Tasmota/tasmota/xdrv_27_shutter.ino

1172 lines
57 KiB
C++

/*
xdrv_27_shutter.ino - Shutter/Blind support for Tasmota
Copyright (C) 2020 Stefan Bode
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SHUTTER
/*********************************************************************************************\
* Shutter or Blind support using two consecutive relays
\*********************************************************************************************/
#define XDRV_27 27
#define D_SHUTTER "SHUTTER"
const uint16_t MOTOR_STOP_TIME = 500; // in mS
const uint8_t steps_per_second = 20; // FUNC_EVERY_50_MSECOND
uint8_t calibrate_pos[6] = {0,30,50,70,90,100};
uint16_t messwerte[5] = {30,50,70,90,100};
uint16_t last_execute_step;
enum ShutterModes { SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE, SHT_OFF_ON__OPEN_CLOSE_STEPPER,};
enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,};
const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|"
D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|"
D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|"
D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY "|" D_CMND_SHUTTER_BUTTON "|" D_CMND_SHUTTER_LOCK "|" D_CMND_SHUTTER_ENABLEENDSTOPTIME;
void (* const ShutterCommand[])(void) PROGMEM = {
&CmndShutterOpen, &CmndShutterClose, &CmndShutterStop, &CmndShutterPosition,
&CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay,
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay,
&CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime};
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"Direction\":%d}";
#include <Ticker.h>
Ticker TickerShutter;
struct SHUTTER {
power_t mask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter
power_t old_power = 0; // preserve old bitmask for power to extract the relay that changes.
power_t switched_relay = 0; // bitmatrix that contain the relays that was lastly changed.
uint32_t time[MAX_SHUTTERS]; // operating time of the shutter in 0.05sec
int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated
int32_t target_position[MAX_SHUTTERS]; // position to go to
int32_t start_position[MAX_SHUTTERS]; // position before a movement is started. init at start
int32_t real_position[MAX_SHUTTERS]; // value between 0 and Shutter.open_max
uint16_t open_time[MAX_SHUTTERS]; // duration to open the shutter. 112 = 11.2sec
uint16_t close_time[MAX_SHUTTERS]; // duration to close the shutter. 112 = 11.2sec
uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster
int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down
uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE
int16_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec.
int16_t pwm_frequency; // frequency of PWN for stepper motors
uint16_t max_pwm_frequency = 1000; // maximum of PWM frequency for openig the shutter. depend on the motor and drivers
uint16_t max_close_pwm_frequency[MAX_SHUTTERS];// maximum of PWM frequency for closeing the shutter. depend on the motor and drivers
uint8_t skip_relay_change; // avoid overrun at endstops
int32_t accelerator[MAX_SHUTTERS]; // speed of ramp-up, ramp down of shutter
} Shutter;
void ShutterLogPos(uint32_t i)
{
char stemp2[10];
dtostrfd((float)Shutter.time[i] / steps_per_second, 2, stemp2);
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d"),
i+1, Shutter.real_position[i], Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2, Shutter.pwm_frequency);
}
void ShutterRtc50mS(void)
{
for (uint32_t i = 0; i < shutters_present; i++) {
Shutter.time[i]++;
if (Shutter.accelerator[i]) {
Shutter.pwm_frequency += Shutter.accelerator[i];
Shutter.pwm_frequency = tmax(0,tmin(Shutter.direction[i]==1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i],Shutter.pwm_frequency));
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1+i], 50);
}
}
}
#define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B))
int32_t ShutterPercentToRealPosition(uint32_t percent, uint32_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return (percent <= 5) ? Settings.shuttercoeff[2][index] * percent : Settings.shuttercoeff[1][index] * percent + Settings.shuttercoeff[0][index];
} else {
uint32_t realpos;
// check against DIV 0
for (uint32_t j = 0; j < 5; j++) {
if (0 == Settings.shuttercoeff[j][index]) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: RESET/INIT CALIBRATION MATRIX DIV 0"));
for (uint32_t k = 0; k < 5; k++) {
Settings.shuttercoeff[k][index] = SHT_DIV_ROUND(calibrate_pos[k+1] * 1000, calibrate_pos[5]);
}
}
}
for (uint32_t i = 0; i < 5; i++) {
if ((percent * 10) >= Settings.shuttercoeff[i][index]) {
realpos = SHT_DIV_ROUND(Shutter.open_max[index] * calibrate_pos[i+1], 100);
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP1: %d, %% %d, coeff %d"), realpos, percent, Settings.shuttercoeff[i][index]);
} else {
if (0 == i) {
realpos = SHT_DIV_ROUND(SHT_DIV_ROUND(percent * Shutter.open_max[index] * calibrate_pos[i+1], Settings.shuttercoeff[i][index]), 10);
} else {
//uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP2: %d, %% %d, coeff %d"), addon, (calibrate_pos[i+1] - calibrate_pos[i]), (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]));
realpos += SHT_DIV_ROUND(SHT_DIV_ROUND((percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter.open_max[index] * (calibrate_pos[i+1] - calibrate_pos[i]), Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]), 100);
}
break;
}
}
return realpos;
}
}
uint8_t ShutterRealToPercentPosition(int32_t realpos, uint32_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return (Settings.shuttercoeff[2][index] * 5 > realpos) ? SHT_DIV_ROUND(realpos, Settings.shuttercoeff[2][index]) : SHT_DIV_ROUND(realpos-Settings.shuttercoeff[0][index], Settings.shuttercoeff[1][index]);
