Tasmota/tasmota/xsns_01_counter.ino

379 lines
14 KiB
C++

/*
xsns_01_counter.ino - Counter sensors (water meters, electricity meters etc.) sensor support for Tasmota
Copyright (C) 2020 Maarten Damen and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_COUNTER
/*********************************************************************************************\
* Counter sensors (water meters, electricity meters etc.)
\*********************************************************************************************/
#define XSNS_01 1
#define USE_AC_ZERO_CROSS_DIMMER 1
#define D_PRFX_COUNTER "Counter"
#define D_CMND_COUNTERTYPE "Type"
#define D_CMND_COUNTERDEBOUNCE "Debounce"
#define D_CMND_COUNTERDEBOUNCELOW "DebounceLow"
#define D_CMND_COUNTERDEBOUNCEHIGH "DebounceHigh"
const char kCounterCommands[] PROGMEM = D_PRFX_COUNTER "|" // Prefix
"|" D_CMND_COUNTERTYPE "|" D_CMND_COUNTERDEBOUNCE "|" D_CMND_COUNTERDEBOUNCELOW "|" D_CMND_COUNTERDEBOUNCEHIGH ;
void (* const CounterCommand[])(void) PROGMEM = {
&CmndCounter, &CmndCounterType, &CmndCounterDebounce, &CmndCounterDebounceLow, &CmndCounterDebounceHigh };
uint8_t ctr_index[MAX_COUNTERS] = { 0, 1, 2, 3 };
struct COUNTER {
uint32_t timer[MAX_COUNTERS]; // Last counter time in micro seconds
uint32_t timer_low_high[MAX_COUNTERS]; // Last low/high counter time in micro seconds
uint8_t no_pullup = 0; // Counter input pullup flag (1 = No pullup)
uint8_t pin_state = 0; // LSB0..3 Last state of counter pin; LSB7==0 IRQ is FALLING, LSB7==1 IRQ is CHANGE
bool any_counter = false;
} Counter;
#ifdef USE_AC_ZERO_CROSS_DIMMER
struct AC_ZERO_CROSS_DIMMER {
bool startReSync = false;
uint32_t current_cycle_ClockCycles = 0;
uint32_t dimm_timeClockCycles = 0;
uint32_t currentCycleCount = 0;
uint32_t tobe_cycle_timeClockCycles = 0;
uint32_t lastCycleCount = 0;
uint32_t currentSteps = 100;
} ac_zero_cross_dimmer;
#endif
void ICACHE_RAM_ATTR CounterIsrArg(void *arg) {
uint32_t index = *static_cast<uint8_t*>(arg);
uint32_t time = micros();
uint32_t debounce_time;
if (Counter.pin_state) {
// handle low and high debounce times when configured
if (digitalRead(Pin(GPIO_CNTR1, index)) == bitRead(Counter.pin_state, index)) {
// new pin state to be ignored because debounce time was not met during last IRQ
return;
}
debounce_time = time - Counter.timer_low_high[index];
if bitRead(Counter.pin_state, index) {
// last valid pin state was high, current pin state is low
if (debounce_time <= Settings.pulse_counter_debounce_high * 1000) return;
} else {
// last valid pin state was low, current pin state is high
if (debounce_time <= Settings.pulse_counter_debounce_low * 1000) return;
}
// passed debounce check, save pin state and timing
Counter.timer_low_high[index] = time;
Counter.pin_state ^= (1<<index);
// do not count on rising edge
if bitRead(Counter.pin_state, index) {
// PWMfrequency 100
// restart PWM each second (german 50Hz has to up to 0.01% deviation)
// restart initiated by setting Counter.startReSync = true;
#ifdef USE_AC_ZERO_CROSS_DIMMER
if (RtcSettings.pulse_counter[index]%(Settings.pwm_frequency / (Light.fade_running ? 10:1))== 0 && PinUsed(GPIO_PWM1, index) && Settings.flag4.zerocross_dimmer) {
ac_zero_cross_dimmer.currentCycleCount = ESP.getCycleCount();
// 1000µs to ensure not to fire on the next sinus wave
if (ac_zero_cross_dimmer.lastCycleCount>0) {
ac_zero_cross_dimmer.startReSync = true;
ac_zero_cross_dimmer.currentSteps = (ac_zero_cross_dimmer.currentCycleCount-ac_zero_cross_dimmer.lastCycleCount+(ac_zero_cross_dimmer.tobe_cycle_timeClockCycles/2))/(ac_zero_cross_dimmer.tobe_cycle_timeClockCycles);
ac_zero_cross_dimmer.current_cycle_ClockCycles = (ac_zero_cross_dimmer.currentCycleCount-ac_zero_cross_dimmer.lastCycleCount)/ac_zero_cross_dimmer.currentSteps;
