mirror of https://github.com/arendst/Tasmota.git
363 lines
12 KiB
C++
363 lines
12 KiB
C++
/*
|
|
xnrg_10_sdm630.ino - Eastron SDM630-Modbus energy meter support for Tasmota
|
|
|
|
Copyright (C) 2021 Gennaro Tortone and Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ENERGY_SENSOR
|
|
#ifdef USE_SDM630
|
|
/*********************************************************************************************\
|
|
* Eastron SDM630-Modbus energy meter
|
|
*
|
|
* Based on: https://github.com/reaper7/SDM_Energy_Meter
|
|
\*********************************************************************************************/
|
|
|
|
#define XNRG_10 10
|
|
|
|
// can be user defined in my_user_config.h
|
|
#ifndef SDM630_SPEED
|
|
#define SDM630_SPEED 9600 // default SDM630 Modbus address
|
|
#endif
|
|
// can be user defined in my_user_config.h
|
|
#ifndef SDM630_ADDR
|
|
#define SDM630_ADDR 1 // default SDM630 Modbus address
|
|
#endif
|
|
|
|
#include <TasmotaModbus.h>
|
|
TasmotaModbus *Sdm630Modbus;
|
|
|
|
#ifdef SDM630_HIGH_UPDATE_RATE
|
|
struct sSdm630RequestConfig{
|
|
uint16_t startAddress;
|
|
uint8_t registerToRead; // according to spec: max 80 register can be read a once
|
|
};
|
|
|
|
const struct sSdm630RequestConfig sdm630ReqConf[] {
|
|
{0x0000, 18*2}, // 0x0000 - 0x0025
|
|
{0x0046, 1*2}, // 0x0046
|
|
{0x0156, 8*2} // 0x0156 - 0x0165
|
|
};
|
|
|
|
struct SDM630 {
|
|
uint8_t read_state = 0;
|
|
uint8_t send_retry = 0;
|
|
} Sdm630;
|
|
|
|
|
|
/* convert data buffer to float value according to IEEE754 */
|
|
float convBufToFloat(uint8_t *buffer)
|
|
{
|
|
float value;
|
|
|
|
((uint8_t*)&value)[3] = buffer[0]; // Get float values
|
|
((uint8_t*)&value)[2] = buffer[1];
|
|
((uint8_t*)&value)[1] = buffer[2];
|
|
((uint8_t*)&value)[0] = buffer[3];
|
|
return value;
|
|
}
|
|
#else
|
|
const uint16_t sdm630_start_addresses[] {
|
|
// 3P4 3P3 1P2 Unit Description
|
|
0x0000, // + - + V Phase 1 line to neutral volts
|
|
0x0002, // + - - V Phase 2 line to neutral volts
|
|
0x0004, // + - - V Phase 3 line to neutral volts
|
|
0x0006, // + + + A Phase 1 current
|
|
0x0008, // + + - A Phase 2 current
|
|
0x000A, // + + - A Phase 3 current
|
|
0x000C, // + - + W Phase 1 power
|
|
0x000E, // + - + W Phase 2 power
|
|
0x0010, // + - - W Phase 3 power
|
|
0x0018, // + - + VAr Phase 1 volt amps reactive
|
|
0x001A, // + - - VAr Phase 2 volt amps reactive
|
|
0x001C, // + - - VAr Phase 3 volt amps reactive
|
|
0x001E, // + - + Phase 1 power factor
|
|
0x0020, // + - - Phase 2 power factor
|
|
0x0022, // + - - Phase 3 power factor
|
|
0x0046, // + + + Hz Frequency of supply voltages
|
|
0x0160, // + + + kWh Phase 1 export active energy
|
|
0x0162, // + + + kWh Phase 2 export active energy
|
|
0x0164, // + + + kWh Phase 3 export active energy
|
|
//#ifdef SDM630_IMPORT
|
|
0x015A, // + + + kWh Phase 1 import active energy
|
|
0x015C, // + + + kWh Phase 2 import active energy
|
|
0x015E, // + + + kWh Phase 3 import active energy
|
|
//#endif // SDM630_IMPORT
|
|
0x0156 // + + + kWh Total active energy
|
|
};
|
|
|
|
struct SDM630 {
|
|
uint8_t read_state = 0;
|
|
uint8_t send_retry = 0;
|
|
} Sdm630;
|
|
#endif
|
|
|
|
/*********************************************************************************************/
|
|
|
|
#ifdef SDM630_HIGH_UPDATE_RATE
|
|
uint8_t sdm630ReadBuffer[128]; // at least 5 + (2*max_RegisterToRead)
|
|
#endif
|
|
|
|
void SDM630Every250ms(void)
|
|
{
|
|
bool data_ready = Sdm630Modbus->ReceiveReady();
|
|
|
|
if (data_ready) {
|
|