} else {
uint16_t realpercent;
for (uint32_t i = 0; i < 5; i++) {
if (realpos >= Shutter.open_max[index] * calibrate_pos[i+1] / 100) {
realpercent = SHT_DIV_ROUND(Settings.shuttercoeff[i][index], 10);
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP1: %d, %% %d, coeff %d"), realpercent, realpos, Shutter_Open_Max[index] * calibrate_pos[i+1] / 100);
} else {
if (0 == i) {
realpercent = SHT_DIV_ROUND(SHT_DIV_ROUND((realpos - SHT_DIV_ROUND(Shutter.open_max[index] * calibrate_pos[i], 100)) * 10 * Settings.shuttercoeff[i][index], calibrate_pos[i+1]), Shutter.open_max[index]);
} else {
//uint16_t addon = ( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]) / (calibrate_pos[i+1] - calibrate_pos[i])/ Shutter_Open_Max[index];
//uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP2: %d, delta %d, %% %d, coeff %d"), addon,( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) , (calibrate_pos[i+1] - calibrate_pos[i])* Shutter_Open_Max[index]/100, (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]));
realpercent += SHT_DIV_ROUND(SHT_DIV_ROUND((realpos - SHT_DIV_ROUND(Shutter.open_max[index] * calibrate_pos[i], 100)) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]), (calibrate_pos[i+1] - calibrate_pos[i])), Shutter.open_max[index]) ;
}
break;
}
}
return realpercent;
}
}
void ShutterInit(void)
{
shutters_present = 0;
Shutter.mask = 0;
//Initialize to get relay that changed
Shutter.old_power = power;
bool relay_in_interlock = false;
// if shutter 4 is unused
if (Settings.shutter_startrelay[MAX_SHUTTERS] == 0) {
Shutter.max_pwm_frequency = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : Shutter.max_pwm_frequency;
}
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
// set startrelay to 1 on first init, but only to shutter 1. 90% usecase
Settings.shutter_startrelay[i] = (Settings.shutter_startrelay[i] == 0 && i == 0? 1 : Settings.shutter_startrelay[i]);
if (Settings.shutter_startrelay[i] && (Settings.shutter_startrelay[i] < 9)) {
shutters_present++;
// Determine shutter types
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ;
for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Interlock state i=%d %d, flag %d, , shuttermask %d, maskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,Shutter.mask, Settings.interlock[i]&Shutter.mask);
if (Settings.interlock[j] && (Settings.interlock[j] & Shutter.mask)) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay in Interlock group"));
relay_in_interlock = true;
}
}
if (relay_in_interlock) {
if (Settings.pulse_timer[i] > 0) {
Shutter.mode = SHT_PULSE_OPEN__PULSE_CLOSE;
} else {
Shutter.mode = SHT_OFF_OPEN__OFF_CLOSE;
}
} else {
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE;
if ((pin[GPIO_PWM1+i] < 99) && (pin[GPIO_CNTR1+i] < 99)) {
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE_STEPPER;
Shutter.pwm_frequency = 0;
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1+i], 50);
}
}
TickerShutter.attach_ms(50, ShutterRtc50mS );
// default the 50 percent should not have any impact without changing it. set to 60
Settings.shutter_set50percent[i] = (Settings.shutter_set50percent[i] > 0) ? Settings.shutter_set50percent[i] : 50;
// use 10 sec. as default to allow everybody to play without deep initialize
Shutter.open_time[i] = (Settings.shutter_opentime[i] > 0) ? Settings.shutter_opentime[i] : 100;
Shutter.close_time[i] = (Settings.shutter_closetime[i] > 0) ? Settings.shutter_closetime[i] : 100;
// Update Calculation 20 because time interval is 0.05 sec
Shutter.open_max[i] = 200 * Shutter.open_time[i];
Shutter.close_velocity[i] = Shutter.open_max[i] / Shutter.close_time[i] / 2 ;
Shutter.max_close_pwm_frequency[i] = Shutter.max_pwm_frequency*Shutter.open_time[i] / Shutter.close_time[i];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d Closefreq: %d"),i, Shutter.max_close_pwm_frequency[i]);
// calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part
if (Settings.shutter_set50percent[i] != 50) {
Settings.shuttercoeff[1][i] = Shutter.open_max[i] * (100 - Settings.shutter_set50percent[i] ) / 5000;
Settings.shuttercoeff[0][i] = Shutter.open_max[i] - (Settings.shuttercoeff[1][i] * 100);
Settings.shuttercoeff[2][i] = (Settings.shuttercoeff[0][i] + 5 * Settings.shuttercoeff[1][i]) / 5;
}
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1);
Shutter.real_position[i] = ShutterPercentToRealPosition(Settings.shutter_position[i], i);
//Shutter.real_position[i] = Settings.shutter_position[i] <= 5 ? Settings.shuttercoeff[2][i] * Settings.shutter_position[i] : Settings.shuttercoeff[1][i] * Settings.shutter_position[i] + Settings.shuttercoeff[0,i];
Shutter.start_position[i] = Shutter.real_position[i];
Shutter.motordelay[i] = Settings.shutter_motordelay[i];
char shutter_open_chr[10];
dtostrfd((float)Shutter.open_time[i] / 10 , 1, shutter_open_chr);
char shutter_close_chr[10];
dtostrfd((float)Shutter.close_time[i] / 10, 1, shutter_close_chr);
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d (Relay:%d): Init. Pos: %d [%d %%], Open Vel.: 100, Close Vel.: %d , Max Way: %d, Opentime %s [s], Closetime %s [s], CoeffCalc: c0: %d, c1 %d, c2: %d, c3: %d, c4: %d, binmask %d, is inverted %d, is locked %d, end stop time enabled %d, shuttermode %d, motordelay %d"),
i+1, Settings.shutter_startrelay[i], Shutter.real_position[i], Settings.shutter_position[i], Shutter.close_velocity[i], Shutter.open_max[i], shutter_open_chr, shutter_close_chr,
Settings.shuttercoeff[0][i], Settings.shuttercoeff[1][i], Settings.shuttercoeff[2][i], Settings.shuttercoeff[3][i], Settings.shuttercoeff[4][i],
Shutter.mask, (Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, Shutter.mode, Shutter.motordelay[i]);
} else {
// terminate loop at first INVALID shutter.
