Tasmota/lib/IRremoteESP8266-2.7.7/tools/auto_analyse_raw_data.py

774 lines
30 KiB
Python
Executable File

#!/usr/bin/python
"""Attempt an automatic analysis of IRremoteESP8266's Raw data output.
Makes suggestions on key values and tried to break down the message
into likely chunks."""
#
# Copyright 2018 David Conran
import argparse
import sys
class RawIRMessage():
"""Basic analyse functions & structure for raw IR messages."""
# pylint: disable=too-many-instance-attributes
def __init__(self, margin, timings, output=sys.stdout, verbose=True):
self.ldr_mark = None
self.hdr_mark = None
self.hdr_space = None
self.bit_mark = None
self.zero_space = None
self.one_space = None
self.gaps = []
self.margin = margin
self.marks = []
self.mark_buckets = {}
self.spaces = []
self.space_buckets = {}
self.output = output
self.verbose = verbose
self.section_count = 1
self.rawlen = len(timings)
if self.rawlen <= 3:
raise ValueError("Too few message timings supplied.")
self.timings = timings
self._generate_timing_candidates()
self._calc_values()
def _generate_timing_candidates(self):
"""Determine the likely values from the given data."""
count = 0
for usecs in self.timings:
count = count + 1
if count % 2:
self.marks.append(usecs)
else:
self.spaces.append(usecs)
self.marks, self.mark_buckets = self.reduce_list(self.marks)
self.spaces, self.space_buckets = self.reduce_list(self.spaces)
def reduce_list(self, items):
"""Reduce a list of numbers into buckets that are at least margin apart."""
result = []
last = -1
buckets = {}
for item in sorted(items, reverse=True):
if last == -1 or item < last - self.margin:
result.append(item)
last = item
buckets[last] = [item]
else:
buckets[last].append(item)
return result, buckets
def _usec_compare(self, seen, expected):
"""Compare two usec values and see if they match within a
subtractive margin."""
if expected is None:
return False
return expected - self.margin < seen <= expected
def _usec_compares(self, usecs, expecteds):
"""Compare a usec value to a list of values and return True
if they are within a subtractive margin."""
for expected in expecteds:
if self._usec_compare(usecs, expected):
return True
return False
def display_binary(self, binary_str):
"""Display common representations of the suppied binary string."""
num = int(binary_str, 2)
bits = len(binary_str)
rev_binary_str = binary_str[::-1]
rev_num = int(rev_binary_str, 2)
self.output.write("\n Bits: %d\n"
" Hex: %s (MSB first)\n"
" %s (LSB first)\n"
" Dec: %s (MSB first)\n"
" %s (LSB first)\n"
" Bin: 0b%s (MSB first)\n"
" 0b%s (LSB first)\n" %
(bits, ("0x{0:0%dX}" % (bits / 4)).format(num),
("0x{0:0%dX}" % (bits / 4)).format(rev_num), num,
rev_num, binary_str, rev_binary_str))
def add_data_code(self, bin_str, name="", footer=True):
"""Add the common "data" sequence of code to send the bulk of a message."""
# pylint: disable=no-self-use
code = []
nbits = len(bin_str)
code.append(" // Data Section #%d" % self.section_count)
code.append(" // e.g. data = 0x%X, nbits = %d" % (int(bin_str, 2),
nbits))
code.append(" sendData(k%sBitMark, k%sOneSpace, k%sBitMark, "
"k%sZeroSpace, send_data, %d, true);" %
(name, name, name, name, nbits))
code.append(" send_data >>= %d;" % nbits)
if footer:
code.append(" // Footer")
code.append(" mark(k%sBitMark);" % name)
return code
def add_data_decode_code(self, bin_str, name="", footer=True):
"""Add the common "data" sequence code to decode the bulk of a message."""
