Tasmota/libesp32/TTGO_TWatch_Library/src/bma.cpp

280 lines
6.8 KiB
C++
Executable File

#include "bma.h"
#include <Arduino.h>
I2CBus *BMA::_bus = nullptr;
BMA::BMA(I2CBus &bus)
{
_bus = &bus;
}
BMA::~BMA()
{
}
uint16_t BMA::read(uint8_t addr, uint8_t reg, uint8_t *data, uint16_t len)
{
return _bus->readBytes(addr, reg, data, len);
}
uint16_t BMA::write(uint8_t addr, uint8_t reg, uint8_t *data, uint16_t len)
{
return _bus->writeBytes(addr, reg, data, len);
}
bool BMA::begin()
{
_dev.dev_addr = BMA4_I2C_ADDR_SECONDARY;
_dev.interface = BMA4_I2C_INTERFACE;
_dev.bus_read = read;
_dev.bus_write = write;
_dev.delay = delay;
_dev.read_write_len = 8;
_dev.resolution = 12;
_dev.feature_len = BMA423_FEATURE_SIZE;
reset();
delay(20);
if (bma423_init(&_dev) != BMA4_OK) {
//Serial.println("bma4 init fail");
return false;
}
config();
return true;
}
void BMA::reset()
{
uint8_t reg = 0xB6;
_bus->writeBytes(BMA4_I2C_ADDR_SECONDARY, 0x7E, &reg, 1);
}
uint16_t BMA::config()
{
return bma423_write_config_file(&_dev);
}
bool BMA::getAccel(Accel &acc)
{
memset(&acc, 0, sizeof(acc));
if (bma4_read_accel_xyz(&acc, &_dev) != BMA4_OK) {
return false;
}
return true;
}
uint8_t BMA::direction()
{
Accel acc;
if (bma4_read_accel_xyz(&acc, &_dev) != BMA4_OK) {
return 0;
}
uint16_t absX = abs(acc.x);
uint16_t absY = abs(acc.y);
uint16_t absZ = abs(acc.z);
if ((absZ > absX) && (absZ > absY)) {
if (acc.z > 0) {
return DIRECTION_DISP_DOWN;
} else {
return DIRECTION_DISP_UP;
}
} else if ((absY > absX) && (absY > absZ)) {
if (acc.y > 0) {
return DIRECTION_BOTTOM_EDGE;
} else {
return DIRECTION_TOP_EDGE;
}
} else {
if (acc.x < 0) {
return DIRECTION_RIGHT_EDGE;
} else {
return DIRECTION_LEFT_EDGE;
}
}
}
float BMA::temperature()
{
int32_t data = 0;
bma4_get_temperature(&data, BMA4_DEG, &_dev);
float res = (float)data / (float)BMA4_SCALE_TEMP;
/* 0x80 - temp read from the register and 23 is the ambient temp added.
* If the temp read from register is 0x80, it means no valid
* information is available */
if (((data - 23) / BMA4_SCALE_TEMP) == 0x80) {
res = 0;
}
return res;
}
void BMA::enableAccel()
{
if (bma4_set_accel_enable(BMA4_ENABLE, &_dev)) {
return;
}
Acfg cfg;
cfg.odr = BMA4_OUTPUT_DATA_RATE_100HZ;
cfg.range = BMA4_ACCEL_RANGE_2G;
cfg.bandwidth = BMA4_ACCEL_NORMAL_AVG4;
cfg.perf_mode = BMA4_CONTINUOUS_MODE;
if (bma4_set_accel_config(&cfg, &_dev)) {
Serial.println("[bma4] set accel config fail");
return;
}
}
void BMA::disalbeIrq()
{
bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_STEP_CNTR_INT /* |BMA423_WAKEUP_INT*/, BMA4_DISABLE, &_dev);
}
void BMA::enableIrq()
{
bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_STEP_CNTR_INT /* |BMA423_WAKEUP_INT*/, BMA4_ENABLE, &_dev);
}
//attachInterrupt bma423 int1
void BMA::attachInterrupt()
{
uint16_t rslt = BMA4_OK;
enableAccel();
// rslt |= bma423_reset_step_counter(&_dev);
rslt |= bma423_step_detector_enable(BMA4_ENABLE, &_dev);
rslt |= bma423_feature_enable(BMA423_STEP_CNTR, BMA4_ENABLE, &_dev);
rslt |= bma423_feature_enable(BMA423_WAKEUP, BMA4_ENABLE, &_dev);