break;
}
Settings.shutter_accuracy = 1;
}
}
void ShutterReportPosition(bool always)
{
uint32_t shutter_moving = 0;
Response_P(PSTR("{"));
for (uint32_t i = 0; i < shutters_present; i++) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d"), i+1,Shutter.real_position[i]);
uint32_t position = ShutterRealToPercentPosition(Shutter.real_position[i], i);
if (Shutter.direction[i] != 0) {
shutter_moving = 1;
ShutterLogPos(i);
}
if (i) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(JSON_SHUTTER_POS, i+1, (Settings.shutter_options[i] & 1) ? 100-position : position, Shutter.direction[i]);
}
ResponseJsonEnd();
if (always || (1 == shutter_moving)) {
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_PRFX_SHUTTER));
}
if (rules_flag.shutter_moving > shutter_moving) {
rules_flag.shutter_moved = 1;
} else {
rules_flag.shutter_moved = 0;
}
rules_flag.shutter_moving = shutter_moving;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), rules_flag.shutter_moving, rules_flag.shutter_moved);
}
void ShutterLimitRealAndTargetPositions(uint32_t i) {
if (Shutter.real_position[i]<0) Shutter.real_position[i] = 0;
if (Shutter.real_position[i]>Shutter.open_max[i]) Shutter.real_position[i] = Shutter.open_max[i];
if (Shutter.target_position[i]<0) Shutter.target_position[i] = 0;
if (Shutter.target_position[i]>Shutter.open_max[i]) Shutter.target_position[i] = Shutter.open_max[i];
}
void ShutterUpdatePosition(void)
{
char scommand[CMDSZ];
char stopic[TOPSZ];
for (uint32_t i = 0; i < shutters_present; i++) {
if (Shutter.direction[i] != 0) {
int32_t stop_position_delta = 20;
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) {
// Calculate position with counter. Much more accurate and no need for motordelay workaround
// adding some steps to stop early
Shutter.real_position[i] = ShutterCounterBasedPosition(i);
int32_t max_frequency = Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i];
int32_t max_freq_change_per_sec = Shutter.max_pwm_frequency*steps_per_second / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1);
int32_t min_runtime_ms = Shutter.pwm_frequency*1000 / max_freq_change_per_sec;
int32_t velocity = Shutter.direction[i] == 1 ? 100 : Shutter.close_velocity[i];
int32_t minstopway = min_runtime_ms * velocity / 100 * Shutter.pwm_frequency / max_frequency * Shutter.direction[i] ;
int32_t next_possible_stop = Shutter.real_position[i] + minstopway ;
stop_position_delta =200 * Shutter.pwm_frequency/max_frequency + Shutter.direction[i] * (next_possible_stop - Shutter.target_position[i]);
//Shutter.accelerator[i] = tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*11/200);
//int32_t act_freq_change = max_freq_change_per_sec/20;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: time: %d, velocity %d, minstopway %d,cur_freq %d, max_frequency %d, act_freq_change %d, min_runtime_ms %d, act.pos %d, next_stop %d, target: %d"),Shutter.time[i],velocity,minstopway,
Shutter.pwm_frequency,max_frequency, Shutter.accelerator[i],min_runtime_ms,Shutter.real_position[i], next_possible_stop,Shutter.target_position[i]);
if (Shutter.accelerator[i] < 0 || next_possible_stop * Shutter.direction[i] > Shutter.target_position[i] * Shutter.direction[i] ) {
Shutter.accelerator[i] = - tmin(tmax(max_freq_change_per_sec*(100-(Shutter.direction[i]*(Shutter.target_position[i]-next_possible_stop) ))/2000 , max_freq_change_per_sec*9/200), max_freq_change_per_sec*12/200);
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Ramp down: acc: %d"), Shutter.accelerator[i]);
} else if ( Shutter.accelerator[i] > 0 && Shutter.pwm_frequency == max_frequency) {
Shutter.accelerator[i] = 0;
}
} else {
Shutter.real_position[i] = Shutter.start_position[i] + ( (Shutter.time[i] - Shutter.motordelay[i]) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
}
if ( Shutter.real_position[i] * Shutter.direction[i] + stop_position_delta >= Shutter.target_position[i] * Shutter.direction[i] ) {
// calculate relay number responsible for current movement.
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Condition detected: real: %d, Target: %d, direction: %d"),Shutter.real_position[i], Shutter.target_position[i],Shutter.direction[i]);
uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : 1) ;
int16_t missing_steps;
switch (Shutter.mode) {
case SHT_PULSE_OPEN__PULSE_CLOSE:
// we have a momentary switch here. Needs additional pulse on same relay after the end
if (SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source) {
ExecuteCommandPower(cur_relay, 1, SRC_SHUTTER);
} else {
last_source = SRC_SHUTTER;
}
break;
case SHT_OFF_ON__OPEN_CLOSE_STEPPER:
missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) - RtcSettings.pulse_counter[i];
//prepare for stop PWM
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Remain steps %d, counter %d, freq %d"), missing_steps, RtcSettings.pulse_counter[i] ,Shutter.pwm_frequency);
Shutter.accelerator[i] = 0;
Shutter.pwm_frequency = Shutter.pwm_frequency > 250 ? 250 : Shutter.pwm_frequency;
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1+i], 50);
Shutter.pwm_frequency = 0;
analogWriteFreq(Shutter.pwm_frequency);
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) {
delay(1);
}
analogWrite(pin[GPIO_PWM1+i], 0);
Shutter.real_position[i] = ShutterCounterBasedPosition(i);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT:Real %d, pulsecount %d, start %d"), Shutter.real_position[i],RtcSettings.pulse_counter[i], Shutter.start_position[i]);
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
case SHT_OFF_ON__OPEN_CLOSE:
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
case SHT_OFF_OPEN__OFF_CLOSE:
// avoid switching OFF a relay already OFF
if ((1 << (cur_relay-1)) & power) {
// Relay is on and need to be switched off.