# pylint: disable=no-self-use
code = []
nbits = len(bin_str)
code.extend([
"",
" // Data Section #%d" % self.section_count,
" // e.g. data_result.data = 0x%X, nbits = %d" % (int(bin_str, 2),
nbits),
" data_result = matchData(&(results->rawbuf[offset]), %s," % nbits,
" k%sBitMark, k%sOneSpace," % (name, name),
" k%sBitMark, k%sZeroSpace);" % (name, name),
" offset += data_result.used;",
" if (data_result.success == false) return false; // Fail",
" data <<= %s; // Make room for the new bits of data." % nbits,
" data |= data_result.data;"])
if footer:
code.extend([
"",
" // Footer",
" if (!matchMark(results->rawbuf[offset++], k%sBitMark))" % name,
" return false;"])
return code
def add_data_byte_code(self, bin_str, name="", ambles=None):
"""Add the code to send the data from an array."""
# pylint: disable=no-self-use
code = []
nbits = len(bin_str)
nbytes = nbits / 8
if ambles is None:
ambles = {}
firstmark = ambles.get("firstmark", 0)
firstspace = ambles.get("firstspace", 0)
lastmark = ambles.get("lastmark", "k%sBitMark" % name)
lastspace = ambles.get("lastspace", "kDefaultMessageGap")
code.append(
" // Data Section #%d" % self.section_count)
if nbits % 8:
code.append(" // DANGER: Nr. of bits is not a multiple of 8. "
"This section won't work!")
code.extend([
" // e.g.",
" // bits = %d; bytes = %d;" % (nbits, nbytes),
" // *(data + pos) = {0x%s};" % (
", 0x".join("%02X" % int(bin_str[i:i + 8], 2)
for i in range(0, len(bin_str), 8))),
" sendGeneric(%s, %s," % (firstmark, firstspace),
" k%sBitMark, k%sOneSpace," % (name, name),
" k%sBitMark, k%sZeroSpace," % (name, name),
" %s, %s," % (lastmark, lastspace),
" data + pos, %d, // Bytes" % nbytes,
" k%sFreq, true, kNoRepeat, kDutyDefault);" % name,
" pos += %d; // Adjust by how many bytes of data we sent" % nbytes])
return code
def add_data_byte_decode_code(self, bin_str, name="", ambles=None):
"""Add the common byte-wise "data" sequence decode code."""
# pylint: disable=no-self-use
code = []
nbits = len(bin_str)
nbytes = nbits / 8
if nbits % 8:
code.append(" // WARNING: Nr. of bits is not a multiple of 8. "
"This section won't work!")
if ambles is None:
ambles = {}
firstmark = ambles.get("firstmark", 0)
firstspace = ambles.get("firstspace", 0)
lastmark = ambles.get("lastmark", "k%sBitMark" % name)
lastspace = ambles.get("lastspace", "kDefaultMessageGap")
code.extend([
"",
" // Data Section #%d" % self.section_count,
" // e.g.",
" // bits = %d; bytes = %d;" % (nbits, nbytes),
" // *(results->state + pos) = {0x%s};" % (
", 0x".join("%02X" % int(bin_str[i:i + 8], 2)
for i in range(0, len(bin_str), 8))),
" used = matchGeneric(results->rawbuf + offset, results->state + pos,",
" results->rawlen - offset, %d," % nbits,
" %s, %s," % (firstmark, firstspace),
" k%sBitMark, k%sOneSpace," % (name, name),
" k%sBitMark, k%sZeroSpace," % (name, name),
" %s, %s, true);" % (lastmark, lastspace),
" if (used == 0) return false; // We failed to find any data.",
" offset += used; // Adjust for how much of the message we read.",
" pos += %d; // Adjust by how many bytes of data we read" % nbytes])
return code
def _calc_values(self):
"""Calculate the values which describe the standard timings
for the protocol."""
if self.verbose:
self.output.write("Potential Mark Candidates:\n"
"%s\n"
"Potential Space Candidates:\n"
"%s\n" % (str(self.marks), str(self.spaces)))
# The bit mark is likely to be the smallest mark.
self.bit_mark = self.marks[-1]
if len(self.marks) > 2: # Possible leader mark?
self.ldr_mark = self.marks[0]
self.hdr_mark = self.marks[1]
elif len(self.marks) > 1: # At least two marks
# Largest mark is likely the kHdrMark
self.hdr_mark = self.marks[0]
else:
# Probably no header mark.
self.hdr_mark = 0
if self.is_space_encoded() and len(self.spaces) >= 2:
if self.verbose and len(self.marks) > 2:
self.output.write("DANGER: Unusual number of mark timings!")