#ifdef SDM630_HIGH_UPDATE_RATE
|
|
uint8_t* buffer = &sdm630ReadBuffer[0];
|
|
uint32_t error = Sdm630Modbus->ReceiveBuffer(buffer, sdm630ReqConf[Sdm630.read_state].registerToRead);
|
|
#else
|
|
uint8_t buffer[14]; // At least 5 + (2 * 2) = 9
|
|
uint32_t error = Sdm630Modbus->ReceiveBuffer(buffer, 2);
|
|
#endif
|
|
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, Sdm630Modbus->ReceiveCount());
|
|
|
|
if (error) {
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("SDM: SDM630 error %d"), error);
|
|
} else {
|
|
Energy->data_valid[0] = 0;
|
|
Energy->data_valid[1] = 0;
|
|
Energy->data_valid[2] = 0;
|
|
|
|
#ifndef SDM630_HIGH_UPDATE_RATE
|
|
// 0 1 2 3 4 5 6 7 8
|
|
// SA FC BC Fh Fl Sh Sl Cl Ch
|
|
// 01 04 04 43 66 33 34 1B 38 = 230.2 Volt
|
|
float value;
|
|
((uint8_t*)&value)[3] = buffer[3]; // Get float values
|
|
((uint8_t*)&value)[2] = buffer[4];
|
|
((uint8_t*)&value)[1] = buffer[5];
|
|
((uint8_t*)&value)[0] = buffer[6];
|
|
#endif
|
|
|
|
switch(Sdm630.read_state) {
|
|
#ifdef SDM630_HIGH_UPDATE_RATE
|
|
case 0: // start address 0x0000 // 3P4 3P3 1P2 Unit Description
|
|
Energy->voltage[0] = convBufToFloat(&buffer[3]); // + - + V Phase 1 line to neutral volts
|
|
Energy->voltage[1] = convBufToFloat(&buffer[7]); // + - - V Phase 2 line to neutral volts
|
|
Energy->voltage[2] = convBufToFloat(&buffer[11]); // + - - V Phase 3 line to neutral volts
|
|
|
|
//0x0006
|
|
Energy->current[0] = convBufToFloat(&buffer[15]); // + + + A Phase 1 current
|
|
Energy->current[1] = convBufToFloat(&buffer[19]); // + + - A Phase 2 current
|
|
Energy->current[2] = convBufToFloat(&buffer[23]); // + + - A Phase 3 current
|
|
|
|
//0x000C
|
|
Energy->active_power[0] = convBufToFloat(&buffer[27]); // + - + W Phase 1 power
|
|
Energy->active_power[1] = convBufToFloat(&buffer[31]); // + - - W Phase 2 power
|
|
Energy->active_power[2] = convBufToFloat(&buffer[35]); // + - - W Phase 3 power
|
|
|
|
//0x0012
|
|
Energy->apparent_power[0] = convBufToFloat(&buffer[39]); // + - + VA Phase 1 volt amps
|
|
Energy->apparent_power[1] = convBufToFloat(&buffer[43]); // + - - VA Phase 2 volt amps
|
|
Energy->apparent_power[2] = convBufToFloat(&buffer[47]); // + - - VA Phase 3 volt amps
|
|
|
|
//0x0018
|
|
Energy->reactive_power[0] = convBufToFloat(&buffer[51]); // + - + VAr Phase 1 volt amps reactive
|
|
Energy->reactive_power[1] = convBufToFloat(&buffer[55]); // + - - VAr Phase 2 volt amps reactive
|
|
Energy->reactive_power[2] = convBufToFloat(&buffer[59]); // + - - VAr Phase 3 volt amps reactive
|
|
|
|
//0x001E
|
|
Energy->power_factor[0] = convBufToFloat(&buffer[63]); // + - + Phase 1 power factor
|
|
Energy->power_factor[1] = convBufToFloat(&buffer[67]); // + - - Phase 2 power factor
|
|
Energy->power_factor[2] = convBufToFloat(&buffer[71]); // + - - Phase 3 power factor
|
|
break;
|
|
|
|
case 1: // start address 0x0046
|
|
Energy->frequency[0] = convBufToFloat(&buffer[3]); // + + + Hz Frequency of supply voltages
|
|
break;
|
|
|
|
case 2: // start address 0x0156
|
|
// 0x0156 // + + + kWh Total active energy
|
|
// 0x0158 // + + + kvarh Total reactive energy
|
|
|
|
#ifdef SDM630_IMPORT
|
|
//0x015A
|
|
Energy->import_active[0] = convBufToFloat(&buffer[11]); // + + + kWh Phase 1 import active energy
|
|
Energy->import_active[1] = convBufToFloat(&buffer[15]); // + + + kWh Phase 2 import active energy
|
|
Energy->import_active[2] = convBufToFloat(&buffer[19]); // + + + kWh Phase 3 import active energy
|
|
#endif
|
|
//0x0160
|
|