}
ac_zero_cross_dimmer.lastCycleCount = ac_zero_cross_dimmer.currentCycleCount;
}
#endif
return;
}
}
debounce_time = time - Counter.timer[index];
if (debounce_time > Settings.pulse_counter_debounce * 1000) {
Counter.timer[index] = time;
if (bitRead(Settings.pulse_counter_type, index)) {
RtcSettings.pulse_counter[index] = debounce_time;
} else {
RtcSettings.pulse_counter[index]++;
}
}
}
/********************************************************************************************/
void CounterInterruptDisable(bool state) {
if (state) { // Disable interrupts
if (Counter.any_counter) {
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
detachInterrupt(Pin(GPIO_CNTR1, i));
}
}
Counter.any_counter = false;
}
} else { // Enable interrupts
if (!Counter.any_counter) {
CounterInit();
}
}
}
bool CounterPinState(void)
{
if ((XdrvMailbox.index >= AGPIO(GPIO_CNTR1_NP)) && (XdrvMailbox.index < (AGPIO(GPIO_CNTR1_NP) + MAX_COUNTERS))) {
bitSet(Counter.no_pullup, XdrvMailbox.index - AGPIO(GPIO_CNTR1_NP));
XdrvMailbox.index -= (AGPIO(GPIO_CNTR1_NP) - AGPIO(GPIO_CNTR1));
return true;
}
return false;
}
void CounterInit(void)
{
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
#ifdef USE_AC_ZERO_CROSS_DIMMER
ac_zero_cross_dimmer.tobe_cycle_timeClockCycles = microsecondsToClockCycles(1000000 / Settings.pwm_frequency);
#endif
Counter.any_counter = true;
pinMode(Pin(GPIO_CNTR1, i), bitRead(Counter.no_pullup, i) ? INPUT : INPUT_PULLUP);
if ((0 == Settings.pulse_counter_debounce_low) && (0 == Settings.pulse_counter_debounce_high) && !Settings.flag4.zerocross_dimmer) {
Counter.pin_state = 0;
attachInterruptArg(Pin(GPIO_CNTR1, i), CounterIsrArg, &ctr_index[i], FALLING);
} else {
Counter.pin_state = 0x8f;
attachInterruptArg(Pin(GPIO_CNTR1, i), CounterIsrArg, &ctr_index[i], CHANGE);
}
}
}
}
void CounterEverySecond(void)
{
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
if (bitRead(Settings.pulse_counter_type, i)) {
uint32_t time = micros() - Counter.timer[i];
if (time > 4200000000) { // 70 minutes
RtcSettings.pulse_counter[i] = 4200000000; // Set Timer to max in case of no more interrupts due to stall of measured device
}
}
}
}
}
void CounterSaveState(void)
{
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
Settings.pulse_counter[i] = RtcSettings.pulse_counter[i];
}
}
}
void CounterShow(bool json)
{
bool header = false;
uint8_t dsxflg = 0;
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
char counter[33];
if (bitRead(Settings.pulse_counter_type, i)) {
dtostrfd((double)RtcSettings.pulse_counter[i] / 1000000, 6, counter);
} else {
dsxflg++;
snprintf_P(counter, sizeof(counter), PSTR("%lu"), RtcSettings.pulse_counter[i]);
}
if (json) {
if (!header) {
ResponseAppend_P(PSTR(",\"COUNTER\":{"));
}
ResponseAppend_P(PSTR("%s\"C%d\":%s"), (header)?",":"", i +1, counter);
header = true;
#ifdef USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) {
DomoticzSensor(DZ_COUNT, RtcSettings.pulse_counter[i]);
dsxflg++;
}
#endif // USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period ) && (Settings.flag3.counter_reset_on_tele)) {
RtcSettings.pulse_counter[i] = 0;
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(PSTR("{s}" D_COUNTER "%d{m}%s%s{e}"),
i +1, counter, (bitRead(Settings.pulse_counter_type, i)) ? " " D_UNIT_SECOND : "");
#endif // USE_WEBSERVER
}
}
}
if (header) {
ResponseJsonEnd();
}
}
#ifdef USE_AC_ZERO_CROSS_DIMMER
void SyncACDimmer(void)
{
if (ac_zero_cross_dimmer.startReSync) {
// currently only support one AC Dimmer PWM. Plan to support up to 4 Dimmer on same Phase.
for (uint32_t i = 0; i < 1; i++) {
if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i))
{
// get current time because undefined through FUNC_LOOP process.