rslt |= bma423_feature_enable(BMA423_TILT, BMA4_ENABLE, &_dev);
rslt |= bma423_step_counter_set_watermark(100, &_dev);
// rslt |= bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_STEP_CNTR_INT | BMA423_WAKEUP_INT, BMA4_ENABLE, &_dev);
rslt |= bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_STEP_CNTR_INT, BMA4_ENABLE, &_dev);
rslt |= bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_TILT_INT, BMA4_ENABLE, &_dev);
bma423_anymotion_enable_axis(BMA423_ALL_AXIS_DIS, &_dev);
struct bma4_int_pin_config config ;
config.edge_ctrl = BMA4_LEVEL_TRIGGER;
config.lvl = BMA4_ACTIVE_HIGH;
config.od = BMA4_PUSH_PULL;
config.output_en = BMA4_OUTPUT_ENABLE;
config.input_en = BMA4_INPUT_DISABLE;
rslt |= bma4_set_int_pin_config(&config, BMA4_INTR1_MAP, &_dev);
// Serial.printf("[bma4] attachInterrupt %s\n", rslt != 0 ? "fail" : "pass");
struct bma423_axes_remap remap_data;
remap_data.x_axis = 0;
remap_data.x_axis_sign = 1;
remap_data.y_axis = 1;
remap_data.y_axis_sign = 1;
remap_data.z_axis = 2;
remap_data.z_axis_sign = 0;
bma423_set_remap_axes(&remap_data, &_dev);
}
bool BMA::set_remap_axes(struct bma423_axes_remap *remap_data)
{
bma423_set_remap_axes(remap_data, &_dev);
}
bool BMA::readInterrupt()
{
return bma423_read_int_status(&_irqStatus, &_dev) == BMA4_OK;
}
uint8_t BMA::getIrqStatus()
{
return _irqStatus;
}
uint32_t BMA::getCounter()
{
uint32_t stepCount;
if (bma423_step_counter_output(&stepCount, &_dev) == BMA4_OK) {
return stepCount;
}
return 0;
}
bool BMA::isStepCounter()
{
return (bool)(BMA423_STEP_CNTR_INT & _irqStatus);
}
bool BMA::isDoubleClick()
{
return (bool)(BMA423_WAKEUP_INT & _irqStatus);
}
bool BMA::isTilt()
{
return (bool)(BMA423_TILT_INT & _irqStatus);
}
bool BMA::isActivity()
{
return (bool)(BMA423_ACTIVITY_INT & _irqStatus);
}
bool BMA::isAnyNoMotion()
{
return (bool)(BMA423_ANY_NO_MOTION_INT & _irqStatus);
}
const char *BMA::getActivity()
{
uint8_t activity;
bma423_activity_output(&activity, &_dev);
if (activity & BMA423_USER_STATIONARY) {
return "BMA423_USER_STATIONARY";
} else if (activity & BMA423_USER_WALKING) {
return "BMA423_USER_WALKING";
} else if (activity & BMA423_USER_RUNNING) {
return "BMA423_USER_RUNNING";
} else if (activity & BMA423_STATE_INVALID) {
return "BMA423_STATE_INVALID";
}
return "None";
}
bool BMA::enableStepCountInterrupt(bool en)
{
return (BMA4_OK == bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_STEP_CNTR_INT, en, &_dev));
}
bool BMA::enableTiltInterrupt(bool en)
{
return (BMA4_OK == bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_TILT_INT, en, &_dev));
}
bool BMA::enableWakeupInterrupt(bool en)
{
return (BMA4_OK == bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_WAKEUP_INT, en, &_dev));
}
bool BMA::enableAnyNoMotionInterrupt(bool en)
{
return (BMA4_OK == bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_ANY_NO_MOTION_INT, en, &_dev));
}
bool BMA::enableActivityInterrupt(bool en)
{
return (BMA4_OK == bma423_map_interrupt(BMA4_INTR1_MAP, BMA423_ACTIVITY_INT, en, &_dev));
}