# We should have 3 space candidates at least.
# They should be: zero_space (smallest), one_space, & hdr_space (largest)
spaces = list(self.spaces)
if spaces:
self.zero_space = spaces.pop()
if spaces:
self.one_space = spaces.pop()
if spaces:
self.hdr_space = spaces.pop()
# Rest are probably message gaps
self.gaps = spaces
def is_space_encoded(self):
"""Make an educated guess if the message is space encoded."""
return len(self.spaces) > len(self.marks)
def is_ldr_mark(self, usec):
"""Is usec the leader mark?"""
if self.ldr_mark is None:
return False
return self._usec_compare(usec, self.ldr_mark)
def is_hdr_mark(self, usec):
"""Is usec the header mark?"""
return self._usec_compare(usec, self.hdr_mark)
def is_hdr_space(self, usec):
"""Is usec the header space?"""
return self._usec_compare(usec, self.hdr_space)
def is_bit_mark(self, usec):
"""Is usec the bit mark?"""
return self._usec_compare(usec, self.bit_mark)
def is_one_space(self, usec):
"""Is usec the one space?"""
return self._usec_compare(usec, self.one_space)
def is_zero_space(self, usec):
"""Is usec the zero_space?"""
return self._usec_compare(usec, self.zero_space)
def is_gap(self, usec):
"""Is usec the a space gap?"""
return self._usec_compares(usec, self.gaps)
def avg_list(items):
"""Return the average of a list of numbers."""
if items:
return int(sum(items) / len(items))
return 0
def add_bit(so_far, bit, output=sys.stdout):
"""Add a bit to the end of the bits collected so far."""
if bit == "reset":
return ""
output.write(str(bit)) # This effectively displays in LSB first order.
return so_far + str(bit) # Storing it in MSB first order.
def convert_rawdata(data_str):
"""Parse a C++ rawdata declaration into a list of values."""
start = data_str.find('{')
end = data_str.find('}')
if end == -1:
end = len(data_str)
if start > end:
raise ValueError("Raw Data not parsible due to parentheses placement.")
data_str = data_str[start + 1:end]
results = []
for timing in [x.strip() for x in data_str.split(',')]:
try:
results.append(int(timing))
except ValueError:
raise ValueError(
"Raw Data contains a non-numeric value of '%s'." % timing)
return results
def dump_constants(message, defines, name="", output=sys.stdout):
"""Dump the key constants and generate the C++ #defines."""
ldr_mark = None
hdr_mark = 0
hdr_space = 0
if message.ldr_mark is not None:
ldr_mark = avg_list(message.mark_buckets[message.ldr_mark])
if message.hdr_mark != 0:
hdr_mark = avg_list(message.mark_buckets[message.hdr_mark])
bit_mark = avg_list(message.mark_buckets[message.bit_mark])
if message.hdr_space is not None:
hdr_space = avg_list(message.space_buckets[message.hdr_space])
one_space = avg_list(message.space_buckets[message.one_space])
zero_space = avg_list(message.space_buckets[message.zero_space])
output.write("Guessing key value:\n"
"k%sHdrMark = %d\n"
"k%sHdrSpace = %d\n"
"k%sBitMark = %d\n"
"k%sOneSpace = %d\n"
"k%sZeroSpace = %d\n" % (name, hdr_mark, name, hdr_space,
name, bit_mark, name, one_space,
name, zero_space))
defines.append("const uint16_t k%sHdrMark = %d;" % (name, hdr_mark))
defines.append("const uint16_t k%sBitMark = %d;" % (name, bit_mark))
defines.append("const uint16_t k%sHdrSpace = %d;" % (name, hdr_space))
defines.append("const uint16_t k%sOneSpace = %d;" % (name, one_space))
defines.append("const uint16_t k%sZeroSpace = %d;" % (name, zero_space))
if ldr_mark:
output.write("k%sLdrMark = %d\n" % (name, ldr_mark))
defines.append("const uint16_t k%sLdrMark = %d;" % (name, ldr_mark))
avg_gaps = [avg_list(message.space_buckets[x]) for x in message.gaps]
if len(message.gaps) == 1:
output.write("k%sSpaceGap = %d\n" % (name, avg_gaps[0]))
defines.append("const uint16_t k%sSpaceGap = %d;" % (name, avg_gaps[0]))
else:
count = 0
for gap in avg_gaps:
# We probably (still) have a gap in the protocol.
count = count + 1
output.write("k%sSpaceGap%d = %d\n" % (name, count, gap))
defines.append("const uint16_t k%sSpaceGap%d = %d;" % (name, count, gap))
defines.append("const uint16_t k%sFreq = 38000; "
"// Hz. (Guessing the most common frequency.)" % name)
def parse_and_report(rawdata_str, margin, gen_code=False, name="",
output=sys.stdout):
"""Analyse the rawdata c++ definition of a IR message."""
defines = []
code = {}
code["send"] = []
code["send64+"] = []
code["recv"] = []
code["recv64+"] = []
# Parse the input.
rawdata = convert_rawdata(rawdata_str)
output.write("Found %d timing entries.\n" % len(rawdata))
message = RawIRMessage(margin, rawdata, output)
output.write("\nGuessing encoding type:\n")
if message.is_space_encoded():
output.write("Looks like it uses space encoding. Yay!\n\n")
dump_constants(message, defines, name, output)
else:
output.write("Sorry, it looks like it is Mark encoded. "
"I can't do that yet. Exiting.\n")
sys.exit(1)
total_bits = decode_data(message, defines, code, name, output)
if gen_code:
generate_code(defines, code, total_bits, name, output)
def decode_data(message, defines, code, name="", output=sys.stdout):
"""Decode the data sequence with the given values in mind."""
# pylint: disable=too-many-branches,too-many-statements
# Now we have likely candidates for the key values, go through the original
# sequence and break it up and indicate accordingly.
output.write("\nDecoding protocol based on analysis so far:\n\n")
state = ""
code_info = {}
count = 1
total_bits = ""
binary_value = binary64_value = add_bit("", "reset")
if name:
def_name = name
else:
def_name = "TBD"
code["send"].extend([
"#if SEND_%s" % def_name.upper(),
"/// Send a %s formatted message." % name,
"/// Function should be safe up to 64 bits.",
"/// Status: ALPHA / Untested.",
"/// @param[in] data containing the IR command.",
"/// @param[in] nbits Nr. of bits to send. usually k%sBits" % name,
"/// @param[in] repeat Nr. of times the message is to be repeated.",
"void IRsend::send%s(const uint64_t data, const uint16_t"
" nbits, const uint16_t repeat) {" % def_name,
" enableIROut(k%sFreq);" % name,
" for (uint16_t r = 0; r <= repeat; r++) {",
" uint64_t send_data = data;"])
code["send64+"].extend([
"/// @param[in] data An array of bytes containing the IR command.",
"/// It is assumed to be in MSB order for this code.",
"/// @param[in] nbytes Nr. of bytes of data in the array."