ExecuteCommandPower(cur_relay, 0, SRC_SHUTTER);
}
break;
}
ShutterLimitRealAndTargetPositions(i);
Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i);
ShutterLogPos(i);
Shutter.start_position[i] = Shutter.real_position[i];
// sending MQTT result to broker
snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1);
GetTopic_P(stopic, STAT, mqtt_topic, scommand);
Response_P("%d", (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]);
MqttPublish(stopic, Settings.flag.mqtt_power_retain); // CMND_POWERRETAIN
Shutter.direction[i] = 0;
ShutterReportPosition(true);
XdrvRulesProcess();
}
}
}
}
bool ShutterState(uint32_t device)
{
device--;
device &= 3;
return (Settings.flag3.shutter_mode && // SetOption80 - Enable shutter support
(Shutter.mask & (1 << (Settings.shutter_startrelay[device]-1))) );
}
void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
{
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: dir %d, delta1 %d, delta2 %d, grant %d"),direction, (Shutter.open_max[i] - Shutter.real_position[i]) / Shutter.close_velocity[i], Shutter.real_position[i] / Shutter.close_velocity[i], 2+Shutter.motordelay[i]);
if ( ( (1 == direction) && ((Shutter.open_max[i] - Shutter.real_position[i]) / 100 <= 2) )
|| ( (-1 == direction) && (Shutter.real_position[i] / Shutter.close_velocity[i] <= 2)) ) {
Shutter.skip_relay_change = 1;
} else {
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) {
Shutter.pwm_frequency = 0;
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1+i], 0);
// can be operated without counter, but then not that acurate.
if (pin[GPIO_CNTR1+i] < 99) {
RtcSettings.pulse_counter[i] = 0;
}
Shutter.accelerator[i] = Shutter.max_pwm_frequency / (Shutter.motordelay[i]>0 ? Shutter.motordelay[i] : 1);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Ramp up: %d"), Shutter.accelerator[i]);
}
Shutter.target_position[i] = target_pos;
Shutter.start_position[i] = Shutter.real_position[i];
Shutter.time[i] = 0;
Shutter.skip_relay_change = 0;
Shutter.direction[i] = direction;
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: real %d, start %d, counter %d, max_freq %d, dir %d, freq %d"),Shutter.real_position[i], Shutter.start_position[i] ,RtcSettings.pulse_counter[i],Shutter.max_pwm_frequency , Shutter.direction[i] ,Shutter.max_pwm_frequency );
}
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter: %d from %d to %d in directin %d"), i, Shutter.start_position[i], Shutter.target_position[i], Shutter.direction[i]);
}
void ShutterWaitForMotorStop(uint32_t i)
{
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Wait for Motorstop.."));
if ((SHT_OFF_ON__OPEN_CLOSE == Shutter.mode) || (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode)) {
if (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Frequency change %d"), Shutter.pwm_frequency);
while (Shutter.pwm_frequency > 0) {
Shutter.accelerator[i] = 0;
Shutter.pwm_frequency = tmax(Shutter.pwm_frequency-((Shutter.direction[i] == 1 ? Shutter.max_pwm_frequency : Shutter.max_close_pwm_frequency[i])/(Shutter.motordelay[i]+1)) , 0);
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1+i], 50);
delay(50);
}
analogWrite(pin[GPIO_PWM1+i], 0);
Shutter.real_position[i] = ShutterCounterBasedPosition(i);
} else {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
delay(MOTOR_STOP_TIME);
}
} else {
delay(MOTOR_STOP_TIME);
}
}
int32_t ShutterCounterBasedPosition(uint32_t i)
{
return ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_frequency)+Shutter.start_position[i];
}
void ShutterRelayChanged(void)
{
// Shutter.switched_relay = binary relay that was recently changed and cause an Action
// powerstate_local = binary powermatrix and relays from shutter: 0..3
// relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer
char stemp1[10];
for (uint32_t i = 0; i < shutters_present; i++) {
power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3;
//uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed);
if (manual_relays_changed) {
//Shutter.skip_relay_change = true;
ShutterLimitRealAndTargetPositions(i);
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE || Shutter.mode == SHT_OFF_ON__OPEN_CLOSE_STEPPER) {
ShutterWaitForMotorStop(i);
switch (powerstate_local) {
case 1:
ShutterStartInit(i, 1, Shutter.open_max[i]);
break;
case 3:
ShutterStartInit(i, -1, 0);
break;
default:
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Switch OFF motor."),i);
Shutter.target_position[i] = Shutter.real_position[i];
}
} else {
if (Shutter.direction[i] != 0 && (!powerstate_local || (powerstate_local && Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE))) {
Shutter.target_position[i] = Shutter.real_position[i];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i+1, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed);
} else {
last_source = SRC_SHUTTER; // avoid switch off in the next loop
if (powerstate_local == 2) { // testing on CLOSE relay, if ON
// close with relay two
ShutterWaitForMotorStop(i);
ShutterStartInit(i, -1, 0);
} else {
// opens with relay one
ShutterWaitForMotorStop(i);
ShutterStartInit(i, 1, Shutter.open_max[i]);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i+1, Shutter.target_position[i], powerstate_local);
}
}
}
}
bool ShutterButtonIsSimultaneousHold(uint32_t button_index) {
// check for simultaneous shutter button hold
uint32 min_shutterbutton_hold_timer = -1;
for (uint32_t i = 0; i < MAX_KEYS; i++) {
if ((Settings.shutter_button[i] & (1<<31)) && (Button.hold_timer[i] < min_shutterbutton_hold_timer))
min_shutterbutton_hold_timer = Button.hold_timer[i];
}
return (min_shutterbutton_hold_timer > (Button.hold_timer[button_index]>>1));
