL_CONNECTED == WiFi.status()) && (offset == RtcTime.second) && ((RtcTime.year < 2016) || (ntp_sync_minute == RtcTime.minute))) {
ntp_time = sntp_get_current_timestamp();
if (ntp_time > 1451602800) { // Fix NTP bug in core 2.4.1/SDK 2.2.1 (returns Thu Jan 01 08:00:10 1970 after power on)
utc_time = ntp_time;
ntp_sync_minute = 60; // Sync so block further requests
if (restart_time == 0) {
restart_time = utc_time - uptime; // save first ntp time as restart time
}
BreakTime(utc_time, tmpTime);
RtcTime.year = tmpTime.year + 1970;
daylight_saving_time = RuleToTime(DaylightSavingTime, RtcTime.year);
standard_time = RuleToTime(StandardTime, RtcTime.year);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "(" D_UTC_TIME ") %s, (" D_DST_TIME ") %s, (" D_STD_TIME ") %s"),
GetTime(0).c_str(), GetTime(2).c_str(), GetTime(3).c_str());
AddLog(LOG_LEVEL_DEBUG);
#ifdef USE_RULES
if (local_time < 1451602800) { // 2016-01-01
strncpy_P(mqtt_data, PSTR("{\"Time\":{\"Initialized\":1}}"), sizeof(mqtt_data));
} else {
strncpy_P(mqtt_data, PSTR("{\"Time\":{\"Set\":1}}"), sizeof(mqtt_data));
}
RulesProcess();
#endif // USE_RULES
} else {
ntp_sync_minute++; // Try again in next minute
}
}
utc_time++;
local_time = utc_time;
if (local_time > 1451602800) { // 2016-01-01
int32_t time_offset = Settings.timezone * SECS_PER_HOUR;
if (99 == Settings.timezone) {
if (DaylightSavingTime.hemis) {
dstoffset = StandardTime.offset * SECS_PER_MIN; // Southern hemisphere
stdoffset = DaylightSavingTime.offset * SECS_PER_MIN;
} else {
dstoffset = DaylightSavingTime.offset * SECS_PER_MIN; // Northern hemisphere
stdoffset = StandardTime.offset * SECS_PER_MIN;
}
if ((utc_time >= (daylight_saving_time - stdoffset)) && (utc_time < (standard_time - dstoffset))) {
time_offset = dstoffset; // Daylight Saving Time
} else {
time_offset = stdoffset; // Standard Time
}
}
local_time += time_offset;
time_timezone = time_offset / 360; // (SECS_PER_HOUR / 10) fails as it is defined as UL
}
BreakTime(local_time, RtcTime);
if (!RtcTime.hour && !RtcTime.minute && !RtcTime.second && RtcTime.valid) {
midnight = local_time;
midnight_now = 1;
}
RtcTime.year += 1970;
}
void RtcInit()
{
sntp_setservername(0, Settings.ntp_server[0]);
sntp_setservername(1, Settings.ntp_server[1]);
sntp_setservername(2, Settings.ntp_server[2]);
sntp_stop();
sntp_set_timezone(0); // UTC time
sntp_init();
utc_time = 0;
BreakTime(utc_time, RtcTime);
TickerRtc.attach(1, RtcSecond);
}
#ifndef USE_ADC_VCC
/*********************************************************************************************\
* ADC support
\*********************************************************************************************/
uint8_t adc_counter = 0;
uint16_t adc_last_value = 0;
uint16_t AdcRead()
{
uint16_t analog = 0;
for (byte i = 0; i < 32; i++) {
analog += analogRead(A0);
delay(1);
}
analog >>= 5;
return analog;
}
void AdcEvery50ms()
{
adc_counter++;
if (!(adc_counter % 4)) {
uint16_t new_value = AdcRead();
if ((new_value < adc_last_value -10) || (new_value > adc_last_value +10)) {
adc_last_value = new_value;
uint16_t value = adc_last_value / 10;
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value);
RulesProcess();
}
}
}
void AdcShow(boolean json)
{
uint16_t analog = AdcRead();
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"ANALOG\":{\"A0\":%d}"), mqtt_data, analog);
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ANALOG, mqtt_data, "", 0, analog);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_02
boolean Xsns02(byte function)
{
boolean result = false;
if (pin[GPIO_ADC0] < 99) {
switch (function) {
case FUNC_EVERY_50_MSECOND:
AdcEvery50ms();
break;
case FUNC_JSON_APPEND:
AdcShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_APPEND:
AdcShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_ADC_VCC
/*********************************************************************************************\