const uint32_t current_cycle = ESP.getCycleCount();
digitalWrite(Pin(GPIO_PWM1, i), LOW);
// reset trigger for PWM sync
ac_zero_cross_dimmer.startReSync = false;
// calculate timeoffset to fire PWM
ac_zero_cross_dimmer.dimm_timeClockCycles = (ac_zero_cross_dimmer.tobe_cycle_timeClockCycles * (1024 - (Light.fade_running ? Light.fade_cur_10[i] : Light.fade_start_10[i]))) / 1024;
ac_zero_cross_dimmer.dimm_timeClockCycles = tmax(ac_zero_cross_dimmer.dimm_timeClockCycles, 16000);
// because in LOOP calculate the timelag to fire PWM correctly with zero-cross
uint32_t timelag_ClockCycles = (current_cycle - ac_zero_cross_dimmer.currentCycleCount)%ac_zero_cross_dimmer.tobe_cycle_timeClockCycles;
timelag_ClockCycles = ((ac_zero_cross_dimmer.dimm_timeClockCycles + ac_zero_cross_dimmer.tobe_cycle_timeClockCycles) - timelag_ClockCycles)%ac_zero_cross_dimmer.tobe_cycle_timeClockCycles;
delayMicroseconds(clockCyclesToMicroseconds(timelag_ClockCycles));
#ifdef ESP8266
pinMode(Pin(GPIO_PWM1, i), OUTPUT);
// short fire to ensure not to hit next sinus curve. 0.78% of duty cycle (10ms) ~4µs
uint32_t high = ac_zero_cross_dimmer.current_cycle_ClockCycles / 256;
uint32_t low = ac_zero_cross_dimmer.current_cycle_ClockCycles - high;
// Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t
startWaveformClockCycles(Pin(GPIO_PWM1, i), high, low, 0, -1, 0, true);
#else // ESP32
analogWrite(Pin(GPIO_PWM1, i), 5);
#endif // ESP8266 - ESP32
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("CNT: [%d] dimm_time_CCs %d, current_cycle_CC: %d, timelag %lu, lastcc %lu, currentSteps %d, curr %d"), i, ac_zero_cross_dimmer.dimm_timeClockCycles,ac_zero_cross_dimmer.current_cycle_ClockCycles , timelag_ClockCycles, ac_zero_cross_dimmer.currentCycleCount, ac_zero_cross_dimmer.currentSteps, Light.fade_cur_10[i]);
}
}
}
}
#endif
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndCounter(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_COUNTERS)) {
if ((XdrvMailbox.data_len > 0) && PinUsed(GPIO_CNTR1, XdrvMailbox.index -1)) {
if ((XdrvMailbox.data[0] == '-') || (XdrvMailbox.data[0] == '+')) {
RtcSettings.pulse_counter[XdrvMailbox.index -1] += XdrvMailbox.payload;
Settings.pulse_counter[XdrvMailbox.index -1] += XdrvMailbox.payload;
} else {
RtcSettings.pulse_counter[XdrvMailbox.index -1] = XdrvMailbox.payload;
Settings.pulse_counter[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
}
ResponseCmndIdxNumber(RtcSettings.pulse_counter[XdrvMailbox.index -1]);
}
}
void CmndCounterType(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_COUNTERS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1) && PinUsed(GPIO_CNTR1, XdrvMailbox.index -1)) {
bitWrite(Settings.pulse_counter_type, XdrvMailbox.index -1, XdrvMailbox.payload &1);
RtcSettings.pulse_counter[XdrvMailbox.index -1] = 0;
Settings.pulse_counter[XdrvMailbox.index -1] = 0;
}
ResponseCmndIdxNumber(bitRead(Settings.pulse_counter_type, XdrvMailbox.index -1));
}
}
void CmndCounterDebounce(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) {
Settings.pulse_counter_debounce = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings.pulse_counter_debounce);
}
void CmndCounterDebounceLow(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) {
Settings.pulse_counter_debounce_low = XdrvMailbox.payload;
CounterInit();
}
ResponseCmndNumber(Settings.pulse_counter_debounce_low);
}
void CmndCounterDebounceHigh(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) {
Settings.pulse_counter_debounce_high = XdrvMailbox.payload;
CounterInit();
}
ResponseCmndNumber(Settings.pulse_counter_debounce_high);
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns01(uint8_t function)
{
bool result = false;
if (Counter.any_counter) {
switch (function) {
case FUNC_EVERY_SECOND:
CounterEverySecond();
break;
case FUNC_JSON_APPEND:
CounterShow(1);
break;
#ifdef USE_AC_ZERO_CROSS_DIMMER
case FUNC_LOOP:
SyncACDimmer();
break;
#endif
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
CounterShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_SAVE_BEFORE_RESTART:
case FUNC_SAVE_AT_MIDNIGHT:
CounterSaveState();
break;
case FUNC_COMMAND:
result = DecodeCommand(kCounterCommands, CounterCommand);
break;
}
} else {
switch (function) {
case FUNC_INIT:
CounterInit();
break;
case FUNC_PIN_STATE:
result = CounterPinState();
break;
}
}
return result;
}
#endif // USE_COUNTER