}
void ShutterButtonHandler(void)
{
uint8_t buttonState = SHT_NOT_PRESSED;
uint8_t button = XdrvMailbox.payload;
uint8_t press_index;
uint32_t button_index = XdrvMailbox.index;
uint8_t shutter_index = Settings.shutter_button[button_index] & 0x03;
uint16_t loops_per_second = 1000 / Settings.button_debounce; // ButtonDebounce (50)
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
if (Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
buttonState = SHT_PRESSED_MULTI;
press_index = 1;
} else {
if ((Shutter.direction[shutter_index]) && (Button.press_counter[button_index]==0)) {
buttonState = SHT_PRESSED_IMMEDIATE;
press_index = 1;
Button.press_counter[button_index] = 99; // Remember to discard further action for press & hold within button timings
} else
Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1;
Button.window_timer[button_index] = loops_per_second / 2; // 0.5 second multi press window
}
blinks = 201;
}
if (NOT_PRESSED == button) {
Button.hold_timer[button_index] = 0;
} else {
Button.hold_timer[button_index]++;
if (!Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
if (Settings.param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold
if (Button.hold_timer[button_index] > loops_per_second * Settings.param[P_HOLD_IGNORE] / 10) {
Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger
Button.press_counter[button_index] = 0; // Discard button press to disable functionality
}
}
if ((Button.press_counter[button_index]<99) && (Button.hold_timer[button_index] == loops_per_second * Settings.param[P_HOLD_TIME] / 10)) { // press still valid && SetOption32 (40) - Button hold
if (!Settings.flag.button_restrict) { // no SetOption1 (0)
// check for simultaneous shutter button hold
if (ShutterButtonIsSimultaneousHold(button_index)) {
// simultaneous shutter button hold detected
for (uint32_t i = 0; i < MAX_KEYS; i++)
if (Settings.shutter_button[i] & (1<<31))
Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings
}
}
if (Button.press_counter[button_index]<99)
buttonState = SHT_PRESSED_HOLD;
Button.press_counter[button_index] = 0;
}
if ((!Settings.flag.button_restrict) && (Button.press_counter[button_index]==0) && (Button.hold_timer[button_index] == loops_per_second * IMMINENT_RESET_FACTOR * Settings.param[P_HOLD_TIME] / 10)) { // no SetOption1 (0) && SetOption32 (40) - Button held for factor times longer
// check for simultaneous shutter button extend hold
if (ShutterButtonIsSimultaneousHold(button_index)) {
// simultaneous shutter button extend hold detected
char scmnd[20];
buttonState = SHT_PRESSED_EXT_HOLD_SIMULTANEOUS;
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
ExecuteCommand(scmnd, SRC_BUTTON);
return;
}
}
}
}
if (!Settings.flag.button_single) { // SetOption13 (0) - Allow multi-press
if (Button.window_timer[button_index]) {
Button.window_timer[button_index]--;
} else {
if (!restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0)) {
if (Button.press_counter[button_index]<99) {
if ((!Settings.flag.button_restrict) && (Button.press_counter[button_index]>=5)) { // no SetOption1 (0) && 5x or more presses
// check for simultaneous shutter button press >3
uint32 min_shutterbutton_press_counter = -1;
for (uint32_t i = 0; i < MAX_KEYS; i++) {
if ((Settings.shutter_button[i] & (1<<31)) && (Button.press_counter[i] < min_shutterbutton_press_counter))
min_shutterbutton_press_counter = Button.press_counter[i];
}
if (min_shutterbutton_press_counter >= Button.press_counter[button_index]-2) {
char scmnd[20];
// simultaneous shutter button press >3 detected
press_index = Button.press_counter[button_index];
for (uint32_t i = 0; i < MAX_KEYS; i++)
if (Settings.shutter_button[i] & (1<<31))
Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings
buttonState = SHT_SHT_PRESSED_MULTI_SIMULTANEOUS;
GetTextIndexed(scmnd, sizeof(scmnd), press_index -3, kCommands);
ExecuteCommand(scmnd, SRC_BUTTON);
return;
}
}
press_index = Button.press_counter[button_index];
if ((buttonState == SHT_NOT_PRESSED) && (Button.press_counter[button_index]<99)) {
// no simultaneous shutter button press >3 detected
buttonState = SHT_PRESSED_MULTI;
}
}
Button.press_counter[button_index] = 0;
}
}
}
if ((buttonState != SHT_NOT_PRESSED) && (buttonState != SHT_SHT_PRESSED_MULTI_SIMULTANEOUS) && (buttonState != SHT_PRESSED_EXT_HOLD_SIMULTANEOUS)) {
if (Settings.shutter_startrelay[shutter_index] && Settings.shutter_startrelay[shutter_index] <9) {
if (press_index>3) press_index=3;
press_index = (buttonState == SHT_PRESSED_HOLD) ? 3 : (press_index-1);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: shutter %d, button %d = %d (single=1, double=2, tripple=3, hold=4)"), shutter_index+1, button_index+1, press_index+1);
XdrvMailbox.index = shutter_index +1;
last_source = SRC_BUTTON;
XdrvMailbox.data_len = 0;
char databuf[1] = "";
XdrvMailbox.data = databuf;
XdrvMailbox.command = NULL;
if (buttonState == SHT_PRESSED_IMMEDIATE) {
XdrvMailbox.payload = XdrvMailbox.index;
CmndShutterStop();
}
else {
uint8_t position = (Settings.shutter_button[button_index]>>(6*press_index + 2)) & 0x03f;
if (position) {
if (Shutter.direction[shutter_index]) {
XdrvMailbox.payload = XdrvMailbox.index;
CmndShutterStop();
} else {
XdrvMailbox.payload = position = (position-1)<<1;
CmndShutterPosition();
if (Settings.shutter_button[button_index] & ((0x01<<26)<<press_index)) {
// MQTT broadcast to grouptopic
char scommand[CMDSZ];
char stopic[TOPSZ];
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
if ((i==shutter_index) || (Settings.shutter_button[button_index] & (0x01<<30))) {
snprintf_P(scommand, sizeof(scommand),PSTR("ShutterPosition%d"), i+1);