* Syslog
*
* Example:
* snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_LOG "Any value %d"), value);
* AddLog(LOG_LEVEL_DEBUG);
*
\*********************************************************************************************/
void SetSeriallog(byte loglevel)
{
Settings.seriallog_level = loglevel;
seriallog_level = loglevel;
seriallog_timer = 0;
}
#ifdef USE_WEBSERVER
void GetLog(byte idx, char** entry_pp, size_t* len_p)
{
char* entry_p = NULL;
size_t len = 0;
if (idx) {
char* it = web_log;
do {
byte cur_idx = *it;
it++;
size_t tmp = strchrspn(it, '\1');
tmp++; // Skip terminating '\1'
if (cur_idx == idx) { // Found the requested entry
len = tmp;
entry_p = it;
break;
}
it += tmp;
} while (it < web_log + WEB_LOG_SIZE && *it != '\0');
}
*entry_pp = entry_p;
*len_p = len;
}
#endif // USE_WEBSERVER
void Syslog()
{
// Destroys log_data
char syslog_preamble[64]; // Hostname + Id
if (syslog_host_hash != GetHash(Settings.syslog_host, strlen(Settings.syslog_host))) {
syslog_host_hash = GetHash(Settings.syslog_host, strlen(Settings.syslog_host));
WiFi.hostByName(Settings.syslog_host, syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash
}
if (PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) {
snprintf_P(syslog_preamble, sizeof(syslog_preamble), PSTR("%s ESP-"), my_hostname);
memmove(log_data + strlen(syslog_preamble), log_data, sizeof(log_data) - strlen(syslog_preamble));
log_data[sizeof(log_data) -1] = '\0';
memcpy(log_data, syslog_preamble, strlen(syslog_preamble));
PortUdp.write(log_data);
PortUdp.endPacket();
} else {
syslog_level = 0;
syslog_timer = SYSLOG_TIMER;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
AddLog(LOG_LEVEL_INFO);
}
}
void AddLog(byte loglevel)
{
char mxtime[10]; // "13:45:21 "
snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d "), RtcTime.hour, RtcTime.minute, RtcTime.second);
if (loglevel <= seriallog_level) {
Serial.printf("%s%s\n", mxtime, log_data);
}
#ifdef USE_WEBSERVER
if (Settings.webserver && (loglevel <= Settings.weblog_level)) {
// Delimited, zero-terminated buffer of log lines.
// Each entry has this format: [index][log data]['\1']
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
while (web_log_index == web_log[0] || // If log already holds the next index, remove it
strlen(web_log) + strlen(log_data) + 13 > WEB_LOG_SIZE) // 13 = web_log_index + mxtime + '\1' + '\0'
{
char* it = web_log;
it++; // Skip web_log_index
it += strchrspn(it, '\1'); // Skip log line
it++; // Skip delimiting "\1"
memmove(web_log, it, WEB_LOG_SIZE -(it-web_log)); // Move buffer forward to remove oldest log line
}
snprintf_P(web_log, sizeof(web_log), PSTR("%s%c%s%s\1"), web_log, web_log_index++, mxtime, log_data);
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
}
#endif // USE_WEBSERVER
if ((WL_CONNECTED == WiFi.status()) && (loglevel <= syslog_level)) {
Syslog();
}
}
void AddLog_P(byte loglevel, const char *formatP)
{
snprintf_P(log_data, sizeof(log_data), formatP);
AddLog(loglevel);
}
void AddLog_P(byte loglevel, const char *formatP, const char *formatP2)
{
char message[100];
snprintf_P(log_data, sizeof(log_data), formatP);
snprintf_P(message, sizeof(message), formatP2);
strncat(log_data, message, sizeof(log_data));
AddLog(loglevel);
}
void AddLogSerial(byte loglevel, uint8_t *buffer, int count)
{
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_SERIAL D_RECEIVED));
for (int i = 0; i < count; i++) {
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer++));
}
AddLog(loglevel);
}
void AddLogSerial(byte loglevel)
{
AddLogSerial(loglevel, (uint8_t*)serial_in_buffer, serial_in_byte_counter);
}
/*********************************************************************************************\
*
\*********************************************************************************************/