" (>=k%sStateLength)" % name,
"/// @param[in] repeat Nr. of times the message is to be repeated.",
"void IRsend::send%s(const uint8_t data[], const uint16_t nbytes,"
" const uint16_t repeat) {" % def_name,
" for (uint16_t r = 0; r <= repeat; r++) {",
" uint16_t pos = 0;"])
code["recv"].extend([
"#if DECODE_%s" % def_name.upper(),
"/// Decode the supplied %s message." % name,
"/// Function should be safe up to 64 bits.",
"/// Status: ALPHA / Untested.",
"/// @param[in,out] results Ptr to the data to decode &"
" where to store the decode",
"/// @param[in] offset The starting index to use when"
" attempting to decode the",
"/// raw data. Typically/Defaults to kStartOffset.",
"/// @param[in] nbits The number of data bits to expect.",
"/// @param[in] strict Flag indicating if we should perform strict"
" matching.",
"/// @return A boolean. True if it can decode it, false if it can't.",
"bool IRrecv::decode%s(decode_results *results, uint16_t offset,"
" const uint16_t nbits, const bool strict) {" % def_name,
" if (results->rawlen < 2 * nbits + k%sOverhead - offset)" % name,
" return false; // Too short a message to match.",
" if (strict && nbits != k%sBits)" % name,
" return false;",
"",
" uint64_t data = 0;",
" match_result_t data_result;"])
code["recv64+"].extend([
"#if DECODE_%s" % def_name.upper(),
"/// Decode the supplied %s message." % name,
"/// Function should be safe over 64 bits.",
"/// Status: ALPHA / Untested.",
"/// @param[in,out] results Ptr to the data to decode &"
" where to store the decode",
"/// @param[in] offset The starting index to use when"
" attempting to decode the",
"/// raw data. Typically/Defaults to kStartOffset.",
"/// @param[in] nbits The number of data bits to expect.",
"/// @param[in] strict Flag indicating if we should perform"
" strict matching.",
"/// @return A boolean. True if it can decode it, false if it can't.",
"bool IRrecv::decode%s(decode_results *results, uint16_t offset,"
" const uint16_t nbits, const bool strict) {" % def_name,
" if (results->rawlen < 2 * nbits + k%sOverhead - offset)" % name,
" return false; // Too short a message to match.",
" if (strict && nbits != k%sBits)" % name,
" return false;",
"",
" uint16_t pos = 0;",
" uint16_t used = 0;"])
# states are:
# HM: Header/Leader mark
# HS: Header space
# BM: Bit mark
# BS: Bit space
# GS: Gap space
# UNK: Unknown state.
for usec in message.timings:
# Handle header/leader marks.
if ((message.is_hdr_mark(usec) or message.is_ldr_mark(usec)) and
count % 2 and not message.is_bit_mark(usec)):
state = "HM"
if message.is_hdr_mark(usec):
mark_type = "H" # Header
else:
mark_type = "L" # Leader
if binary_value:
message.display_binary(binary_value)
code["send"].extend(message.add_data_code(binary_value, name, False))
code["recv"].extend(message.add_data_decode_code(binary_value, name,
False))
message.section_count = message.section_count + 1
code_info["lastmark"] = "k%s%sdrMark" % (name, mark_type)
total_bits = total_bits + binary_value
code_info["firstmark"] = "k%s%sdrMark" % (name, mark_type)
binary_value = add_bit(binary_value, "reset")
output.write("k%s%sdrMark+" % (name, mark_type))
code["send"].extend([" // %seader" % mark_type,
" mark(k%s%sdrMark);" % (name, mark_type)])
code["recv"].extend([
"",
" // %seader" % mark_type,
" if (!matchMark(results->rawbuf[offset++], k%s%sdrMark))" % (
name, mark_type),
" return false;"])
# Handle header spaces.
elif message.is_hdr_space(usec) and not message.is_one_space(usec):
if binary64_value:
code_info["lastspace"] = "k%sHdrSpace" % name
message.section_count = message.section_count - 1
code["send64+"].extend(message.add_data_byte_code(binary64_value, name,
code_info))
code["recv64+"].extend(message.add_data_byte_decode_code(binary64_value,
name,
code_info))
code_info.clear()
binary64_value = binary_value
message.section_count = message.section_count + 1
if state != "HM":
if binary_value: # If we we are in a header and we have data, add it.
message.display_binary(binary_value)
total_bits = total_bits + binary_value
code["send"].extend(message.add_data_code(binary_value, name))
code["recv"].extend(message.add_data_decode_code(binary_value, name))
code_info["lastspace"] = "k%sHdrSpace" % name
message.section_count = message.section_count + 1
binary_value = binary64_value = add_bit(binary_value, "reset")
output.write("UNEXPECTED->")
state = "HS"
output.write("k%sHdrSpace+" % name)
code["send"].append(" space(k%sHdrSpace);" % name)
code["recv"].extend([
" if (!matchSpace(results->rawbuf[offset++], k%sHdrSpace))" % name,
" return false;"])