GetGroupTopic_P(stopic, scommand);
Response_P("%d", position);
MqttPublish(stopic, false);
}
}
}
}
}
}
}
}
}
void ShutterSetPosition(uint32_t device, uint32_t position)
{
char svalue[32]; // Command and number parameter
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position);
ExecuteCommand(svalue, SRC_IGNORE);
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndShutterOpen(void)
{
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Payload close: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.i);
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
XdrvMailbox.payload = 100;
last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterClose(void)
{
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Payload open: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.i);
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
XdrvMailbox.payload = 0;
XdrvMailbox.data_len = 0;
last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterStop(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) {
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
uint32_t i = XdrvMailbox.index -1;
if (Shutter.direction[i] != 0) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Stop moving %d: dir: %d"), XdrvMailbox.index, Shutter.direction[i]);
// set stop position 10 steps ahead (0.5sec to allow normal stop)
int32_t temp_realpos = Shutter.start_position[i] + ( (Shutter.time[i]+10) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, i);
//XdrvMailbox.payload = Settings.shuttercoeff[2][i] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][i] : (temp_realpos-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i];
last_source = SRC_WEBGUI;
CmndShutterPosition();
} else {
if (XdrvMailbox.command)
ResponseCmndDone();
}
} else {
if (XdrvMailbox.command)
ResponseCmndIdxChar("Locked");
}
}
}
void CmndShutterPosition(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) {
uint32_t index = XdrvMailbox.index-1;
//limit the payload
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Pos. in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, last_source );
// value 0 with data_len > 0 can mean Open
if ((XdrvMailbox.data_len > 1) && (XdrvMailbox.payload <= 0)) {
//UpperCase(XdrvMailbox.data, XdrvMailbox.data);
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_UP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_OPEN) || ((Shutter.direction[index]==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEUP))) {
CmndShutterOpen();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_DOWN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_CLOSE) || ((Shutter.direction[index]==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEDOWN))) {
CmndShutterClose();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOP) || ((Shutter.direction[index]) && (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEUP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEDOWN)))) {
XdrvMailbox.payload = -99;
CmndShutterStop();
return;
}
}
int8_t target_pos_percent = (XdrvMailbox.payload < 0) ? 0 : ((XdrvMailbox.payload > 100) ? 100 : XdrvMailbox.payload);
// webgui still send also on inverted shutter the native position.
target_pos_percent = ((Settings.shutter_options[index] & 1) && (SRC_WEBGUI != last_source)) ? 100 - target_pos_percent : target_pos_percent;
if (XdrvMailbox.payload != -99) {
//target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent;
if (0 == target_pos_percent) {
Shutter.target_position[index] = (Settings.shutter_options[index] & 4) ? (-1 * 2000) : 0;
} else if (100 == target_pos_percent) {
Shutter.target_position[index] = (Settings.shutter_options[index] & 4) ? (Shutter.open_max[index] + 1 * 2000) : Shutter.open_max[index];
} else {
Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index);
}
Shutter.accelerator[index] = Shutter.max_pwm_frequency / ((Shutter.motordelay[index] > 0) ? Shutter.motordelay[index] : 1);
//Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent);
}
if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) && abs(Shutter.target_position[index] - Shutter.real_position[index] ) / Shutter.close_velocity[index] > 2) {
int8_t new_shutterdirection = Shutter.real_position[index] < Shutter.target_position[index] ? 1 : -1;
if (Shutter.direction[index] == -new_shutterdirection) {
// direction need to be changed. on momentary switches first stop the Shutter
if (SHT_PULSE_OPEN__PULSE_CLOSE == Shutter.mode) {
// code for momentary shutters only small switch on to stop Shutter
ExecuteCommandPower(Settings.shutter_startrelay[index] + ((new_shutterdirection == 1) ? 0 : 1), 1, SRC_SHUTTER);
delay(100);
} else {
if (SHT_OFF_OPEN__OFF_CLOSE == Shutter.mode) {
ExecuteCommandPower(Settings.shutter_startrelay[index] + ((new_shutterdirection == 1) ? 1 : 0), 0, SRC_SHUTTER);
ShutterWaitForMotorStop(index);
}
}
}
if (Shutter.direction[index] != new_shutterdirection) {
if ((SHT_OFF_ON__OPEN_CLOSE == Shutter.mode) || (SHT_OFF_ON__OPEN_CLOSE_STEPPER == Shutter.mode)) {
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay5 5s, xdrv %d"), XdrvMailbox.payload);
ShutterWaitForMotorStop(index);
ExecuteCommandPower(Settings.shutter_startrelay[index], 0, SRC_SHUTTER);
ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]);
// Code for shutters with circuit safe configuration, switch the direction Relay
ExecuteCommandPower(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER);
// power on
ExecuteCommandPower(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
} else {
// now start the motor for the right direction, work for momentary and normal shutters.
