Tasmota/tasmota/xnrg_21_sdm230.ino

268 lines
8.3 KiB
C++

/*
xnrg_08_sdm230.ino - Eastron SDM230-Modbus energy meter support for Tasmota
Copyright (C) 2021 Gennaro Tortone and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_SDM230
/*********************************************************************************************\
* Eastron SDM230 Modbus energy meter
*
* Based on: existing tasmota drivers for SDM120 and SDM630,
* https://github.com/reaper7/SDM_Energy_Meter and https://github.com/nmakel/sdm_modbus
* manuals can be found here:
* German: https://bg-etech.de/download/manual/SDM230-Modbus.pdf
* English: https://www.eastroneurope.com/images/uploads/products/manuals/SDM230_Sereis_Manual.pdf
* Protocol Spec: https://www.eastroneurope.com/images/uploads/products/protocol/Correct_SDM230_Protocol.pdf
\*********************************************************************************************/
#define XNRG_21 21
// can be user defined in my_user_config.h
#ifndef SDM230_SPEED
#define SDM230_SPEED 9600 // default SDM230 Modbus baudrate
#endif
// can be user defined in my_user_config.h
#ifndef SDM230_ADDR
#define SDM230_ADDR 1 // default SDM120 Modbus address
#endif
#include <TasmotaModbus.h>
TasmotaModbus *Sdm230Modbus;
const uint16_t sdm230_start_addresses[] {
0x0000, // SDM230_VOLTAGE [V]
0x0006, // SDM230_CURRENT [A]
0x000C, // SDM230_POWER (Active) [W]
0x0012, // SDM230_POWER (Apparent) G [VA]
0x0018, // SDM230_POWER (Reactive) [VAr]
0x001E, // SDM230_POWER_FACTOR
0x0046, // SDM230_FREQUENCY [Hz]
0X004A, // SDM230_EXPORT_ACTIVE [kWh]
0X0180, // SDM230_RESETTABLE_TOTAL_ENERGY_ACTIVE [kWh]
0X0056, // SDM230_MAXIMUM_TOTAL_DEMAND_POWER_ACTIVE [W]
0x0024, // SDM230_PHASE ANGLE [Degree]
#ifdef SDM230_IMPORT
0X0048, // SDM230_IMPORT_ACTIVE [kWh]
#endif // SDM230_IMPORT
0X0156, // SDM230_TOTAL_ENERGY_ACTIVE [kWh]
// 0X0158, // SDM230_TOTAL_ENERGY_REACTIVE [kVArh]
// 0X0182, // SDM230_RESETTABLE_TOTAL_ENERGY_REACTIVE [kVArh]
// 0X004C, // SDM230_IMPORT_REACTIVE [kVArh]
// 0X004E, // SDM230_EXPORT_REACTIVE [kVArh]
// 0X0054, // SDM230_TOTAL_DEMAND_POWER_ACTIVE [W]
// 0X0058, // SDM230_IMPORT_DEMAND_POWER_ACTIVE [W]
// 0X005A, // SDM230_MAXIMUM_IMPORT_DEMAND_POWER_ACTIVE [W]
// 0X005C, // SDM230_EXPORT_DEMAND_POWER_ACTIVE [W]
// 0X005E, // SDM230_MAXIMUM_EXPORT_DEMAND_POWER_ACTIVE [W]
// 0X0102, // SDM230_TOTAL_DEMAND_CURRENT [A]
// 0X0108, // SDM230_MAXIMUM_TOTAL_DEMAND_CURRENT [A]
};
struct SDM230 {
float resettable_total_energy = 0;
float maximum_total_demand_power = 0;
float phase_angle = 0;
uint8_t read_state = 0;
uint8_t send_retry = 0;
} Sdm230;
/*********************************************************************************************/
void SDM230Every250ms(void)
{
bool data_ready = Sdm230Modbus->ReceiveReady();
if (data_ready) {
uint8_t buffer[14]; // At least 5 + (2 * 2) = 9
uint32_t error = Sdm230Modbus->ReceiveBuffer(buffer, 2);
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, Sdm230Modbus->ReceiveCount());
if (error) {
AddLog(LOG_LEVEL_DEBUG, PSTR("SDM: SDM230 error %d"), error);
} else {
Energy.data_valid[0] = 0;
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch
// 01 04 04 43 66 33 34 1B 38 = 230.2 Volt
float value;