code_info["firstspace"] = "k%sHdrSpace" % name
# Handle bit marks.
elif message.is_bit_mark(usec) and count % 2:
if state not in ("HS", "BS"):
output.write("k%sBitMark(UNEXPECTED)" % name)
state = "BM"
# Handle "zero" spaces
elif message.is_zero_space(usec):
if state != "BM":
output.write("k%sZeroSpace(UNEXPECTED)" % name)
state = "BS"
binary_value = binary64_value = add_bit(binary_value, 0, output)
# Handle "one" spaces
elif message.is_one_space(usec):
if state != "BM":
output.write("k%sOneSpace(UNEXPECTED)" % name)
state = "BS"
binary_value = binary64_value = add_bit(binary_value, 1, output)
elif message.is_gap(usec):
if state != "BM":
output.write("UNEXPECTED->")
output.write("GAP(%d)" % usec)
code_info["lastspace"] = "k%sSpaceGap" % name
if binary64_value:
code["send64+"].extend(message.add_data_byte_code(binary64_value, name,
code_info))
code["recv64+"].extend(message.add_data_byte_decode_code(binary64_value,
name,
code_info))
code_info.clear()
if binary_value:
message.display_binary(binary_value)
code["send"].extend(message.add_data_code(binary_value, name))
code["recv"].extend(message.add_data_decode_code(binary_value, name))
message.section_count = message.section_count + 1
else:
code["recv"].extend(["",
" // Gap"])
code["send"].extend([" // Gap"])
if state == "BM":
code["send"].extend([" mark(k%sBitMark);" % name])
code["recv"].extend([
" if (!matchMark(results->rawbuf[offset++], k%sBitMark))" % name,
" return false;"])
code["send"].append(" space(k%sSpaceGap);" % name)
code["recv"].extend([
" if (!matchSpace(results->rawbuf[offset++], k%sSpaceGap))" % name,
" return false;"])
total_bits = total_bits + binary_value
binary_value = binary64_value = add_bit(binary_value, "reset")
state = "GS"
else:
output.write("UNKNOWN(%d)" % usec)
state = "UNK"
count = count + 1
if binary64_value:
code["send64+"].extend(message.add_data_byte_code(binary64_value, name,
code_info))
code["recv64+"].extend(message.add_data_byte_decode_code(binary64_value,
name, code_info))
code_info.clear()
if binary_value:
message.display_binary(binary_value)
code["send"].extend(message.add_data_code(binary_value, name))
code["recv"].extend(message.add_data_decode_code(binary_value, name))
message.section_count = message.section_count + 1
code["send"].extend([
" space(kDefaultMessageGap); // A 100% made up guess of the gap"
" between messages.",
" }",
"}",
"#endif // SEND_%s" % def_name.upper()])
code["send64+"].extend([
" }",
"}",
"#endif // SEND_%s" % def_name.upper()])
code["recv"].extend([
"",
" // Success",
" results->decode_type = decode_type_t::%s;" % def_name.upper(),
" results->bits = nbits;",
" results->value = data;",
" results->command = 0;",
" results->address = 0;",
" return true;",
"}",
"#endif // DECODE_%s" % def_name.upper()])
code["recv64+"].extend([
"",
" // Success",
" results->decode_type = decode_type_t::%s;" % def_name.upper(),
" results->bits = nbits;",
" return true;",
"}",
"#endif // DECODE_%s" % def_name.upper()])
total_bits = total_bits + binary_value
output.write("\nTotal Nr. of suspected bits: %d\n" % len(total_bits))
defines.append("const uint16_t k%sBits = %d;"
" // Move to IRremoteESP8266.h" % (name, len(total_bits)))
if len(total_bits) > 64:
defines.append("const uint16_t k%sStateLength = %d;"
" // Move to IRremoteESP8266.h" %
(name, len(total_bits) / 8))
defines.append("const uint16_t k%sOverhead = %d;" %
(name, message.rawlen - 2 * len(total_bits)))
return total_bits
def generate_code(defines, code, bits_str, name="", output=sys.stdout):
"""Output the estimated C++ code to reproduce & decode the IR message."""
if name:
def_name = name
else:
def_name = "TBD"
output.write("\nGenerating a VERY rough code outline:\n\n"
"// Copyright 2020 David Conran (crankyoldgit)\n"
"// Support for %s protocol\n\n"
'#include "IRrecv.h"\n'
'#include "IRsend.h"\n'
'#include "IRutils.h"\n\n'
"// WARNING: This probably isn't directly usable."