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start in dir %d"), Shutter.direction[index]);
ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]);
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay6 5s, xdrv %d"), XdrvMailbox.payload);
}
Shutter.switched_relay = 0;
}
} else {
target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index);
}
XdrvMailbox.index = index +1; // Fix random index for ShutterClose
if (XdrvMailbox.command)
ResponseCmndIdxNumber((Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent);
} else {
if (XdrvMailbox.command)
ResponseCmndIdxChar("Locked");
}
}
}
void CmndShutterOpenTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_opentime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterCloseTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_closetime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_closetime[XdrvMailbox.index -1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterMotorDelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_motordelay[XdrvMailbox.index -1] = (uint16_t)(steps_per_second * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_motordelay[XdrvMailbox.index -1]) / steps_per_second, 2, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterRelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) {
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
if (XdrvMailbox.payload > 0) {
Shutter.mask |= 3 << (XdrvMailbox.payload - 1);
} else {
Shutter.mask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1);
}
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
ShutterInit();
// if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work
}
ResponseCmndIdxNumber(Settings.shutter_startrelay[XdrvMailbox.index -1]);
}
}
void CmndShutterButton(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
uint32_t setting = 0;
// (setting>>31)&(0x01) : enabled
// (setting>>30)&(0x01) : mqtt broadcast to all index
// (setting>>29)&(0x01) : mqtt broadcast hold
// (setting>>28)&(0x01) : mqtt broadcast tripple press
// (setting>>27)&(0x01) : mqtt broadcast double press
// (setting>>26)&(0x01) : mqtt broadcast single press
// (setting>>20)&(0x3f) : shutter_position hold; 0 disabled, 1..101 == 0..100%
// (setting>>14)&(0x3f) : shutter_position tripple press 0 disabled, 1..101 == 0..100%
// (setting>> 8)&(0x3f) : shutter_position double press 0 disabled, 1..101 == 0..100%
// (setting>> 2)&(0x3f) : shutter_position single press 0 disabled, 1..101 == 0..100%
// (setting>> 0)&(0x03) : shutter_index
if (XdrvMailbox.data_len > 0) {
uint32_t i = 0;
uint32_t button_index = 0;
bool done = false;
bool isShortCommand = false;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < (1+4+4+1); str = strtok_r(nullptr, " ", &str_ptr), i++) {
int field;
if (str[0] == '-') {
field = -1;
} else {
field = atoi(str);
}
switch (i) {
case 0:
if ((field >= -1) && (field<=4)) {
button_index = (field<=0)?(-1):field;
done = (button_index==-1);
} else
done = true;
break;
case 1:
if (!strcmp_P(str, PSTR("up"))) {
setting |= (((100>>1)+1)<<2) | (((50>>1)+1)<<8) | (((75>>1)+1)<<14) | (((100>>1)+1)<<20);
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("down"))) {
setting |= (((0>>1)+1)<<2) | (((50>>1)+1)<<8) | (((25>>1)+1)<<14) | (((0>>1)+1)<<20);
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("updown"))) {
setting |= (((100>>1)+1)<<2) | (((0>>1)+1)<<8) | (((50>>1)+1)<<14);
isShortCommand = true;
break;
}
case 2:
if (isShortCommand) {
if ((field==1) && (setting & (0x3F<<(2+6*3))))
// if short command up or down then also enable MQTT broadcast
setting |= (0x3<<29);
done = true;
break;
}
case 3:
case 4:
if ((field >= -1) && (field<=100))
setting |= (((field>>1)+1)<<(i*6 + (2-6)));
break;
case 5:
case 6:
case 7:
case 8:
case 9:
if (field==1)
setting |= (1<<(i + (26-5)));
break;
}
if (done) break;
}
if (button_index) {
if (button_index==-1) {
// remove all buttons for this shutter
for (uint32_t i=0 ; i < MAX_KEYS ; i++)
if ((Settings.shutter_button[i]&0x3) == (XdrvMailbox.index-1))
Settings.shutter_button[i] = 0;
} else {
if (setting) {
// anything was set
setting |= (1<<31);
setting |= (XdrvMailbox.index-1) & 0x3;
}
Settings.shutter_button[button_index-1] = setting;
}
}
}
char setting_chr[30*MAX_KEYS] = "-", *setting_chr_ptr = setting_chr;
for (uint32_t i=0 ; i < MAX_KEYS ; i++) {
setting = Settings.shutter_button[i];
if ((setting&(1<<31)) && ((setting&0x3) == (XdrvMailbox.index-1))) {
if (*setting_chr_ptr == 0)
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR("|"));
setting_chr_ptr += snprintf_P(setting_chr_ptr, 2, PSTR("%d"), i+1);
for (uint32_t j=0 ; j < 4 ; j++) {
int8_t pos = (((setting>> (2+6*j))&(0x3f))-1)<<1;
if (pos>=0)
setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR(" %d"), pos);
else
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -"));
}
for (uint32_t j=0 ; j < 5 ; j++) {
bool mqtt = ((setting>>(26+j))&(0x01)!=0);
if (mqtt)
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" 1"));
else
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -"));
}
}
}
ResponseCmndIdxChar(setting_chr);
}
}
void CmndShutterSetHalfway(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.shutter_set50percent[XdrvMailbox.index -1] = (Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - XdrvMailbox.payload : XdrvMailbox.payload;
ShutterInit();
}
ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - Settings.shutter_set50percent[XdrvMailbox.index -1] : Settings.shutter_set50percent[XdrvMailbox.index -1]);
}
}
void CmndShutterFrequency(void)
{
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) {
Shutter.max_pwm_frequency = XdrvMailbox.payload;
if (shutters_present < 4) {
Settings.shuttercoeff[4][3] = Shutter.max_pwm_frequency;
}
ShutterInit();
ResponseCmndNumber(XdrvMailbox.payload); // ????