((uint8_t*)&value)[3] = buffer[3]; // Get float values
((uint8_t*)&value)[2] = buffer[4];
((uint8_t*)&value)[1] = buffer[5];
((uint8_t*)&value)[0] = buffer[6];
switch(Sdm230.read_state) {
case 0:
Energy.voltage[0] = value; // 230.2 V
break;
case 1:
Energy.current[0] = value; // 1.260 A
break;
case 2:
Energy.active_power[0] = value; // -196.3 W
break;
case 3:
Energy.apparent_power[0] = value; // 223.4 VA
break;
case 4:
Energy.reactive_power[0] = value; // 92.2
break;
case 5:
Energy.power_factor[0] = value; // -0.91
break;
case 6:
Energy.frequency[0] = value; // 50.0 Hz
break;
case 7:
Energy.export_active[0] = value; // 478.492 kWh
break;
case 8:
Sdm230.resettable_total_energy = value;
break;
case 9:
Sdm230.maximum_total_demand_power = value;
break;
case 10:
Sdm230.phase_angle = value; // 0.00 Deg
break;
case 11:
Energy.import_active[0] = value; // 6.216 kWh
break;
case 12:
EnergyUpdateTotal();
//Energy.export_active[0] = value; // 484.708 kWh = import_active + export_active
break;
}
Sdm230.read_state++;
if (sizeof(sdm230_start_addresses)/2 == Sdm230.read_state) {
Sdm230.read_state = 0;
}
}
} // end data ready
if (0 == Sdm230.send_retry || data_ready) {
Sdm230.send_retry = 5;
Sdm230Modbus->Send(SDM230_ADDR, 0x04, sdm230_start_addresses[Sdm230.read_state], 2);
} else {
Sdm230.send_retry--;
}
}
void Sdm230SnsInit(void)
{
Sdm230Modbus = new TasmotaModbus(Pin(GPIO_SDM230_RX), Pin(GPIO_SDM230_TX));
uint8_t result = Sdm230Modbus->Begin(SDM230_SPEED);
if (result) {
if (2 == result) { ClaimSerial(); }
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Sdm230DrvInit(void)
{
if (PinUsed(GPIO_SDM230_RX) && PinUsed(GPIO_SDM230_TX)) {
TasmotaGlobal.energy_driver = XNRG_21;
}
}
void Sdm230Reset(void)
{
Sdm230.resettable_total_energy = 0;
Sdm230.maximum_total_demand_power = 0;
Sdm230.phase_angle = 0;
}
#ifdef USE_WEBSERVER
const char HTTP_ENERGY_SDM230[] PROGMEM =
"{s}" D_RESETTABLE_TOTAL_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_MAX_POWER "{m}%s " D_UNIT_WATT "{e}"
"{s}" D_PHASE_ANGLE "{m}%s " D_UNIT_ANGLE "{e}";
#endif // USE_WEBSERVER
void Sdm230Show(bool json)
{
char resettable_energy_chr[FLOATSZ];
dtostrfd(Sdm230.resettable_total_energy, Settings->flag2.energy_resolution, resettable_energy_chr);
char maximum_demand_chr[FLOATSZ];
dtostrfd(Sdm230.maximum_total_demand_power, Settings->flag2.wattage_resolution, maximum_demand_chr);
char phase_angle_chr[FLOATSZ];
dtostrfd(Sdm230.phase_angle, 2, phase_angle_chr);
if (json) {
ResponseAppend_P(PSTR(",\"" D_JSON_RESETTABLE_TOTAL_ACTIVE "\":%s,\"" D_JSON_POWERMAX "\":%s,\"" D_JSON_PHASE_ANGLE "\":%s"),
resettable_energy_chr, maximum_demand_chr, phase_angle_chr);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_ENERGY_SDM230, resettable_energy_chr, maximum_demand_chr, phase_angle_chr);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg21(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_250_MSECOND:
SDM230Every250ms();
break;
case FUNC_JSON_APPEND:
Sdm230Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Sdm230Show(0);
break;
#endif // USE_WEBSERVER
case FUNC_ENERGY_RESET:
Sdm230Reset();
break;
case FUNC_INIT:
Sdm230SnsInit();
break;
case FUNC_PRE_INIT:
Sdm230DrvInit();
break;
}
return result;
}
#endif // USE_SDM230
#endif // USE_ENERGY_SENSOR