Energy->export_active[0] = convBufToFloat(&buffer[23]); // + + + kWh Phase 1 export active energy
|
|
Energy->export_active[1] = convBufToFloat(&buffer[27]); // + + + kWh Phase 2 export active energy
|
|
Energy->export_active[2] = convBufToFloat(&buffer[31]); // + + + kWh Phase 3 export active energy
|
|
|
|
EnergyUpdateTotal();
|
|
break;
|
|
|
|
#else //old sdm630 implementation
|
|
case 0:
|
|
Energy->voltage[0] = value;
|
|
break;
|
|
|
|
case 1:
|
|
Energy->voltage[1] = value;
|
|
break;
|
|
|
|
case 2:
|
|
Energy->voltage[2] = value;
|
|
break;
|
|
|
|
case 3:
|
|
Energy->current[0] = value;
|
|
break;
|
|
|
|
case 4:
|
|
Energy->current[1] = value;
|
|
break;
|
|
|
|
case 5:
|
|
Energy->current[2] = value;
|
|
break;
|
|
|
|
case 6:
|
|
Energy->active_power[0] = value;
|
|
break;
|
|
|
|
case 7:
|
|
Energy->active_power[1] = value;
|
|
break;
|
|
|
|
case 8:
|
|
Energy->active_power[2] = value;
|
|
break;
|
|
|
|
case 9:
|
|
Energy->reactive_power[0] = value;
|
|
break;
|
|
|
|
case 10:
|
|
Energy->reactive_power[1] = value;
|
|
break;
|
|
|
|
case 11:
|
|
Energy->reactive_power[2] = value;
|
|
break;
|
|
|
|
case 12:
|
|
Energy->power_factor[0] = value;
|
|
break;
|
|
|
|
case 13:
|
|
Energy->power_factor[1] = value;
|
|
break;
|
|
|
|
case 14:
|
|
Energy->power_factor[2] = value;
|
|
break;
|
|
|
|
case 15:
|
|
Energy->frequency[0] = value;
|
|
break;
|
|
|
|
case 16:
|
|
Energy->export_active[0] = value;
|
|
break;
|
|
|
|
case 17:
|
|
Energy->export_active[1] = value;
|
|
break;
|
|
|
|
case 18:
|
|
Energy->export_active[2] = value;
|
|
break;
|
|
|
|
case 19:
|
|
Energy->import_active[0] = value;
|
|
break;
|
|
|
|
case 20:
|
|
Energy->import_active[1] = value;
|
|
break;
|
|
|
|
case 21:
|
|
Energy->import_active[2] = value;
|
|
break;
|
|
|
|
case 22:
|
|
// Energy->import_active[0] = value;
|
|
EnergyUpdateTotal();
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
Sdm630.read_state++;
|
|
#ifdef SDM630_HIGH_UPDATE_RATE
|
|
if ( nitems(sdm630ReqConf) == Sdm630.read_state) {
|
|
#else
|
|
if (sizeof(sdm630_start_addresses)/2 == Sdm630.read_state) {
|
|
#endif
|
|
Sdm630.read_state = 0;
|
|
}
|
|
}
|
|
} // end data ready
|
|
|
|
if (0 == Sdm630.send_retry || data_ready) {
|
|
Sdm630.send_retry = 5;
|
|
#ifdef SDM630_HIGH_UPDATE_RATE
|
|
Sdm630Modbus->Send(SDM630_ADDR, 0x04, sdm630ReqConf[Sdm630.read_state].startAddress, sdm630ReqConf[Sdm630.read_state].registerToRead);
|
|
#else
|
|
Sdm630Modbus->Send(SDM630_ADDR, 0x04, sdm630_start_addresses[Sdm630.read_state], 2);
|
|
#endif
|
|
} else {
|
|
Sdm630.send_retry--;
|
|
}
|
|
}
|
|
|
|
void Sdm630SnsInit(void)
|
|
{
|
|
Sdm630Modbus = new TasmotaModbus(Pin(GPIO_SDM630_RX), Pin(GPIO_SDM630_TX), Pin(GPIO_NRG_MBS_TX_ENA));
|
|
uint8_t result = Sdm630Modbus->Begin(SDM630_SPEED);
|
|
if (result) {
|
|
if (2 == result) { ClaimSerial(); }
|
|
Energy->phase_count = 3;
|
|
Energy->frequency_common = true; // Use common frequency
|
|
} else {
|
|
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
|
}
|
|
}
|
|
|
|
void Sdm630DrvInit(void)
|
|
{
|
|
if (PinUsed(GPIO_SDM630_RX) && PinUsed(GPIO_SDM630_TX)) {
|
|
TasmotaGlobal.energy_driver = XNRG_10;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xnrg10(uint32_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
switch (function) {
|
|
case FUNC_EVERY_250_MSECOND:
|
|
SDM630Every250ms();
|
|
break;
|
|
case FUNC_INIT:
|
|
Sdm630SnsInit();
|
|
break;
|
|
case FUNC_PRE_INIT:
|
|
Sdm630DrvInit();
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_SDM630
|
|
#endif // USE_ENERGY_SENSOR
|