} else {
ResponseCmndNumber(Shutter.max_pwm_frequency);
}
}
void CmndShutterSetClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
Shutter.real_position[XdrvMailbox.index -1] = 0;
ShutterStartInit(XdrvMailbox.index -1, 0, 0);
Settings.shutter_position[XdrvMailbox.index -1] = 0;
ResponseCmndIdxChar(D_CONFIGURATION_RESET);
}
}
void CmndShutterInvert(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.payload == 0) {
Settings.shutter_options[XdrvMailbox.index -1] &= ~(1);
} else if (XdrvMailbox.payload == 1) {
Settings.shutter_options[XdrvMailbox.index -1] |= (1);
}
ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 1 : 0);
}
}
void CmndShutterCalibration(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
uint32_t i = 0;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 5; str = strtok_r(nullptr, " ", &str_ptr), i++) {
int field = atoi(str);
// The fields in a data string can only range from 1-30000.
// and following value must be higher than previous one
if ((field <= 0) || (field > 30000) || ( (i>0) && (field <= messwerte[i-1]) ) ) {
break;
}
messwerte[i] = field;
}
for (i = 0; i < 5; i++) {
Settings.shuttercoeff[i][XdrvMailbox.index -1] = SHT_DIV_ROUND((uint32_t)messwerte[i] * 1000, messwerte[4]);
AddLog_P2(LOG_LEVEL_INFO, PSTR("Settings.shuttercoeff: %d, i: %d, value: %d, messwert %d"), i,XdrvMailbox.index -1,Settings.shuttercoeff[i][XdrvMailbox.index -1], messwerte[i]);
}
ShutterInit();
ResponseCmndIdxChar(XdrvMailbox.data);
} else {
char setting_chr[30] = "0";
snprintf_P(setting_chr, sizeof(setting_chr), PSTR("%d %d %d %d %d"), Settings.shuttercoeff[0][XdrvMailbox.index -1], Settings.shuttercoeff[1][XdrvMailbox.index -1], Settings.shuttercoeff[2][XdrvMailbox.index -1], Settings.shuttercoeff[3][XdrvMailbox.index -1], Settings.shuttercoeff[4][XdrvMailbox.index -1]);
ResponseCmndIdxChar(setting_chr);
}
}
}
void CmndShutterLock(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.payload == 0) {
Settings.shutter_options[XdrvMailbox.index -1] &= ~(2);
} else if (XdrvMailbox.payload == 1) {
Settings.shutter_options[XdrvMailbox.index -1] |= (2);
}
ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 2) ? 1 : 0);
}
}
void CmndShutterEnableEndStopTime(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.payload == 0) {
Settings.shutter_options[XdrvMailbox.index -1] &= ~(4);
} else if (XdrvMailbox.payload == 1) {
Settings.shutter_options[XdrvMailbox.index -1] |= (4);
}
ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 4) ? 1 : 0);
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv27(uint8_t function)
{
bool result = false;
if (Settings.flag3.shutter_mode) { // SetOption80 - Enable shutter support
switch (function) {
case FUNC_PRE_INIT:
ShutterInit();
break;
case FUNC_EVERY_50_MSECOND:
ShutterUpdatePosition();
break;
case FUNC_EVERY_SECOND:
//case FUNC_EVERY_250_MSECOND:
ShutterReportPosition(false);
break;
case FUNC_COMMAND:
result = DecodeCommand(kShutterCommands, ShutterCommand);
break;
case FUNC_JSON_APPEND:
for (uint8_t i = 0; i < shutters_present; i++) {
uint8_t position = (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i];
ResponseAppend_P(",");
ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, Shutter.direction[i]);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzSensor(DZ_SHUTTER, position);
}
#endif // USE_DOMOTICZ
}
break;
case FUNC_SET_POWER:
char stemp1[10];
// extract the number of the relay that was switched and save for later in Update Position.
Shutter.switched_relay = XdrvMailbox.index ^ Shutter.old_power;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay: %d by %s"), Shutter.switched_relay,GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource));
ShutterRelayChanged();
Shutter.old_power = XdrvMailbox.index;
break;
case FUNC_SET_DEVICE_POWER:
if (Shutter.skip_relay_change ) {
uint8_t i;
for (i = 0; i < devices_present; i++) {
if (Shutter.switched_relay &1) {
break;
}
Shutter.switched_relay >>= 1;
}
//AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: skip relay change: %d"),i+1);
result = true;
Shutter.skip_relay_change = 0;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Skipping switch off relay %d"),i);
ExecuteCommandPower(i+1, 0, SRC_SHUTTER);
}
break;
case FUNC_BUTTON_PRESSED:
if (Settings.shutter_button[XdrvMailbox.index] & (1<<31)) {
ShutterButtonHandler();
result = true;
}
break;
}
}
return result;
}
#endif //USE_SHUTTER