" It's a guide only.\n\n"
"// See https://github.com/crankyoldgit/IRremoteESP8266/wiki/"
"Adding-support-for-a-new-IR-protocol\n"
"// for details of how to include this in the library."
"\n" % def_name)
for line in defines:
output.write("%s\n" % line)
if len(bits_str) > 64: # Will it fit in a uint64_t?
output.write("// DANGER: More than 64 bits detected. A uint64_t for "
"'data' won't work!\n")
# Display the "normal" version's send code incase there are some
# oddities in it.
for line in code["send"]:
output.write("%s\n" % line)
if len(bits_str) > 64: # Will it fit in a uint64_t?
code["send64+"] = [
"",
"#if SEND_%s" % def_name.upper(),
"/// Send a %s formatted message." % name,
"/// Alternative >64bit function to send %s messages" %
def_name.upper(),
"/// Status: ALPHA / Untested.",
"/// Where data is:",
"/// uint8_t data[k%sStateLength] = {0x%s};" % (
name, ", 0x".join("%02X" % int(bits_str[i:i + 8], 2)
for i in range(0, len(bits_str), 8))),
"///"] + code["send64+"]
for line in code["send64+"]:
output.write("%s\n" % line)
output.write("\n")
if len(bits_str) > 64: # Will it fit in a uint64_t?
output.write("// DANGER: More than 64 bits detected. A uint64_t for "
"'data' won't work!\n")
# Display the "normal" version's decode code incase there are some
# oddities in it.
for line in code["recv"]:
output.write("%s\n" % line)
# Display the > 64bit version's decode code
if len(bits_str) > 64: # Is it too big for a uint64_t?
output.write("\n// Note: This should be 64+ bit safe.\n")
if len(bits_str) % 8:
output.write("\n// WARNING: Data is not a multiple of bytes. "
"This won't work!\n")
for line in code["recv64+"]:
output.write("%s\n" % line)
def add_rawdata_args(parser):
"""Add the arguments for feeding in the rawdata string(s)."""
arg_group = parser.add_mutually_exclusive_group(required=True)
arg_group.add_argument(
"rawdata",
help="A rawData line from IRrecvDumpV2. e.g. 'uint16_t rawbuf[37] = {"
"7930, 3952, 494, 1482, 520, 1482, 494, 1508, 494, 520, 494, 1482, 494, "
"520, 494, 1482, 494, 1482, 494, 3978, 494, 520, 494, 520, 494, 520, "
"494, 520, 520, 520, 494, 520, 494, 520, 494, 520, 494};'",
nargs="?")
arg_group.add_argument(
"-f", "--file", help="Read in a rawData line from the file.")
arg_group.add_argument(
"--stdin",
help="Read in a rawData line from STDIN.",
action="store_true",
default=False)
def get_rawdata(arg_options):
"""Return the rawdata string(s) as per the options."""
if arg_options.stdin:
return sys.stdin.read()
if arg_options.file:
with open(arg_options.file) as input_file:
return input_file.read()
else:
return arg_options.rawdata
def main():
"""Parse the commandline arguments and call the method."""
arg_parser = argparse.ArgumentParser(
description="Read an IRremoteESP8266 rawData declaration and tries to "
"analyse it.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
arg_parser.add_argument(
"-g",
"--code",
action="store_true",
default=False,
dest="gen_code",
help="Generate a C++ code outline to aid making an IRsend function.")
arg_parser.add_argument(
"-n",
"--name",
help="Name of the protocol/device to use in code generation. E.g. Onkyo",
dest="name",
default="")
arg_parser.add_argument(
"-r",
"--range",
type=int,
help="Max number of micro-seconds difference between values to consider"
" it the same value.",
dest="margin",
default=200)
add_rawdata_args(arg_parser)
arg_options = arg_parser.parse_args()
parse_and_report(get_rawdata(arg_options), arg_options.margin,
arg_options.gen_code, arg_options.name)
if __name__ == '__main__':
main()